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Using Monte Carlo simulation techniques, we calculate the phase diagram for a square-shoulder
square-well potential in two dimensions that has been previously shown to exhibit liquid anoma-
lies consistent with a metastable liquid-liquid critical point. We consider the liquid, gas, and five
crystal phases, and find that all the melting lines are first order, despite a small range of metasta-
bility. One melting line exhibits a temperature maximum, as well as a pressure maximum that
implies inverse melting over a small range in pressure. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4735093]

I. INTRODUCTION

Core-softened potentials were first used by Stell,
Hemmer and co-workers in a lattice gas system to discuss the
isostructural solid-solid phase transition that ends in a sec-
ond critical point.1–3 Core-softened potentials were also used
to study single-component systems in a liquid state, such as
liquid metals.4–11 They have been also used to study liquid
anomalies in 1D12–14 and 2D.15–18 Calculations in Refs. 19
and 20 show that a core-softened potential can be considered
as a realistic first-order approximation for the real interaction
between water molecules resulting from averaging over the
angular part.

Interest in the study of liquid-liquid (L-L) phase tran-
sitions in single-component systems grew dramatically af-
ter such a transition and accompanying critical point were
proposed for water as an explanation for its anomalous
properties.21 Various studies have been done to understand
the L-L phase transition and associated phenomena. Some
of these studies focussed on the “two-liquid” model to ex-
plain liquid properties.22–24 Other studies were based on us-
ing anisotropic potentials.25, 26 Franzese et al. showed that the
liquid-liquid phase transition and accompanying critical point
can also arise from a shoulder-like potential with two char-
acteristic distances (hard core and soft core).27 In this work,
the authors reported in 3D molecular dynamics (MD) sim-
ulations the existence of two liquid phases, the low-density
liquid phase and the high-density liquid phase, and showed
that these two phases can occur in the system with no density
anomaly. On the other hand, 2D simulation studies reproduce
the density anomaly but no second critical point.13 For a re-
view of unusual behavior of isotropic potentials with two en-
ergy scales in 2D, see Ref. 28. In general, the phase behavior
of 2D systems is richer, with crystallization able to proceed
through a hexatic phase,29 or even through a less well under-
stood way when long-range repulsions are present.30

Gibson and Wilding31 studied a family of ramp
potentials16 for which the L-L critical point systematically
moved from a stable position in the phase diagram to a

metastable one. Ryzhov and Stishov32 tracked the change of
the L-L transition line as a function of the width of the shoul-
der in a square-shoulder potential. A fuller examination of the
phase behavior of the square-shoulder potential33, 34 placed
the liquid anomalies in the context of the crystal phases and
gave emphasis to the “quasi binary mixture” nature of the sys-
tem at low temperature (which allows for an “amorphous gap”
of increased liquid stability between crystal structures as a
function of density). Lattice models have also played a role
in gaining basic insight into the mechanism of the L-L transi-
tion and associated liquid-state anomalies,35, 36 and are more
amenable to analytic treatments.37, 38

Scala and co-workers18 carried out MD simulations in 2D
of the square-shoulder square-well (SSSW) potential shown
in Fig. 1 to study liquid anomalies. Buldyrev et al.39 contin-
ued with the SSSW model in 2D and 3D in order to study
liquid-liquid phase transitions. For the 2D system, they pro-
duced a phase diagram showing liquid anomalies in relation to
approximate crystallization lines for a range in pressure P and
temperature T near a potential L-L critical point. Their phase
diagram shows the gas-liquid coexistence curve and crystal-
lization lines for a low-density triangular (LDT) and higher
density square crystal. It also shows the first critical point
and the hypothetical position of the second critical point,
which coincides with the crossing of the two crystallization
lines. Thus, unavoidable crystallization renders the L-L crit-
ical point not directly observable, or obscured. Their crystal-
lization lines were determined from examining the behavior
of the pressure, structure, and dynamics along isochores. They
are estimates of the limit of liquid stability, or rather the limit
of metastability, with respect to the crystal, rather than ther-
modynamically determined coexistence lines. As the system
is two-dimensional, the nature of the crystallization transi-
tion is also under question, in so far that in two dimensions,
crystallization can proceed in a continuous way via a hexatic
phase rather than through a first-order phase transition.

In the present work, we carry out free energy calcula-
tions, based primarily on Monte Carlo (MC) simulation, to
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determine the coexistence conditions between the liquid and
crystal phases for a wide range of P and T, including the
smaller range presented in Ref. 39. In doing so, we find two
low-density crystal phases not previously reported for the
model. We find that all the transitions are at least weakly
first order. The crystallization lines reported in Ref. 39 are
below our calculated melting lines. Additionally, the square
crystal shows a maximum temperature in its melting curve,
as well as a maximum in pressure. Thus, the present model
is a useful one for studying the rare phenomenon of inverse
melting, in which the liquid may freeze to the crystal upon
heating.

This paper is organized as follows. In Sec. II, we discuss
all the free energy and computer simulation techniques used
in carrying out this work. In Sec. III, we show our results. In
Sec. IV we present a discussion and we give our conclusions
in Sec. V.

II. METHODS

A. Model and simulations

The model we study is the step pair potential shown in
Fig. 1. As we are carrying out our studies in two dimensions,
the model describes disks with a hard-core diameter σ and an
attractive well extending out to a radial distance of c =

√
3σ .

The attractive well itself contains a shoulder, with a pair in-
teraction energy of −ε/2 for σ < r < b and energy of −ε for
b < r < c. The parameter b was originally chosen to be

√
2σ

so that there would exist a LDT phase and a higher density
square (S) phase with the same potential energy per particle
of −3ε, i.e., two energetically degenerate phases of well sepa-
rated densities.39 The idea behind this was to allow for distinct
liquid states, one based on square packing and the other on the
more open triangular packing, in analogy to what is thought to
be the case for water. At high pressure the system ultimately
must form the close-packed triangular phase (high-density tri-
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FIG. 1. The pair potential used in this study is an isotropic step potential
with hard-core diameter σ . b =

√
2σ is the soft-core distance, and c =

√
3σ

is the attractive distance limit. r is the distance between two particles and ε is
the bond energy.

angular (HDT)), with potential energy per particle of −1.5ε.
We find two additional crystals, phases A and Z, with per par-
ticle energies −3.25ε and −3.5ε, respectively. The various
crystal phases are depicted in Fig. 2. Our goal is to calculate
coexistence lines between the five crystal phases, the liquid
(L) and the gas (G).

The liquid-state properties of the model were extensively
studied in Ref. 39 using discrete MD simulation. The S and
LDT crystallization lines were determined in that work from
pressure isochores and from direct observation of crystal-
like structural and dynamical behavior. Here, we calculate
the crystal coexistence lines using free energy techniques that
employ for the most part MC simulations performed at con-
stant particle number N, P, and T, i.e., in the NPT ensemble.40

Depending on the phase, the pressure is kept constant by
changing the volume isotropically (for L, S, HDT, and LDT),
by allowing rectangular dimensions of the simulation cell to
change length independently while maintaining a right angle

(a) (b) (c) (d)

(e) (f)

FIG. 2. Illustration of the phases modelled. (a) The liquid (L), here shown as a small portion of a simulation in which distinct local packing environments are
visible. (b) The square crystal (S). (c) The low-density triangular crystal (LDT). (d) The high-density triangular crystal (HDT). (e) The A crystal. (f) The Z
crystal. Line segments for the crystal phases indicate a bond with energy −ε and a dashed line segment one with energy −ε/2.
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(for A and Z), or by allowing the angle to change as well
(as a check for all phases). The system sizes and box shapes
are as follows: (L) N = 1020 and 986, square box; (S)
N = 1024 square box, and N = 992 with rectangular box
Ly = 32Lx/31; (HDT and LDT) N = 986, Ly = 17

√
3Lx/29;

(A) N = 952, Ly = 28(sin 12◦ + 1)Lx/(34cos 12◦) initially; (Z)
N = 968, square box initially. The different box shapes (and
hence number of particles) are used as consistency checks,
and indeed we do not detect any difference in the results based
on the particular choice used.

B. Solid-liquid and solid-solid coexistence

First-order transition lines can be determined using a
method developed by Kofke to trace coexistence curves.41, 42

Kofke refers to his method as Gibbs-Duhem integration, and
it is based on the Clapeyron equation which describes the
temperature dependence of the pressure at which two phases
coexist

dP

dT
= #s

#v
= #h

T #v
, (1)

where #s is the molar entropy difference, #h is the molar
enthalpy difference, and #v is the molar volume difference
between the two coexisting phases. Tracing the coexistence
curve requires that one point on the coexistence curve be
known and then the rest of the curve can be found by integra-
tion of Eq. (1), in particular using the enthalpy since it is much
easier to calculate than the entropy. We carry out the integra-
tion using a second-order predictor-corrector method.43, 44

To obtain the first coexistence point between the liquid
and the S crystal, we first determine the respective equations
of state along an isotherm by carrying out several NPT sim-
ulations. We choose kBT/ε = 0.55 so that we are above the
L-G critical temperature, where kB is the Boltzmann constant.
Once the equations of state are known, we calculate the chem-
ical potential µ for each phase as a function of number density
ρ by integrating the pressure via40, 45

βµ(ρ) = βf (ρ∗) + β

∫ ρ

ρ∗

P (ρ ′)

ρ ′2 dρ ′ + βP

ρ
, (2)

where β = (kBT)−1 and f is the Helmholtz free energy per
particle calculated at a reference number density ρ*.

To carry out the integration, we fit the liquid isotherm to
Eq. (3) and the solid isotherm to Eq. (4) (Refs. 47 and 46)

βP = ρ

1 − alρ
+ bl

(
ρ

1 − alρ

)2

+ cl

(
ρ

1 − alρ

)3

, (3)

βP = asρ
2 + bsρ + cs, (4)

where al, s, bl, s, and cl, s are the fit parameters. Integration of
Eq. (3) from zero to a density of interest yields the chemical
potential of liquid, as given in Eq. (5). Similarly, integration
of Eq. (4) from a reference density to the density of interest
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FIG. 3. Equations of state of the liquid (circles) and S crystal (diamonds)
at kBT/ε = 0.55. The curves show fits according to Eqs. (3) and (4), with
al = −0.457818, bl = −9.18372, and cl = 33.4007 for the liquid (inset) and
as = 479.035, bs = −686.583, and cs = 246.067 for the crystal.

yields the chemical potential of solid, as given in Eq. (6),46, 47

βµl(ρ) = ln
(

ρ&2

1 − alρ

)
+ bl/al − cl/a

2
l + 1

1 − alρ

+ cl/2a2
l + blρ

(1 − alρ)2
+ clρ

2

(1 − alρ)3

− (bl/al − cl/2a2
l + 1), (5)

βµs(ρ) = 2asρ + bs[ln(ρ) + 1]

− [asρ
∗ + bs ln(ρ∗) − cs/ρ

∗]

+βf ex(ρ∗) + ln(&2ρ∗) − 1, (6)

where & = h/
√

(2πmkBT ) is the de Broglie thermal wave-
length, where it is assumed to equal unity since it plays no
role in locating the coexistence pressure (along an isotherm).
fex(ρ*) is the excess Helmholtz free energy per particle calcu-
lated at ρ*.

For the liquid, Eq. (3) provides a good fit only up to ρ

≈ 0.1, and so from ρ = 0 to ρ∗
l = 0.09418 we use Eq. (5),

and then integrate Eq. (2) numerically, using different inter-
polation orders to estimate uncertainty. The equations of state
for the liquid and the S crystal are shown in Fig. 3.

We calculate the crystal reference Helmholtz free energy
using the Frenkel-Ladd method.48 In this method, a harmonic
potential is added to the original system to define a new sys-
tem potential energy,

Uλ = U ('rN ) + λ

N∑

i=1

('ri − 'r0,i)2, (7)

where 'ri is the position of particle i and 'r0,i is its ideal lat-
tice position, and U ('rN ) is the unaltered system potential en-
ergy. Uλ is such that at coupling parameter λ = 0 the original
model is recovered and for sufficiently large λ, the system be-
haves as an ideal Einstein crystal. A thermodynamic integra-
tion at a particular T and ρ is carried along λ to determine the
Helmholtz free energy difference between the Einstein crystal
and the original model. The excess free energy per particle for
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FIG. 4. The mean-squared displacement transformed by Eq. (12) as a func-
tion of coupling parameter λ calculated by computer simulation (solid curve
is a guide to the eye). Dashed line is the theoretical value given by Eq. (10).

the model is then expressed as40

βf ex = βfEin + β#FCM

N
+ ln(ρ∗)

N
− d

2N
ln(N )

− d

2N
ln

(
βλmaxm

2π

)
− βf id, (8)

where d = 2 is the dimensionality of the system and m = 1
is the mass of the particle. The first term in Eq. (8) represents
the free energy of the ideal (non-interacting) Einstein crystal,
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FIG. 5. Determination of a coexistence P between the L and S phases at
kBT/ε = 0.55. Panel (a) shows the chemical potential isotherms for the liquid
(solid curve) and the square crystal (dashed curve). Inset shows a closeup of
the crossing. In panel (b) we show the difference in chemical potential #µ
between the two phases over the entire range of P for which the equations
of state overlap, with dashed lines indicating upper and lower uncertainty
estimates.

which is equal to

βfEin =
βU ('rN

0 )
N

− d

2
ln

(
π

βλmax

)
, (9)

where U ('rN
0 ) is the potential energy of the crystal when all

the atoms are at their ideal lattice positions, and λmax is cho-
sen such that, for λ larger than λmax, the mean-squared dis-
placement 〈δr2〉λ ≡ 〈('ri − 'r0,i)2〉λ, where 〈. . . 〉λ indicates an
ensemble average, for a system with fixed center of mass fol-
lows the following analytical expression:

〈δr2〉Eins,λ = N − 1
N

1
βλ

. (10)

The second term in Eq. (8) represents the free energy differ-
ence between the solid and the Einstein crystal, and can be
calculated by integrating the mean-squared displacement ob-
tained from simulations carried out with a fixed center of mass
as follows:40, 49

#F CM

N
=

∫ λmax

0
〈δr2〉λdλ. (11)

This integration can be understood as gradually switching on
the coupling parameter to transform the solid into an Einstein
crystal. For better accuracy, this integral can be transformed
to40

#F CM

N
=

∫ ln(λmax+c)

ln(c)
d[ln(λ + c)](λ + c)〈δr2〉λ, (12)

where c is a constant chosen to be 1 in this work. The inte-
grand is shown in Fig. 4, along with the curve for the ideal
solid. We choose ln (λmax + 1) = 6.909, checking that using
higher values yields no appreciable change in the final result.
The integration is carried out using interpolations of different
order in order to estimate uncertainty.

The third, fourth, and fifth terms in Eq. (8) correspond to
the difference between the constrained (fixed center of mass)
and unconstrained (non-fixed center of mass) solids. The last
term in Eq. (8) is the free energy of the ideal gas per particle,
which is given by

βfid = ln(ρ) − 1 + ln(2πN )
2N

. (13)

Once the chemical potentials of the two phases are
known, the coexistence point can be obtained from the inter-
section of the two chemical potential curves.46, 47

µl(ρ) and µs(ρ) are used together with the equations of
state to plot the chemical potentials of the two phases as func-
tions of pressure, as we do in Fig. 5. It is immediately ap-
parent that µ(P) has nearly the same slope for both phases,
and hence the location of the crossing is sensitive to errors in
the various calculated quantities used to determine the curves.
We note that the equations of state are determined only to the
point where the metastable phase does not easily transform
to the other phase. It is somewhat surprising that at the P for
which either phase becomes unstable, βPσ 2 ∼ 3.49 for S and
βPσ 2 ∼ 4.09 for L, the difference in chemical potential is
very small, on the order of |β#µ| ∼ 0.01.
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FIG. 6. Snapshot configuration obtained from an NVT simulation for 10 000
particles at kBT/ε = 0.55 and ρ = 0.786567. Black symbols represent parti-
cles belonging to the S phase, while grey symbols represent the L phase.

As a check on the L-S coexistence conditions at kBT/ε
= 0.55, we perform an NV T (canonical ensemble) simula-
tion with 10 000 particles initially placed on a square lattice
with ρσ 2 = 0.786567, the ρ at which the system is expected
to phase separate into L and S with equal numbers of parti-
cles in each phase, based on liquid and S coexistence densi-
ties of ρ l = 0.7677 and ρx = 0.8064, respectively. Figure 6
shows a snapshot after running for 2 × 107 MC steps per par-
ticle, with dark symbols identifying particles belonging to the
S phase.50–53 Averaging over the last 5 × 106 MC steps per
particle, the fraction of particles belonging to the S phase is
0.51.

The above procedure is repeated (at lower T) for the other
crystal phases to determine crystal-crystal coexistence lines.
For two crystals, the slopes of µ(P) are generally quite differ-
ent, which makes it easier to pinpoint the coexistence P. Simi-
larly, at T less than the L-G critical temperature, the procedure
is repeated to find crystal sublimation lines after determining
the equation of state for the gas.

For the L-LDT melting line, we must additionally per-
form an integration of the enthalpy H to lower T at a P above
the critical pressure in order to avoid the L-G critical point.
Specifically, we first integrate the liquid equation of state at
kBT/ε = 0.70 using Eq. (2) to Pσ 2/ε = 0.05, and then calcu-
late µ(T) via49

µ(T2, P )
kBT2

= µ(T1, P )
kBT1

−
∫ T2

T1

H (T )
NkBT 2

dT , (14)

noting that here, the T dependence of & must be taken into
account. Equivalently, this amounts to using the potential
energy instead of the thermal energy in calculating H. For
the LDT crystal, the reference free energy is calculated at
Pσ 2/ε = 0.05 and kBT /ε = 0.24 after determining the den-
sity at that point to be ρσ 2 = 0.4780 ± 0.0015. In Fig. 7 we
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FIG. 7. (a) Enthalpy per particle for the liquid (circles) and LDT crystal
(diamonds) along Pσ 2/ε = 0.05. Here we have subtracted the ideal gas con-
tribution to the energy. Inset shows data for a larger system of approximately
4000 particles (filled symbols). (b) The corresponding chemical potential dif-
ference between the L and LDT phases for the entire range in T of metasta-
bility. (c) The chemical potential difference between the L and S phases at
Pσ 2/ε = 0.15.

show H(T) for L and LDT as well as the resulting difference
in µ between the phases. We repeat the calculation using the
liquid equation of state at kBT/ε = 0.55 as a check. Using the
same procedure at kBT/ε = 0.70, we carry out an evaluation of
the melting temperature of the S phase at Pσ 2/ε = 0.15 [Fig.
7(c)] and Pσ 2/ε = 7.00 as a check on the accuracy of the co-
existence line. In the inset of Fig. 7(a), we plot H for L and
LDT for a larger system of ∼4000 particles, detecting no ap-
preciable difference in the value of H per particle or range of
metastability from the ∼1000 particle system. We similarly
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FIG. 8. Sample time series of the number density near the L-HDT coexis-
tence curve, with N = 986, kBT/ε = 5.0, and P0 = 50.0ε/σ 2. The system
samples both the (lower density) liquid and the HDT crystal.

detect no differences for the L-S transition when increasing
the system size to 4000 particles (not shown).

C. L-HDT coexistence

Using the Gibbs-Duhem integration method is not neces-
sary (or possible) for tracing out the L-HDT melting line at
high T, as over a certain range in P the system can fairly eas-
ily sample both states. Thus, to determine the coexistence P
along an isotherm, we first locate a pressure P0 for which we
can sample both states with reasonable statistics, as shown in
Fig. 8, and determine the conditional Gibbs free energy from a
histogram of the densities sampled during an NPT simulation

β#G(T , P0; ρ) = − ln [Pr (ρ)], (15)

where Pr(ρ) is the probability density of observing the system
at a particular ρ. Here, we do not normalize our histograms as
the normalization merely adds an inconsequential shift. P0 al-
ready provides an estimate of the location of the coexistence
pressure. The conditional free energy shown in Fig. 9 (black
curve) exhibits a global minimum at high density (HDT) and a
metastable one at low density (liquid). The free energy barrier
between the two states is characteristic of a first-order transi-
tion. To more precisely locate the coexistence pressure, we
reweight the histogram by applying a pressure shift,

β#G(T , P ′; ρ) = β#G(T , P0; ρ) + Nβ#P

ρ
+ c, (16)

where c is a constant related to normalization and #P is the
pressure shift that brings the two minima to the same level, as
in Fig. 9 (red curve). The coexistence pressure is then equal
to P′ = P0 + #P. In practice, the shift we obtain is hardly
perceptible on the scale of our plots, e.g., for the kBT/ε = 5.0
case in Fig. 9, P0σ

2/ε = 50.0 and #Pσ 2/ε = −0.135, and for
kBT/ε = 1.0, P0σ

2/ε = 14.350 and #Pσ 2/ε = −0.004. We
note that the barrier does grow with decreasing T, and below
kBT/ε ≈ 0.5, both phases can stably exist for sufficiently long
times in order to perform the Gibbs-Duhem integration. In-
deed below this T, it is not feasible to continue with histogram
reweighting without using some biasing potential within the
MC simulations.
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FIG. 9. Conditional Gibbs free energy as a function of ρ. At kBT/ε = 5.0 and
a pressure P0 = 50.0ε/σ 2 slightly above coexistence (solid curve, circles), the
high-density basin (HDT crystal) has a lower free energy than the low-density
(liquid) basin. Through Eq. (16), an appropriate shift in the pressure locates
the coexistence pressure, i.e., transforms the P0 curve so that the liquid and
HDT minima are at the same level to within precision of the data (dashed
line, squares).

D. G-L coexistence

The G-L coexistence line can be determined by
using the Gibbs ensemble MC method developed by
Panagiotopoulos.54 The Gibbs ensemble employs two sepa-
rated subsystems (without the presence of an interface), where
the total number of particles is fixed and the total volume (in
this case, area) of the two subsystems is also fixed; the total
system as a whole evolves according to the canonical ensem-
ble. The thermodynamic requirements for phase coexistence
are that the temperature, pressure, and chemical potential of
the two coexisting phases must be equal and these require-
ments can be achieved by performing three different kinds of
trial MC moves. First, particle displacement within each sub-
system, second, volume fluctuations of the two subsystems,
and third, transferring particles between the two subsystems.
The advantage of using the Gibbs ensemble is that the system
finds the densities of the coexistence phases without comput-
ing either the pressure or the chemical potential.

Having obtained the coexistence densities at a series of
T, the corresponding coexistence pressures can be estimated
by applying the virtual volume change method of Haresmi-
adis et al.55 In this method, we perform separate NVT MC
simulations of both the liquid and the gas at their respective
coexistence densities (at a given T), and obtain the pressure
via

P = kBT

#V
ln

[〈(
V ′

V

)N

exp (−β#U )

〉]

, (17)

where #U is the potential energy difference between a con-
figuration with particle coordinates isotropically rescaled to
accommodate a smaller virtual area V ′ and the unaltered con-
figuration with original area V , where V ′ = V − #V and
#V = 0.1σ 2. Both phases give the same pressure to within
error.

However, as the temperature approaches the critical tem-
perature TC, G-L coexistence can no longer be discerned in
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the Gibbs ensemble simulation. Our data for the G-L coex-
istence curve from the Gibbs ensemble extend only to kBT/ε
= 0.50. Beyond this T, we extrapolate according to the fol-
lowing procedure. We estimate TC by fitting the density dif-
ference of the two coexisting phases to a scaling law40, 46, 56

ρl − ρg = A|T − TC |βc , (18)

where βc is the critical exponent, which is equal to 0.125 for a
two-dimensional system, and A is a constant determined from
the fit. To estimate the critical density ρC, we fit our results to
the law of rectilinear diameters40, 46, 56

ρl + ρg

2
= ρC + B|T − TC |, (19)

where B is a constant determined in the fit, and TC is used
from the fit in Eq. (18). The critical pressure PC is estimated
by fitting the vapor pressure curve to the Clausius-Clapeyron
equation56

ln P = C + D

T
, (20)

where C and D are constants determined in the fit. PC is
then calculated by substituting TC obtained from Eq. (18) in
Eq. (20). From the fits, we obtain ρCσ 2 = 0.263 ± 0.002,
kBTC/ε = 0.533 ± 0.002, and PCσ 2/ε = 0.019 ± 0.001. The
uncertainties quoted here are based on uncertainties in the fit
parameters and do not reflect any systematic error associated
with the fact that we are extrapolating above kBT/ε = 0.50,
the highest T at which we have reliable Gibbs ensemble data.

III. RESULTS

Having assembled all of the individual coexistence
curves, we present the phase diagram in the P-T plane in
Fig. 10 and in the ρ-T plane in Fig. 11. The three panels of
Fig. 10 show progressively smaller ranges of P. In Fig. 10(b),
dashed lines indicate metastable extensions of coexistence
lines into the gas stability field (i.e., showing the phase di-
agram in the absence of the gas). As an aid to interpreting
Fig. 11, we recall that under conditions of constant volume,
the thermodynamic ground state is not necessarily a single
phase, but is generally composed of two coexisting phases.
The bottom panel of Fig. 11 shows the phase diagram in the
absence of the gas phase.

Figure 10(a) shows a prominent S-L melting line tem-
perature maximum at Pσ 2/ε = 5.24 ± 0.05 and kBTmax/ε
= 0.655 ± 0.005. At this point, according to Eq. (1), the mo-
lar volumes of the S crystal and liquid are equal. At higher P,
the melt is more dense than the crystal, as in the familiar case
of water and hexagonal ice.

An even more exotic feature of the S-L melting line is the
pressure maximum occurring near the HDT-S-L triple point
at Pmaxσ

2/ε = 7.98 ± 0.08 and kBT/ε = 0.450 ± 0.003. A
closeup of this feature is shown in Fig. 12. At this point, ac-
cording to Eq. (1), the entropy of the S crystal and the liquid
are equal, and for lower T along the curve, the melt has a lower
entropy than the crystal. The presence of the pressure maxi-
mum in the melting curve allows for “inverse melting”57 in the
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FIG. 10. Phase diagram of the 2D model in the P-T plane, showing the liq-
uid (L), gas (G), and crystal phases HDT, S, LDT, A, and Z (see Fig. 2). The
panels show portions of the phase diagram at (a) high, (b) medium, and (c)
low P. The liquid-gas coexistence line terminates at a critical point at kBTc/ε
= 0.533 and PCσ 2/ε = 0.0185 (filled circle). Dashed lines in (b) are
metastable coexistence lines assuming the absence of the gas phase. Initial
coexistence points, i.e., starting points for Gibbs-Duhem integration, are in-
dicated by circles, while ×’s show repeated coexistence calculations done as
checks on the Gibbs-Duhem integration.

narrow range of P between the triple point and the maximum,
i.e., isobaric heating of the liquid results in crystallization.

Given the numerical uncertainties in determining coexis-
tence conditions and tracing out coexistence lines, we carry
out a rough check by preforming three sets of simulations in
the vicinity of the HDT-S-L triple point. Each set is a grid of
121 simulations for state points marked in Fig. 12. For one
set, the particles are initially positioned on the S lattice; for
the second set, points are initially on the HDT lattice; high
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FIG. 11. Phase diagram in the ρ-T plane. (a) The points along the G-L coex-
istence lines indicate results from Gibbs Ensemble simulations and the large
filled orange circle shows our estimate of the G-L critical point based on an
extrapolation described in the text. Panel (b) shows the phase diagram in the
absence of the gas phase. The filled black circle shows the location of the
obscured L-L critical point discussed in Ref. 39.

T liquid-state configurations seed the third set of simulations.
We run each simulation for 5 × 107 MC steps per particle,
and then indicate with the appropriate symbol in Fig. 12
the phase which the system spontaneously adopts. Poten-
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FIG. 12. P-T phase diagram obtained at high pressure, near the L-S-HDT
triple point. The grid of points is obtained from three sets of simulations.
Each of L, S, and HDT is used to initialize a simulation set with N = 986,
992, and 986, respectively. The final phase adopted from each set at each state
point is indicated by a symbol: S, square; HDT, triangle; L, ×. For example,
at low P and high T, both L and HDT transform to S, while near the triple
point, each phase retains metastability.

tially, since there are three simulations per state point, three
symbols may appear, indicating stability or metastability of
all three phases. Near the triple point, the simulations retain
the starting phase, as expected, while deep within a stability
field, all sets transform to the same phase. In this way, we
crudely map out the extent of metastability.

It is difficult to directly confirm inverse melting on typ-
ical simulation time scales, as the metastable phase is never
far from the coexistence line. We aim to address this in future
work. However, and while this is not a definitive check on the
existence of inverse melting, the tendency for points exhibit-
ing liquid metastability within the S stability field to track the
curvature of the S-L melting line is supportive of the existence
of this phenomenon in the system, i.e., the lowest P point for
each T for which the × and ◦ simultaneously occur roughly
form a curve with a maximum in P that tracks the shape of
the S-L coexistence line.

At lower P, we confirm the negative slope of the LDT-L
melting line as reported already in Ref. 39. Below the LDT-S-
L triple point, we find that the new crystal phases A and Z both
have reasonably large stability fields, as shown in Fig. 10(b),
and that the LDT crystal, having the lowest density of the
crystal phases studied, occupies a rather small portion of
the phase diagram. The A-S transition line is also negatively
sloped, which together with the fact that the A phase has a
lower density than S (see Fig. 11), implies through Eq. (1) that
the entropy of S is larger than that of A. Indeed, the bonding
distances required to form A are rather restrictive compared
to the geometry of S, and this is reflected in the smaller range
in ρ for which A is the single stable phase (again, compared
to S). A similar argument holds when comparing Z to A.

The nature of phases A and Z is somewhat reminiscent of
the low-density phases appearing in soft shoulder models,33, 34

in that in both cases the system sacrifices entropy in favor of
lower energy at low T by effectively increasing the particle
size to the soft diameter. Here, however, the particular low
energy bond length allows the system to form particle geome-
tries that progressively lower the energy. That there are several
low-density crystals is also reminiscent of water and silica.

In Ref. 39, the authors locate lines in the P-T plane that
demarcate a limit to observing the liquid, i.e., where crys-
tallization is practically unavoidable. Although their investi-
gation into this aspect of the model was not exhaustive, the
character of crystallization was possibly suggestive of contin-
uous crystallization seen in other two-dimensional systems.
We plot these lines within the appropriate portion of our cal-
culated phase diagram in Fig. 13. We see that the crystalliza-
tion lines occur below our calculated first-order melting lines,
and therefore occur at conditions for which there is a gap
in crystal and liquid chemical potential. However, this does
merit a closer look at the crystallization process, especially
near the apparent limit of liquid metastability. Also in Fig. 13,
we plot the location of what might be termed the obscured L-
L critical point at low T that appears to be responsible for the
liquid anomalies reported in Ref. 39, but which is unobserv-
able owing to unavoidable nucleation. Within uncertainty, this
obscured critical point falls on the S-LDT coexistence line.

We estimate the density of the obscured critical point
from the pressure isochores reported in Ref. 39, and plot the
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FIG. 13. Comparison of our phase diagram with previously reported sys-
tem properties. Red curves are taken from Ref. 39 and represent crystal-
lization lines (+), locus of temperatures of maximum density along isobars
(TMD, circles), pressures of maximum diffusivity along isotherms (Dmax, di-
amonds), maxima of isothermal compressibility (KTmax, squares), and G-L
coexistence. Also shown are the G-L critical point (filled red circle) and the
obscured L-L critical point (large hashed circle). Dotted lines show pressure
along isochores. All other symbols as in Fig. 10. We note that we determine
the location of the G-L critical point from an extrapolation of data above
kBT/ε = 0.50, while the one reported in Ref. 39 is based on inflection points
of pressure isotherms. The previously reported crystallization lines fall within
the presently calculated crystal stability fields.

location in the ρ-T plane in Fig. 11. We see that it falls within
the coexistence region of two crystals (S and LDT) of sig-
nificantly different ρ. This is similar to the case of, e.g., the
TIP4P2005 model of water58, 59 and is consistent with the idea
that L-L phase separation is possible when there is a strong
coupling between energy and density.60

IV. DISCUSSION

We calculate the coexistence temperature (along an iso-
bar) or pressure (along an isotherm) of two phases by deter-
mining the point at which the chemical potential of those two
phases cross, and estimate the uncertainty by accounting for
the numerical error, typically arising from an integration, in
evaluating the various terms in, e.g., Eqs. (2), (12) and (14).
The errors mostly result in a constant shift in the curves that,
given the small difference in slopes of µ(P) or µ(T) between
the liquid and crystal phases, can lead to a large uncertainty
in the crossing. As a check, after calculating the coexistence
curve through the Gibbs-Duhem integration, for the L-S case,
for example, we determine two additional chemical potential
crossings along different thermodynamic paths and the results
show good consistency with the Gibbs-Duhem curve. Another
indicator of the quality of the results is the degree to which
coexistence lines cross at the L-S-HDT and L-S-LDT triple
points.

Having said this, shifts in the µ(P) or µ(T) curves do
not affect the slopes, which show in general the first-order
character of the L-S or L-LDT transitions. For a given phase,
we determine µ to the point where it is simple to determine
the equilibrium properties of that phase, i.e., to the point
where spontaneous transformation does not readily occur on
the timescale of simulation. We note that for the liquid to crys-
tal transitions, the chemical potential difference between the

liquid and crystal at which metastability is no longer easily
attainable is rather small in comparison to other studies.61

Perhaps this is a feature of two-dimensional systems, but
nonetheless implies a very small surface tension if the clas-
sical description of nucleation is valid.

The L-LDT and L-S crystallization lines in Ref. 39,
as noted earlier, were dynamically determined as maximal
extents of the liquid’s ability to exist, and we show here
that they indeed occur in the metastable liquid. The loss of
liquid metastability prevents observing any low- and high-
density liquids that would exist below the proposed L-L crit-
ical point because these limit lines radiate from the critical
point towards higher T. We would like to explore the pro-
cess of crystallization in this vicinity. If indeed the L-L critical
point proposed for this system is obscured by nucleation in-
duced through critical fluctuations, studying nucleation in the
present model may help better understanding what may be
occurring in water.62

Notably, for the model at higher P, we provide evidence
for inverse melting, arising from a maximum in P in the L-
S coexistence line. This phenomenon is rare, and seeing ev-
idence for it in such a simple system will allow for deeper
exploration into the basic physics surrounding it.

The freezing of the liquid to the close-packed solid, i.e.,
the L-HDT transition, appears to be first order for all T that
we have explored. For our system size, the free energy barrier
between the L and HDT basins with ρ as the order parame-
ter at kBT/ε = 5.0 and P = 50.0ε/σ 2 is just above 1kBT. In
the high T limit when the system should behave as hard disks,
Mak63 and Bernard and Krauth64 have provided evidence that
the transition should be also first order. Lowering T, the bar-
rier grows and reaches a value of ∼2.4kBT at a simulation
conducted on our coexistence line at kBT/ε = 0.50 and Pσ 2/ε
= 9.5649 with N = 986, thus becoming more strongly first
order. A careful search for the hexatic phase near the HDT
melting line is very much warranted, particularly at high T, as
Bernard and Krauth’s rather impressive work appears to es-
tablish a first-order transition between the liquid and hexatic
(not crystal) phase in hard disks, and that the hexatic phase
exists only for a very narrow range of densities. Our initial
search for the hexatic phase through discrete molecular dy-
namics simulations at constant P of 65 536 particles for kBT/ε
≤ 5.0 along the HDT melting line as well as at points near
the L-S and L-LDT transition lines has not yet yielded evi-
dence for the hexatic phase, namely, an orientational correla-
tion function that decays with distance as a power law with
a sufficiently small exponent.65 It would seem then, that if it
exists, the presence of the hexatic phase would not affect our
phase diagram in a significant way. Interestingly, Bernard and
Krauth did not establish a power-law decay of the orienta-
tional correlation function within the hexatic phase. We hope
to report on this more thoroughly in the future.

V. CONCLUSIONS

We compute a phase diagram using various free energy
techniques of a two-dimensional SSSW model that has been
previously shown to exhibit liquid-state anomalies often asso-
ciated with the presence of a metastable L-L critical point.18
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We find two low-T crystal phases not previously reported.
All transitions, including melting lines, appear to be first or-
der for our system size of ∼1000 particles. Thus, it appears
that the liquid anomalies present in the system do not arise
as a result of quasi-continuous freezing, as has been previ-
ously suggested.66 Previously reported crystallization lines
fall within respective phase stability regions reported here. In-
terestingly, the difference in chemical potential between liq-
uid and crystal phases at the limit where the metastable phase
can be readily observed is rather small, β#µ ∼ 0.01.

The L-S coexistence curve exhibits both a maximum tem-
perature, indicating that at higher pressure the crystal is less
dense than the melt, and a pressure maximum, which means
that inverse melting should occur in a specific pressure range.
Given the scarcity of systems exhibiting inverse melting, the
present model presents the opportunity to study this rare phe-
nomenon in more detail.
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