PHYSICS 3800 Assignment 3

For this assignment, all the “number crunching” should be done in C or Fortran. However,
plotting and data analysis should be done in Python within a Jupyter notebook. For example, for
Q1 below, you will need to compare your result with theoretical predictions that involve binomial
coefficients, and so you could use the SciPy library for that. For Q2, MC evaluations of the integral
are stored in files that are then read in for averaging and plotting in the Jupyter notebook.

Your submission should be a pdf produced from your Jupyter notebook, uploaded to Brightspace.
Include your C/Fortran source code in a markdown cell. If you are not able to produce a pdf of the
notebook, just upload the notebook itself to Brightspace.

1. (10 pts.) Write your own Generalized Feedback Shift Register random number generator with
p = 521 and ¢ = 168 to generate numbers between 0 and 1. You may use any RNG to generate
the initial sequence of integers.

Use your RNG to generate 100000 realizations of a random walk 20 steps long. A step of
length Ax = 1 is taken to the left or right with equal probability, and the random walker
starts at = 0. Plot a histogram of the end locations ¢ and compare it with the analytically
expected result. A sample graph is shown in Fig. 1.

Having, say, x5 = 4 arises from choosing to take Ny = 12 steps to the right and Ny = 8 steps
to the left. The probability of this happening is

u(B) (1) -
20H12 1 9 2) 7 1218!9220°

17500 —— Expected(x)
B N(x)

15000 -

12500 A

< 10000 A

7500 -

5000 A

2500 A

-20 -15 -10 =5 0 5 10 15 20

Figure 1: Comparison of simulated (red bars) and expected (line) distribution of final position z
for a one-dimensional unbiased random walk of 20 discrete steps. Number of realizations is 100000.
Note that with an even number of steps, x is even.

2. (10 pts.) Some physical problems require integration in many dimensions. For example,
properties of a small atom like magnesium with 12 electrons requires integration over all three
dimensions for all 12 particles giving a 36 dimensional integral. If we use 64 points for each
integration, this requires 6436 ~ 105° evaluations. Even with a fast computer that can evaluate
the integrand one million times per second, this would take 10°° seconds, which is significantly
longer than the age of the universe (about 10'7 seconds). The results of your task show how
such problems can be done using MC techniques in the time it takes to eat lunch.

Write a MC integration program to estimate the value of the following 10D integral:
1 1 1)
_[2:/0 d]?l/o dl’g/o dx10(131+$2+“'+l’10)

where the exact result is 155/6 = 25.83

Be sure to write your code so that there is a new random number seed used each time it is run
(the program may request it from standard input, for example). Do not use a built-in random
number generator. Here, we explore the impact of both re-running the code and of varying
the number of MC evaluations of the integrand, or steps (MCS). Report three estimates for
the integral and their absolute error € for 1000 MCS. Make a plot of ¢ for three runs, and
their average, as a function of MCS, for a maximum of 107 MCS. Overlay on this graph the
expected behaviour, € ~ n='/2. Your graph should look something like Fig. 2.

10 E T T TTTTTT T T TTTTIT T T TTTTTT T T TTTTIT T T TTTTIT T IIIIIII| T IIIIIH_;
- — run#l E

1 run #2 a
10E — run#3 E
— Error for ave 3

— 10n™? -

Absolute error
H
o

T T IIIIII|

| IIIIII|

10°F
10°E
10‘4 1 1 IIIIII| 1 1 IIIIII| 1 1 IIIIII| 1 1 IIIIII| 1 1 IIIIII|
10° 10" 10° 10° 10 10° 10° 10

MC steps

Figure 2: Absolute error for MC integration as a function of MC steps for three independent runs
and their average. Shown is the expected scaling behaviour for the error.

