
PHYSICS 3800. Assignment 4.

1. (10 pts.) Solve the 1-D Poisson equation on x ∈ [0, 1],

∂2u

∂x2
= f(x),

where f(x) = exp {−1000(x− 0.5)4}, with boundary conditions u(0) = 0 and u(1) = 5. This
corresponds to something like a parallel plate capacitor with one plate at 0 V and the other
at 5 V and a planar charge density of ρ(x) = −ε0f(x) between them. As done in class, using
the central difference scheme for the second derivative transforms the PDE (really an ODE
here) into a tridiagonal matrix vector equation. Use a LAPACK routine for a real general
matrix to solve the problem. Time how long the program runs as you decrease ∆x. Now use
the appropriate LAPACK routine (SGTSV) for tridiagonal a matrix in the problem and time
the code. To time the code one can use the unix utility time, e.g., time ./a.out. (Run three
times to get a sense of the average time.) Plot the solution u(x) as well as the electric field
[Ex = −u′(x)].

2. (10 pts.) Solve the 1-D time-indpendent Schödinger equation on x ∈ [0, 1],

−∂
2ψ

∂x2
+ V (x)ψ = Eψ,

where we have chosen units so that h̄ = 1 and m = 1/2, and the potential in these units is
given by V (x) = 105(x − 0.5)2. Take the boundary conditions to be ψ(0) = 0 and ψ(1) = 0.
As shown in class, upon discretization, this transforms into a tridiagonal matrix eigenvalue
problem. Here the eigenvalues are real and are related to the discrete energies of a quantum
harmonic oscillator. Recall that for a harmonic potential v(x) = 1

2
mω2x2, the energies are

en = (n − 1
2
)h̄ω, with n = 1, 2, . . .. Use the most appropriate LAPACK routine for finding

eigenvalues and eigenvectors. Plot the first few eigenvectors (wavefunctions). Also plot the
numerical value of en vs n, along with the analytical result for an unbounded quantum har-
monic oscillator, for different discretization spacings ∆x.

Note that once the wavelength of the solution approaches with discretization length, the
solution should become inaccurate. Also, as the energy associated with the wavefunction
increases, the wavefunction will extend spatially towards our artificial boundaries, and the
solution will tend to that of a particle in a box. Both these factors mean that our solution
will deviate from that of the harmonic oscillator for larger n.
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3. (10 pts.) Using the method shown in class, solve the 1-D time-dependent Schrödinger equation
on x ∈ [0, 1],

−∂
2ψ

∂x2
+ V (x)ψ = i

∂ψ

∂t
,

where again we have chosen units so that h̄ = 1 and m = 1/2, and the potential is given
by V (x) = 105(x − 0.5)2. Take the boundary conditions to be ψ(0) = 0 and ψ(1) = 0. As
shown in class, upon discretization, advancing in time is accomplished by successively solving
a complex tridiagonal matrix vector equation. Use the most appropriate LAPACK routine
for this task. At each time step, you will obtain the wave function. Use this to calculate the
expectation value of the particle’s position

x̄(t) =
∫ 1

0
x|ψ(x, t)|2dx

using the trapezoid rule. How does x̄(t) compare with a classical harmonic oscillator (plot the
classical trajectory over top)?
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