PHYSICS 3800. Assignment 2.

Ordinary Differential Equations.

1. (5 pts.) Write each of the following ODE's as an equivalent system of first-order ODE's. Let $y_{1}=u, y_{2}=\ldots$ etc. and write out your expressions in terms of the y_{i} 's.
(a) Van der Pol equation.

$$
u^{\prime \prime}=u^{\prime}\left(1-u^{2}\right)-u
$$

(b) Blasius equation:

$$
u^{\prime \prime \prime}=-u u^{\prime \prime}
$$

(c) Newton's Second Law of Motion for a coupled two-body system:

$$
\begin{aligned}
& u_{1}^{\prime \prime}=-G M u_{1} /\left(u_{1}^{2}+u_{2}^{2}\right)^{3 / 2} \\
& u_{2}^{\prime \prime}=-G M u_{2} /\left(u_{1}^{2}+u_{2}^{2}\right)^{3 / 2}
\end{aligned}
$$

2. (5 pts.) Predictor-Corrector for the SHO.

Convert the spring-midpoint-fn.cpp (or spring-midpoint-fnc.c or spring-midpoint-fnf.f90) code (see website) to implement the Predictor Corrector method derived in class,

$$
\begin{aligned}
y^{*} & =y_{i}+h f\left(y_{i}, t_{i}\right) \\
y_{i+1} & =y_{i}+\frac{h}{2}\left[f\left(y^{*}, t_{i+1}\right)+f\left(y_{i}, t_{i}\right)\right]
\end{aligned}
$$

to solve the SHO (with $k / m=1, x=0$ and $v=5$ initially) from $t=0$ to 10 . Plot the absolute error (numerical solution minus analytical solution) as a function of time from $t=0$ to 10 using a time step of 0.01 . Does the solution appear to be stable? What is the error at $t=10$? What is the error at $t=10$ if the time step is reduced by a factor of ten to 0.001 (and does it make sense)? Please attach hard copies of your code and the graph.
3. (5 pts.) Adaptive time step fourth order Runge-Kutta (RK4).

Consider the simple differential equation,

$$
y^{\prime}=-y
$$

with $y(0.5)=e^{-0.5}$. For this question, feel free to use Python, C, Fortran, Mathematica etc. (include code printout with submission) to carry out the tedious calculations. It may be easiest to modify spring-midpoint-fn.cpp (or equivalent) again.
(a) Evaluate $y(0.7)$ using RK4 with $h_{1}=0.2$ to at least 10 significant figures.
(b) Evaluate $y(0.7)$ using two steps of RK4 with $h_{2}=0.1$ to at least 10 significant figures.
(c) If Δ_{1} is the difference between the results of parts (a) and (b), estimate the stepsize h_{0} required to achieve a desired error of $\Delta_{0}=10^{-7}$, using the formula (see class notes and Numerical Recipes handout),

$$
h_{0}=h_{1}\left|\frac{\Delta_{0}}{\Delta_{1}}\right|^{0.2}
$$

(d) Confirm your result for h_{0} by calculating $y\left(0.5+h_{0}\right)$ with one step of RK4 and comparing to the exact solution $y\left(0.5+h_{0}\right)=e^{-\left(0.5+h_{0}\right)}$.
4. (5 pts.) The Leap Frog Method to solve ODE's.
(a) Starting from the Central Difference approximation for derivatives, derive the Leap Frog algorithm to solve a set of first-order ODE's $\dot{\mathbf{y}}=\mathbf{f}(\mathbf{y}, t)$:

$$
\mathbf{y}_{i+1}=\mathbf{y}_{i-1}+2 \Delta t \mathbf{f}\left(\mathbf{y}_{i}, t\right)
$$

Argue that the neglected terms (error) are of order $(\Delta t)^{2}$ after N time steps (compared to $\mathcal{O}(\Delta t)$ for the Euler method)
(b) Following the method used in class for the Euler Method, show in this case that the growth factor g satisfies the equation

$$
g=a \pm \sqrt{a^{2}+1}
$$

where $\delta y_{i}=g \delta y_{i-1}, \delta y_{i+1}=g^{2} \delta y_{i-1}$ and $a=\Delta t\left(\partial f / \partial y_{i}\right)$.
(c) Assume a is small (and real) and show that one of the solutions will always give $g^{2}>1$. This means that the method is unstable for both growth $(a>0)$ and decay $(a<0)$.

