
What does a computer do?
and how does it do it?

Simply stated, a computer consists of three basic
units
• The central processing unit (CPU)
• Memory
• Cache (level I and level II)
• Random access memory (RAM)

• Disk storage

Network
Printers
Monitors
Keyboard
Mouse

CPU

RAM

Le
ve

l I

ca
ch

e

Le
ve

l I
I

ca
ch

e
“Disk”
Storage

Local Bus

The CPU is the ”brains” of the computer. Its performance
is determined by the number of cycles it performs per
second and what it can do each cycle.

In each cycle the CPU can
• Read (input) instructions/data from the cache
• Write (output) data to the cache
• Manipulate data (add, subtract, multiply etc)
• Send data and instructions along the local bus (i.e.

input/output to RAM, disc, network, monitor)

The tasks the CPU can perform in each cycle is determined
by the instruction set that is specific to a particular CPU or
class of CPU.

Progress

• September 1984

• Processor: Motorola 680000

• Processor speed: 8 MHz

• System Bus Speed 8 MHz

• Memory registers: 16-bit

• Level 1 Cache: N.A.

• Level 2 Cache: N.A.

• Standard Ram: 512kB

• Hard Disk: N.A.

• Price $2000

• October 2009

• Processor: Intel Core Duo

• Processor speed: 3600 MHz

• System Bus Speed 1066 MHz

• Memory registers: 64-bit

• Level 1 Cache: 32kB

• Level 2 Cache: 3MB

• Standard Ram: 4GB (16GB)

• Hard Disk: 500GB

• Price $1200

• January 2021

• Processor: Intel Core i3 (quad)

• Processor speed: 3600 MHz

• System Bus Speed 2000 MHz

• Memory registers: 64-bit

• Level 1 Cache: 32kB per core

• Level 2 Cache: 256kB per core

• Level 3 Cache: 6MB shared

• Standard Ram: 8GB

• Hard Disk: 256GB SSD

• Price $1699

• All the data and instructions for the CPU are in the
form of bits, with each bit having a value of 0 or 1. A
byte is a sequence of 8 bits.

• An important aspect of a CPU’s architecture is the
maximum number of bits that can be stored in the
registers (data-holding elements accessible to
processor). When we talk about a 64-bit architecture,
we refer to the size of the registers.

• The largest whole number that can be stored in a
single register is 2N -1. For a 64-bit register, the largest
integer is 264 -1 ≅ 1.84467 x 1019.

In addition to whole numbers, a number of other important data structures
can be expressed in terms of bit. The set of integers (signed whole numbers)
{0, ±1, ±2, ±3, …} can be represented in a number of ways as N-bit binary
numbers. E.g.

Binary Unsigned Sign and
magnitude

Ones
complement

Twos
complement

00000000 0 +0 +0 0

00000001 1 1 1 1

… … … … …

01111101 125 125 125 125

01111110 126 126 126 126

01111111 127 127 127 127

10000000 128 -0 -127 -128

10000001 129 -1 -126 -127

10000010 130 -2 -125 -126

… … … … …

11111110 254 -126 -1 -2

11111111 255 -127 -0 -1

Floating Point: An approximation to the set of real numbers in terms of N-bit
binary number.

𝑥!"#$% = (−1)& ×𝑚 × (10)'(

s m a bias

16-bit 1 10 5 15 (24 – 1)

32-bit 1 23 8 127 (27 – 1)

64-bit 1 52 11 1023 (210 – 1)

m = mantissa
= 1.0111011000

10-bit mantissa

E = exponent
= a - bias

For example, x = 11/2 = (5.5)10 = (1.011)2 ⨉ (10)2
2 may be expressed in

terms of a 16-bit binary string as

11/2 = 0 1 0001 01 1000 0000

s = sign bit

a = 5-bit exponent

m = 10-bit mantissa

Floating point representation
• Preserves precision when

multiplying and dividing
• Loses precision when

adding or subtracting

The set of binary instructions that the machine reads
is generally referred to as machine code. While in
principle it is possible to write machine code directly,
it is usually written in assembly language or a higher
level language.
• Assembly Language: Consists of a set of commands

written in alphanumeric form that can translated
(by an application known as a “assembler”) into
instructions in binary format that the CPU can
process. Assembly language is typically very CPU
specific.
• Programmers will sometimes write critical pieces of

code in an application in assembly language to
maximize the speed and efficiency of the
application.

Higher level languages come in two forms: interpreted and
compiled languages:
• Interpreted Languages: These are languages in which the

commands are written in a syntax that bears some
resemblance to mathematics or standard English.
Commands are read in line by line to an application
called an “interpreter”. As the interpreter reads in each
line, it translates it into machine code and executes the
instructions.
• Examples of interpreted languages are Python, perl, awk,

lua etc. Interpreted languages are very convenient, but
because each line has to be interpreted into machine
code each time through, they are not very efficient for
large-scale numerical calculations.

• Compiled languages are also written in a syntax that
roughly approximates mathematics or English.
• “Code” consisting of one or more text files containing a

sequence of commands is read into a compiler that
translates the commands into machine code. This is
typically a two-step process in which the compiler first
generates “object” files. These object files may be
“linked” to other pre-existing object files (e.g. from a
library or from a previous compilation) and translated
into machine code.
• Compiled code can be very efficient. Examples of

compiled languages are FORTRAN, C and C++.

Both interpreted and compiled languages play an
important role in scientific computing.

• In scientific computing it is essential that you have
knowledge and experience of at least one compiled
language like C, C++ or Fortran, and several interpreted
languages (e.g. Python, bash, awk, perl, Matlab).
• The distinction between an interpreted language and a

compiled language is not always straight forward, as
many high-level languages contain elements of both. For
example, Python library routines often have C or Fortran
compiled code under the hood.

The Operating System

• The operating system (sometimes referred to as the OS
for short) is a program that is launched when you start
the computer.
• The OS serves as an interface between the peripherals

(e.g. keyboard, monitor, network, disk etc).
• Some OS’s are proprietary and sometimes tied to a

particular class of CPU and/or manufacturer (MS
Windows, VMS). Other OS’s are partially proprietary
(e.g. macOS, AIX, Solaris). Most of these latter ones are
based on the UNIX OS.
• An important UNIX variant is Linux. This is non-

proprietary and is governed by an open-source licence.

The Linux OS: We will be using this OS in this course.

• kernel: the central component of
the Linux OS. It is a bridge
between applications and the
data processing done at the
hardware level.

• System services: drivers for
disks, network, printers,
monitors etc.

• utilities and tools: assembler
• User interface: shells (bash, csh,

tcsh, etc.) X-windows, desktop
environment

• Program development: C, C++
and Fortran compilers, editors
(vi, emacs, nedit), debugging and
profiling tools (dbx, prof)

kernel

system services

utilities & tools

user interface

Program
development

