Errors

1) "Experimental"

Particularly for simulations, where we average over an ensemble of "runs", we need to pay attention to statistical errors.
2) truncation error - arising from cutting off
a Taylor series expansion in a numerical scheme.
3) roundoff error - only a finite set of real numbers are exactly represented on a computer because of finite precision
single precision - 32 bits

| sign | exponent hidden | mantissa |  |
| :---: | :---: | :---: | :---: |
| 1 | 8 | 1 | $b_{1} b_{2} \ldots b_{23}$ |
| bit | bits |  | 23 bits |

mantissa $m$ : $\quad 1 \leqslant m<2$

$$
\begin{aligned}
& 1.000 .00 \leqslant m \leqslant 1.111 \ldots 1 \\
& \pm 1 . b_{1} b_{2} \ldots b_{23} \times 2^{[1 \text { to 254]-127 }} \text {, bias } \\
& \rightarrow \text { (000..0)-zero, subnormal } \\
& L_{0}(111 \text { D -inf, -inf, } \\
& \text { NaN }
\end{aligned}
$$

The $24^{\text {th }}$ bicemal cant be stored!
BTw: Biggest number is $\left(2-2^{-23}\right) \times 2^{254-127}$

$$
\doteq 2^{128}=3.4 \times 10^{38}
$$

$$
\begin{aligned}
& 2^{128}=10^{x} \rightarrow 128 \ln 2=x \ln 10 \\
& x=128 \ln 2 / \ln 10=38.53 \\
& 2^{128} ; 10^{38.53}=10^{0.53} 10^{38}=3.4 \times 10^{38}
\end{aligned}
$$

Machine epsilon
Adding $2^{-24}$ to $1 . \underbrace{1.000 \ldots 000}_{23 \text { bicemals }}$ yields $\underbrace{1.000 \ldots 000}_{23}$

$$
2^{-24}=5.96 \times 10^{-8}
$$

is called machine epsilon $\epsilon_{M}$
$\epsilon_{M}$ - biggest number you can add to unity with the result rounding to unity

- also called unit roundoff

A number $1 . b_{1} b_{2} \ldots$ can not be specified more precisely than $E_{M}$.

For double precision ( 64 bits), mantissa is

$$
\text { 1. } b_{1} b_{2} \ldots b_{52} \text {, so } \epsilon_{M}=2^{-53} \doteq 1.11 \times 10^{-16}
$$

A real number $x$ is rounded to $\bar{x}$

$$
\begin{array}{ll}
\bar{x}=x+\epsilon x & \\
\bar{x}=x(1+\epsilon) & \text { with }|\epsilon|<\epsilon m
\end{array}
$$

Subtraction:

$$
\begin{aligned}
& \frac{\text { res }=x_{1}-x_{2}}{\text { res }=\bar{x}_{1}-\bar{x}_{2}+\alpha\left(x_{1}-x_{2}\right)} \\
& \text { with }|\alpha|<\epsilon M \\
&= x_{1}\left(1+\epsilon_{1}\right)-x_{2}\left(1+\epsilon_{2}\right)+\alpha\left(x_{1}-x_{2}\right) \\
& \overline{\text { res }}= x_{1}-x_{2}+x_{1} \epsilon_{1}-x_{2} \epsilon_{2}+\alpha\left(x_{1}-x_{2}\right)
\end{aligned}
$$

$\epsilon_{1}$ and $\epsilon_{2}$ can have opposite signs and can consider $\left|\epsilon_{1}\right| \approx\left|\epsilon_{2}\right| \approx \epsilon_{\mu}$

For $x_{1} \approx x_{2}$ we can write

$$
\overline{\operatorname{res}} \equiv \operatorname{res}+2 \operatorname{ta} x_{1} \quad+\alpha\left(x_{1}-x_{2}\right)
$$

relative error is

$$
\frac{\frac{e}{\text { es }}-\text { res }}{\text { res }}=2 \epsilon_{m ~}^{x_{1}} \frac{x_{1}-x_{2}}{d^{\text {can ignore }}}
$$

- delative soundoff error is large when $x_{1} \approx x_{2}$ ie. precision is reduced

Numerical Calculus - using Taylor series
Differentiation
recall $f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(x)+\ldots+$

$$
\frac{h^{n}}{n!} f^{(n)}(x)+\cdots
$$

solve for $f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}-\left[\frac{h}{2} f^{\prime \prime}(x)+\ldots+\frac{h^{n-1}}{n!} f^{(n)}(x)+\ldots\right]$
as $h$ becomes small, largest term in [ ] is $\frac{h}{2} f^{\prime \prime}(x)$
s) we can write forward difference formula

$$
f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}+\theta(h)
$$

means truncation error we are making is of order $h$
$g$ is $\theta(h)$ if $\lim _{h \rightarrow 0} g / h=$ constant
Error uh implies that if we decrease $h$ by a factor of, say, 10, error will go down by a factor of 10.
$\rightarrow$ compact notation: $f_{i}=f(x), f_{i+1}=f(x+h), f_{i-1}=f(x-h)$
Forward diff. formula: $f_{i}^{\prime}=\frac{f_{i+1}-f_{i}}{h}$

