
Error's"

Experimental
"

Particularly for simulations
,
where we average

over an ensemble of "
runs

"

,
we need to pay

attention to statistical errors.

2) truncation error -

arising from cutting off
a Taylor series expansion in a numerical

scheme
.

3) roundoff error - only a finite set of real

numbers are exactly represented on a

computer because of finite precision

single precision
- 32 bits

sign exponent hidden mantissa

1 8 I • bibz - - . bzz
bit bits

23 bits

mantissa m : I E m < 2

1. 000. - 00 £ m I 1 . 111 - - - l

[1 to 254] - 127
I 1 . bibz . -. bzz ✗ 2 Tobias
- ↳ (ooo . - o) - zero ,

subnormal 's

23 biceueals ↳ (hi 1) - inf, - iuf ,
(binary decimals) NaN

The 24th bicenual can't be stored !

254 - 127

BTW : Biggest number is (2-2-23) ✗ 2
÷ 2128 = 3.4 ✗ 1038

2128 = 10^1 → 128 In 2 =
✗ 1m10

✗ = 128 ↳21h10 = 38
.

53

2128 I 1038.53 = go-053,038 ÷ 3.4 ✗ (038

Machine Epsilon

Adding 2-24 to 1.000 . . . ooo yields 1. ooo . . - ooo
- -

23 bicecuals 23

2-
24

= 5.96 × 10-8

is called machine epsilon Em

c- m - biggest number you can add to unity with

the result rounding to unity
- also called unit rouudoff

A number 1
. b.bz . . . can not be specified

more precisely than Em .

For double precision (64 bits) , mantissa is

552 So C-µ
= 2-

53
I 1. ,, ✗ so

-16
1. b

, bz . . .

,

A real number ✗ is rounded to I

I = ✗ + c- ✗

I = ✗ (I + c-) with / c- I < Em

subtraction :

res = ✗ ,
- ✗

2

Tes = I
,
- Iz + ✗ (✗ ,

- xz)

with 121 < Em

= X , (it c- ,) - Xz(I + c-2) + ✗ (X ,
- Xz)

ref =
✗ ,
- Xz 1- X

, E ,
- Xz C- z + ✗ (X

,
- Xz)

C-
, and Ez can have opposite signs

and can consider / C-
, / =/Eat = Eoe

For ×
,
= xz we can write

reef E res + 2 Em X
,

+ ✗ (x
,
- Xz)

relative error is
←
can ignore

re_s-res- I 2Em + 2

res X
,
- Xz

- relative roundoff error is

large when X
,
I Xz

i.e. precision is reduced

Numerical Calculus - using Taylor series

Differentiation

recall fcxth)= fix)+hfIx) + hZf"(x) + . . .

-1

I
h
" fl

")
(X) + - - -

T!

solve for f-
'

(x) = f ×) - [hzf "c×) + . . -

+ h
"

"f '" '
(x) -1 -- -]I.

as h becomes small
, largest term in []

is hzf "cx)

so we can write forward difference formula

fix > = f¥x) + 0th)
it

means truncation error we

are making is of order h

g
is 01h) if line = constant

h→o %

Error uh implies that if we decrease h by a
factor of

, say , 10
,
error will go

down by a

factor of 10
.

→ compact notation : fi = fix] , fix , = f- 1×+4),fi→=fcx - h)

Forward diff
.
formula : f;

"

= fi+in_fi_

