Rewrite Taylor series
(1) $f(x-h)=$
(2) $f(x+h)=$

Subtract: (2) - (1)
$\# f(x+h)-f(x-h)=$

$$
\begin{aligned}
& f^{\prime}(x)= \\
& f_{i}^{\prime}=
\end{aligned}
$$

Centred difference or 3 -point formula
add: (1) + (2)

$$
\begin{array}{r}
f_{i+1}+f_{i}= \\
f_{i}^{\prime \prime}=
\end{array}
$$

Can generate higher order differences

$$
\text { E.g. } f(x+2 h)-f(x-2 h)=
$$

$$
f^{\prime}(x)=
$$

5-point formula

$$
\begin{aligned}
& f_{i}^{\prime}=\frac{1}{12 h}\left(f_{i-2}-8 f_{i-1}+8 f_{i+1}-f_{i+2}\right)+\theta\left(h^{4}\right) \\
& \text { described as }\left\{\begin{array}{l}
\text { accurate to order } h^{4}
\end{array}\right.
\end{aligned}
$$

As we have seen, subtraction reduces precision, so it is advantageous to reduce the number of subtractions

$$
f_{i}^{\prime}=
$$

Non-uniformly spaced data

$$
\underset{\sim}{\cdots} \quad \Delta x_{i}=
$$

one option: fit data to analytic function and then take derivative
define $h_{i}=$

$$
h_{i-1}=
$$

Write Taylor series

$$
f\left(x_{i \pm 1}\right)=
$$

or

$$
\begin{aligned}
& f_{i+1}= \\
& f_{i-1}=
\end{aligned}
$$

$$
f^{\prime}\left(x_{i}\right)=f_{i}^{\prime}=
$$

3-point formula for non-uniform data

Richardson Extrapolation
Can construct algorithms to get derivatives to arbitrary order

For $f^{\prime}(x)$: Let $\Delta_{1}(h)=$

$$
\Delta_{1}(h)=
$$

can show that (5-pt formula)
and

Can determine the coefficients for higher orders systematically
write $\quad \Delta_{1}(h)=$
call $\Gamma_{k o}=$
can shows

$$
\Gamma_{k \ell}=
$$

for $0 \leqslant l \leqslant k$ leads to

$$
f^{\prime}(x)=
$$

where $B_{k l}=$
and

$$
B_{k k}=
$$

Example: $k=1, l=1$

$$
\begin{aligned}
& f^{\prime}(x)= \\
& f^{\prime}(x)=
\end{aligned}
$$

$$
f^{\prime}(x)=
$$

Can apply similar method for higher order derivatives
Let $\Delta_{2}(h)=$

Can show

Error analysis as h decreases
\square $h \quad$ error $\epsilon=$
ϵ is minimized when
$\epsilon_{\text {roo }}$ from subtraction $\frac{f(x+h)-f(x)}{h}$ is $\epsilon_{r_{0}} \sim$

Etrunc: forward difference centred diff
minimum error (best you can get) when

Assume for simplicity

$$
\begin{array}{ll}
h_{F D} \simeq & h_{C D} \simeq \\
\epsilon_{F D} \simeq & \epsilon_{C D} \simeq
\end{array}
$$

Integration

$$
I=\int_{a}^{b} f(x) d x \rightarrow \underset{a}{\mid}
$$

Before computers, approximated areas with

Recall Riemann definition / rectangle rule sum over rectangular areas, take limit as width

For finite $h \quad(h \neq 0)$, in general

$$
\int_{a}^{b} f(x) d x \doteq
$$

- different algorithms

Trapezoid rule

- over each interval, area is approximated by area of trapezoid

