Rewrite Taylor series
(1) $f(x-h)=f(x)-h f^{\prime}(x)+h^{2} f^{\prime \prime}(x)-h^{3} / 3!f^{\prime \prime \prime}(x)+\ldots$
(2) $f(x+h)=f(x)+h f^{\prime}(x)+h^{2} f^{\prime \prime}(x)+h^{3} / 3!f^{\prime \prime \prime}(x)+\ldots$

Subtract: (2) - (1)

$$
\begin{gathered}
* f(x+h)-f(x-h)=2 h f^{\prime}(x)+2 h^{3} / 3!f^{\prime \prime \prime}(x)+\theta\left(h^{5}\right) \\
f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}+\theta\left(h^{2}\right)
\end{gathered}
$$

$f_{i}^{\prime}=\frac{f_{i+1}-f_{i-1}}{2 h}+\theta\left(h^{2}\right)$ Centred difference or 3 -point formula
add: (1) + (2)

$$
\begin{aligned}
f_{i+1}+f_{i-1} & =2 f_{i}+h^{2} f_{i}^{\prime \prime}+\theta\left(h^{4}\right) \\
f_{i}^{\prime \prime} & =\frac{f_{i+1}-2 f_{i}+f_{i-1}}{h^{2}}+\theta\left(h^{2}\right)
\end{aligned}
$$

Can generate higher order differences
EEg. $f(x+2 h)-f(x-2 h)=4 h f^{\prime}(x)+\frac{2(2 h)^{3}}{3!} f^{\prime \prime \prime}(x)+\theta\left(h^{5}\right)$

$$
\begin{aligned}
& \frac{8 h^{3}}{3} f^{\prime \prime \prime}(x)=f(x+2 h)-4 h f^{\prime}(x)-f(x-2 h)+\theta\left(h^{5}\right) \\
& \leftrightarrow \text { plug into } \& \text { to get }
\end{aligned}
$$

$$
f^{\prime}(x)=\frac{1}{12 h}[f(x-2 h)-8 f(x-h)+8 f(x+h)-f(x+2 h)]+\theta\left(h^{4}\right)
$$

5-point formula

$$
f_{i}^{\prime}=\frac{1}{12 h}\left(f_{i-2}-8 f_{i-1}+8 f_{i+1}-f_{i+2}\right)+\theta\left(h^{4}\right)
$$

$$
\text { described as }\left\{\begin{array}{l}
\text { accurate to order } h^{4} \\
4^{\text {th }} \text {-order accurate } \\
\text { truncation error is } \theta\left(h^{4}\right)
\end{array}\right.
$$

As we have seen, subtraction reduces precision, so it is advantageous to reduce the number of subtractions

$$
f_{i}^{\prime}=\frac{1}{12 h}\left[\left(f_{i-2}+8 f_{i+1}\right)-\left(f_{i+2}+8 f_{i-1}\right)\right]
$$

Non-uniformly spaced data

$$
\Delta x_{i}=x_{i+1}-x_{i} \neq \text { constant }
$$

one option: fit data to analytic function and then take derivative -useful if there is theoretical motivation for the fit

- can introduce artefacts: extra peaks, rounded kinks
define $h_{i}=x_{i+1}-x_{i}$

$$
h_{i-1}=x_{i}-x_{i-1}
$$

Write Taylor series


$$
\begin{aligned}
& x_{i+1}=x_{i}+h_{i} \\
& x_{i-1}=x_{i}-h_{i-1}
\end{aligned}
$$

$$
f\left(x_{i \pm 1}\right)=f\left(x_{i}\right)+\left(x_{i \pm 1}-x_{i}\right) f^{\prime}\left(x_{i}\right)+\frac{1}{2}\left(x_{i \pm 1}-x_{i}\right)^{2} f^{\prime \prime}\left(x_{i}\right)+\ldots
$$

or

$$
\begin{aligned}
& f_{i+1}=f_{i}+h_{i} f_{i}^{\prime}+\frac{1}{2} h_{i}^{2} f_{i}^{\prime \prime}+\theta\left(h^{3}\right) \\
& f_{i-1}=f_{i}-h_{i-1} f_{i}^{\prime}+\frac{1}{2} h_{i-1}^{2} f_{i}^{\prime \prime}+\theta\left(h^{3}\right)
\end{aligned}
$$

algebra (eliminate $f_{i}^{\prime \prime}$ )

$$
f^{\prime}\left(x_{i}\right)=f_{i}^{\prime}=\frac{h_{i-1}^{2} f_{i+1}+\left(h_{i}^{2}-h_{i-1}^{2}\right) f_{i}-h_{i}^{2} f_{i-1}}{h_{i} h_{i-1}\left(h_{i}+h_{i-1}\right)}+\theta\left(h^{2}\right)
$$

3-point formula for nou-uniform data

Richardson Extrapolation
Can construct algorithms to get derivatives to arbitrary order (but using higher order methods means assuming $f^{n}$ is smooth)

For $f^{\prime}(x)$ Let $\Delta_{1}(h)=\frac{f(x+h)-f(x-h)}{2 h}$

$$
\Delta_{1}(h)=f^{\prime}(x)+\theta\left(h^{2}\right)
$$

can show that (5-pt formula)

$$
\Delta_{1}(h)-4 \Delta_{1}(h / 2)=-3 f^{\prime}(x)+\theta\left(h^{4}\right)
$$

and $\Delta_{1}(h)-20 \Delta_{1}\left(\frac{h}{2}\right)+64 \Delta_{1}\left(\frac{h}{4}\right)=45 f^{\prime}(x)+\theta\left(h^{6}\right)$ etc

Can determine the coefficients for higher orders systematically write $\quad \Delta_{1}(h)=\frac{f(x+h)-f(x-h)}{2 h}=f^{\prime}(x)+\sum_{k=1}^{\infty} c_{2 k} h^{2 k}$ call $\Gamma_{k 0}=\Delta_{1}\left(\frac{h}{2^{k}}\right)$
can shows

$$
\Gamma_{k \ell}=\frac{4^{l}}{4^{l}-1} \Gamma_{k l-1}-\frac{1}{4^{\ell}-1} \Gamma_{k-1 \ell-1}
$$

for $0 \leq \ell \leq k$ leads to

$$
f^{\prime}(x)=\Gamma_{k l}-\sum_{m=l+1}^{\infty} B_{m l}\left(\frac{n}{2^{k}}\right)^{2 m}
$$

where $B_{k l}=\frac{4^{l}+4^{k}}{4^{l}-1} \quad B_{k l-1}$
and

$$
B_{k k}=0
$$

Example: $k=1, l=1$

$$
\begin{aligned}
& f^{\prime}(x)=\Gamma_{11}-\sum_{m=2}^{\infty} B_{m 1}\left(\frac{h}{2}\right)^{2 m} \\
& f^{\prime}(x)=\frac{4^{\prime}}{4^{\prime}-1} \Gamma_{10}-\frac{1}{4^{\prime}-1} \Gamma_{00}+\theta\left(h^{4}\right) \\
& \Gamma_{00}=\Delta_{1}(h) \\
& \Gamma_{10}=\Delta_{1}(h / 2) \\
& f^{\prime}(x)=\frac{4}{3} \Delta_{1}\left(\frac{h}{2}\right)-\frac{1}{3} \Delta_{1}(h)+\theta\left(h^{4}\right)
\end{aligned}
$$

or $\Delta_{1}(h)-4 \Delta_{1}\left(\frac{h}{2}\right)=-3 f^{\prime}(x)+\theta\left(h^{4}\right)$ as before
Can apply similar method for higher order derivatives

$$
\text { Let } \begin{aligned}
\Delta_{2}(h) & =\frac{f(x+h)-2 f(x)-f(x+h)}{h^{2}} \\
& =f^{\prime \prime}(x)+\theta\left(h^{2}\right)
\end{aligned}
$$

Can show

$$
\Delta_{2}(h)-4 \Delta_{2}\left(\frac{h}{2}\right)=-3 f^{\prime \prime}(x)+\theta\left(h^{4}\right)
$$

same form as with $f^{\prime}(x)$ but with $\Delta_{1}$ replaced with $\Delta_{2}$

Error analysis
as $h$ decreases truncation errors decrease but
 round off error from subtraction increases
error $\epsilon=\epsilon_{\text {rune }}+\epsilon_{\text {round off }}$
$\epsilon$ is minimized when $\epsilon_{\text {trunc }} \simeq \epsilon_{r_{0}}$
$\epsilon_{\text {roo }}$ from subtraction $\frac{f(x+h)-f(x)}{h}$ is $\epsilon_{r_{0}} \sim \frac{\epsilon_{M} f(x)}{h}$

Etrunc: forward difference

$$
\theta(h),=\frac{h}{2} f^{\prime \prime}(x)
$$

centred diff

$$
\theta\left(h^{2}\right),=\frac{h^{2}}{3} f^{\prime \prime \prime}(x)
$$

minimum error (best you can get) when $\epsilon_{r o} \simeq \epsilon_{t}$

$$
\frac{f \epsilon_{M}}{h_{F D}} \simeq \frac{h_{F D}}{2} f^{\prime \prime} \quad \frac{f_{\epsilon M}}{h_{C D}} \approx \frac{h_{C D}^{2}}{3} f^{\prime \prime \prime}
$$

Assume for simplicity $f \simeq f^{\prime} \simeq f^{\prime \prime} \simeq f^{\prime \prime \prime} \simeq 1, \epsilon_{M} \simeq 10^{-15}$ double $\begin{aligned} & \text { pres. }\end{aligned}$

$$
\begin{aligned}
& h_{F D} \simeq\left(2 \epsilon_{M}\right)^{1 / 2} \simeq 4 \times 10^{-8} \quad h_{C D} \simeq\left(3 \epsilon_{M}\right)^{1 / 3} \simeq 2 \times 10^{-5} \\
& \epsilon_{F D} \simeq \frac{\epsilon_{M}}{h_{F D}} \simeq 3 \times 10^{-8} \quad \epsilon_{C D} \simeq \frac{\epsilon_{M}}{h_{C D}} \simeq 5 \times 10^{-11}
\end{aligned}
$$

Centred diff. gives smaller optimal error with a larger step size.

Integration

$$
I=\int_{a}^{b} f(x) d x \underset{\substack{\text { under } \\ \text { curve }}}{\substack{\text { area } \\ \text { ration }}} \underset{a}{\mid}
$$

Before computers, approximated areas with quadrilaterals - approach called numerical quadrature

Recall Riemann definition / rectangle rule sum over rectangular areas, take limit as width $h=x_{i+1}-x_{i} \rightarrow 0 \quad \frac{b-a}{h}$

$$
I=\lim _{h \rightarrow 0} \sum_{i=1}^{\frac{b-a}{h}} h f\left(x_{i}\right)
$$

For finite $h \quad(h \neq 0)$, in general

$$
\int_{a}^{b} f(x) d x \doteq \sum_{i=1}^{N} f\left(x_{i}\right) \omega_{i} \text { for } N \text { points in }[a, b]
$$

- different algorithms yield different "weights" $\omega_{i}$ (for rectangles $\quad \omega_{i}=h$ )

Trapezoid rule

- use $N$ points spaced evenly apart by $h$

$$
x_{i}=a+(i-1) h, \quad i=1, \ldots N
$$

- there are N-1 intervals $h=\frac{b-a}{N-1}$
- over each interval, area is approximated by area of trapezoid

$$
\prod_{x_{i}} A_{i}=h \frac{1}{2}\left(f_{i}+f_{i+1}\right)=\frac{h}{2} f_{i}+\frac{h}{2} f_{i+1}
$$

