$$
\begin{aligned}
I & =\int_{a}^{b} f(x) d x= \\
& = \\
& =
\end{aligned}
$$

(each point, except first and last, is involved with two trapezoids.)

$$
I_{T}=\sum_{i=1}^{N} f\left(x_{i}\right) \omega_{i}, \quad\left\{\omega_{i}\right\}=
$$

What is the truncation error?

expand f_{i+1} in Taylor series

$$
f_{t}=
$$

$$
\int_{x_{i}}^{x_{i+1}} f_{t} d x=
$$

Compare with integral of $f(x)$

$$
\int_{x_{i}}^{x_{i+1}} f d x=
$$

h^{3} term using f_{t} differs from result based on Taylor series expansion of f
\therefore Truncation error in one step
Error over N steps is

What about round off error?

At each step
so it turns out

For $\epsilon_{M} \sim 10^{-16}$ and smallest error occurs when

Simpson's Rule
Consider a portion of an integral from

Approximate $f(x)$ with a

$$
\begin{aligned}
& f(x)= \\
& I=\int_{x_{i-1}}^{x_{i+1}}\left[f_{i}+\right. \\
& =\left(x_{i+1}-x_{i-1}\right) f_{i}+ \\
& =2 h f_{i}
\end{aligned}
$$

$$
\text { rewrite } f_{i}^{\prime \prime}=\frac{f_{i-1}-2 f_{i}+f_{i+1}}{h^{2}}+\theta\left(h^{2}\right)
$$

$$
=2 h f_{i}
$$

Note: This is equivalent to fitting a quadratic function through $\left(x_{i-1}, f_{i-1}\right),\left(x_{i}, f_{i}\right)$ and $\left(x_{i+1}, f_{i+1}\right)$ (cubic term contributes zero to the integral).

Break up entire integral into
Break up entire integral into an

N is N must

$$
\begin{aligned}
I_{3} & =\frac{h}{3}\left(f_{1}+4 f_{2}+f_{3}\right) \\
& =\frac{h}{3}\left[f_{1}+4 f_{2}\right.
\end{aligned}
$$

truncation error is $N \sim$ so $\epsilon_{\text {trunc }}$ is

In terms of general form for numerical integration

$$
I_{s}=
$$

Note: consider $N=3$

$$
\begin{aligned}
\left\{\omega_{i}\right\} & = \\
\sum_{i=1}^{\omega} \omega_{i} & =
\end{aligned}
$$

This is generally true for all integration algorithms

$$
\sum_{i=1}^{N} \omega_{i}=
$$

Best error, optimal h :
as always $\quad \epsilon_{\text {ron }}=$
(again, for

$$
\begin{aligned}
&b-a \sim f \sim \text { etc } \sim 1) \frac{\epsilon_{M}}{\sqrt{h}} \simeq \\
& \epsilon_{M} \simeq \\
& h_{\text {optimal }} \simeq \\
& \epsilon_{\text {best }} \approx
\end{aligned}
$$

Method of Undetermined Coefficients
Consider writing $f(x)$ as

$$
f(x)=
$$

on a small interval

General integration formula

$$
\int_{\tilde{a}}^{\tilde{b}} f(x) d x=\quad \begin{aligned}
& \text { with } \\
& i=1,2,
\end{aligned}
$$

becomes

$$
\int_{a}^{\tilde{b}} \sum_{n=0}^{P} c_{n} x^{n} d x=
$$

$$
\rightarrow \quad \int_{\tilde{a}}^{\tilde{b}} d x x^{n}=\quad \text { for each } \quad n \in 0, \ldots p
$$

$$
\begin{array}{ll}
n=0 & \tilde{b}-\tilde{a}= \\
n=1 & \frac{\tilde{b}^{2}-\tilde{a}^{2}}{2}= \\
n=2 & \frac{\tilde{b}^{3}-\tilde{a}^{3}}{3}=
\end{array}
$$

or, in matrix form

$$
\left(\begin{array}{llll}
1 & 1 & \ldots & \\
x_{1} & & & \\
& &
\end{array}\right)\left(\begin{array}{l}
\omega_{1} \\
\\
\end{array}\right.
$$

Solve for ω_{i}^{\prime}

- gives integration formula on fitting $f(x)$ with a polynomial of degree

In terms of dividing up domain of integration, can let

$$
\tilde{b}-\tilde{a}=\quad, \quad h=
$$

E.g. For Simpson's rule,

