Gaussian Integration In Gaussian integration, we fit fix over the by a complete set of polynomials f(x) =Best to use polynomials like the , which satisfy To change limits of integration, can apply $\chi \rightarrow \frac{b-a}{2} \chi + \frac{b+a}{2}$ $\int f(x) dx =$

Assume f(x) is well approximated by a polynomial of order f(x) =For $\underline{T} = \int_{-1}^{1} f(x) dx \simeq$ we need to find Write Pan-1 (x) = e.g. $p_3(x) = C_0 + C_1 x + C_2 x^2 + C_3 x^3$

$$P_{2n-1} = P_{n-1} P_n + r_{n-1}$$
express $P_{n-1} =$

$$I \cdot \int_{1}^{1} dx f(x) =$$

$$=$$

$$\therefore I =$$
Let the n zeros of $P_n(x)$ be
Then, at these zeros,
$$P_{2n-1}(x;) =$$

$$P_{2n-1}(x;) =$$

Now express
$$r_{n-1}(x) =$$
 (in basis of Legendre
polynomials)
so $p_{2n-1}(x_i) = r_{n-1}(x_i) =$
where x_i
e.g. $n=3$ $(2n-1=5$, $k_{max} =$)
 $p_{2n-1}(x_1) = p_{5}(x_1) =$
 $3 e_1^{m} s$, 3 unknowns
or in general
 $\left(\frac{p_{2n-1}(x_i)}{2}\right) = \left(\frac{1}{2}\right) \left(\frac{1}{2}\right)$

Then
$$\begin{pmatrix} \\ \\ \end{pmatrix} = \begin{pmatrix} \\ \\ \end{pmatrix}$$

or $\widetilde{\omega}_{k} =$
back to integral
 $I = \int_{-1}^{1} f(x) dx \stackrel{i}{=}$
multiply by $1 =$
 $I =$
 $I =$
see Modernetics example, K and G. Investort