Gaussian Integration
In Gaussian integration, we $f: t \quad f(x)$ over the by a complete set of polynomials

$$
f(x)=
$$

Best to use polynomials like the , which satisfy

To change limits of integration, can apply

$$
\begin{aligned}
x & \rightarrow \frac{b-a}{2} x+\frac{b+a}{2} \\
\int_{a}^{b} f(x) d x & =
\end{aligned}
$$

Assume $f(x)$ is well approximated by a polynomial of order

$$
f(x)=
$$

For $\quad I=\int_{-1}^{1} f(x) d x \simeq$
we need to find

Write $P_{2 n-1}(x)=$
e.g. $p_{3}(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}$

$$
P_{2 n-1}=P_{n-1} P_{n}+r_{n-1}
$$

express $p_{n-1}=$

$$
I=\int_{-1}^{1} d x f(x) \simeq
$$

$$
\therefore \quad I=
$$

Let the n zeros of $P_{n}(x)$ be

Then, at these zeros,

$$
\begin{aligned}
& P_{2 n-1}\left(x_{i}\right)= \\
& P_{2 n-1}\left(x_{i}\right)=
\end{aligned}
$$

Now express $r_{n-1}(x)=$ polynomials)
so $\quad p_{2 n-1}\left(x_{i}\right)=r_{n-1}\left(x_{i}\right)=$
where x_{i}
e.g. $n=3 \quad\left(2 n-1=5, k_{\max }=\right.$

$$
P_{2 n-1}\left(x_{1}\right)=P_{5}\left(x_{1}\right)=
$$

3 equs, 3 unknowns
or in general

$$
\left(\begin{array}{l}
p_{2 n-1}\left(x_{1}\right) \\
\end{array}\right)=(\square)
$$

Then

or $\quad \tilde{\omega}_{k}=$
back to integral

$$
I=\int_{-1}^{1} f(x) d x \doteq
$$

multiply by $1=$

$$
I=
$$

$$
I=
$$

