Ordinary Differential Equations - ODEs
Differential eq"s are super important in physics, e.g. Newton's $2^{\text {nd }}$ Law, Schrödinger eq, heat eq" etc
$O D E$ - single independent variable (time or position)
$P D E$ - multiple independent variables (time and position, say, or two spatial variables)
Three main types of ODE's

1) Initial value problem (IVP): time-dependent eq =s
2) Boundary value problem: require knowledge of function
3) Eigenvalue problem: sol exists only for

Systems of ODES and IVPS
Eeg. Consider the simple harmonic oscillator

$$
F=m a
$$

Can rewrite this $2^{\text {nd }}$ order $O D E$ as

$$
\begin{aligned}
& y_{1} \equiv \quad y_{2} \equiv \\
& -\frac{k}{m} x=
\end{aligned}
$$

We get a system of equations

$$
\begin{aligned}
& \dot{y}_{1}= \\
& \dot{y}_{2}=
\end{aligned}
$$

that are solved given initial (J position and velocity

In general, ODE of any order n (can be written as a
often written in vector form
where $\vec{y}=$ and $\vec{f}=$

For SHO example

$$
\begin{array}{ll}
y_{1}= & f_{1}= \\
y_{2}= & f_{2}=
\end{array}
$$

(Note: independent variable

Formally, we can write sol as

$$
\vec{y}(t)=
$$

Problem is RHS requires \hat{y} for all t, but that's

Euler Method

Consider discretization of indep. var.

$$
\begin{gathered}
\Delta t= \\
\int_{t_{i}}^{t_{i+1}} d t^{\prime} \stackrel{\rightharpoonup}{f}\left(\vec{y}\left(t^{\prime}\right), t^{\prime}\right) \simeq \\
\text { - equivalent to }
\end{gathered}
$$

then

$$
\vec{y}\left(t_{i+1}\right)=
$$

Can rewrite
which is just the
Example: SHO

$$
\begin{array}{lc}
\frac{d x}{d t}= & \frac{d}{d t}\left({ }_{\uparrow}\right)=(\\
\frac{d v}{d t}= & \uparrow \\
f_{1}= \\
f_{2}=
\end{array}
$$

Euler:

$$
\begin{aligned}
& x(t+\Delta t)= \\
& v(t+\Delta t)=
\end{aligned}
$$

or

$$
\begin{aligned}
& x_{i+1}= \\
& v_{i+1}=
\end{aligned}
$$

show spring_enter.cpp results

$$
\begin{aligned}
& E=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2} \text { should be } \\
& \frac{d E}{d t}=\dot{E}=
\end{aligned}
$$

$$
\dot{E}=0 \quad \rightarrow
$$

Truncation error - recall

$$
\frac{d y_{i}}{d t}=
$$

So for Euler we get

$$
y_{i+1}=
$$

For $W=$ steps to get from initial to final time,
total error is

Midpoint Method or Modified Euler
Recall centred difference $\dot{y}(t)=\frac{y(t+\Delta t)-y(t-\Delta t)}{2 \Delta t}+$ or $\dot{y}(t)=$
or $\quad \dot{y}\left(t+\frac{\Delta t}{2}\right)=$
solve for

$$
\left.\begin{array}{c}
y(t+\Delta t) \quad y(t+\Delta t)= \\
\text { Silverer }
\end{array}\right)
$$

- gain an order of accuracy if we can evaluate f at the midpoint
- Use Taylor expansion of f to estimate midpoint value

$$
y(t+\Delta t)=
$$

$$
=
$$

\rightarrow Need only a

A $y(t+\Delta t)=$
$\operatorname{tr} y y(t+\Delta t / 2)=$

This is an Euler step call $\Delta y=$

$$
\begin{aligned}
& f(y(t)+\Delta y / 2, t+\Delta t / 2)= \\
& = \\
& =
\end{aligned}
$$

It works!

Write scheme as

$$
\Delta y=
$$

$$
y_{i+1}=
$$

Egg. SHO

$$
\dot{x}=
$$

$\mathrm{k} / \mathrm{m}=1$ in v spring-midpoint. App

Euler

$$
x_{n+1}=
$$

$$
v_{n+1}=
$$

Show code

- two extra lines, more stable
- still unstable at large times

Midpoint

$$
\begin{aligned}
& x_{n+1}= \\
& v_{n+1}=
\end{aligned}
$$

where
$x_{\text {mid }}=$
$v_{\text {mid }}=$

