
Ordinary Differential Equations - ODES

Differential eq's are super important in physics ,

e.g . Newton 's 2nd Law
, Schrodinger eq= ,

heat eq
: etc

ODE - single independent variable ( time or position )

PDE - multiple independent variables ( time and position , say ,

or two spatial variables )
Three main types of ODE 's

1) Initial value problem ( IUP ) : time - dependent eq=s

2) Boundary value problem : require knowledge of
function

3) Eigenvalue problem : Sol' exists only for

Systems of ODES and /✓Ps

E.g. Consider the simple harmonic oscillator

F-- ma



Can rewrite this 2nd order ODE as

g. =

yi-k.mx=

We get a system of equations
y• , =

ifz =

that are solved given initial ( ) position
and velocity

In general , ODE of
any order n ( )

can be written as a

often written in vector form

where

5--4 )
and I --

(



For SHO example

y ,
= f

,
=

yz
= fz =

(Note : independent variable )

Formally , we can write sof as

g-(t) =

Problem is RHS requires g- for all t , but that's

Euler Method

Consider discretization of indep . var
.

st =
so that

gti" dtiflyct ') , E) =
ti

- equivalent to

then

g- Lt :-, , ) =

or or

just



Can rewrite

which is just the approximation

Example : SHO

d =

f. =dt

E- ( )=( ) f-z=
DI =
It T T

Euler : ✗ (test)=

vcttst)=

or

✗it ,
=

Vit , =

show spring- enter.cpp results gnuplot spring . gnu

→ Sok not good , as amplitude and energy grow in
time

E = Emv
'
+ ÉKXZ should be

%É=É =

É=o →



Truncation error - recall

dyi =
It

so for Euler we get

Yi -1 ,
=

For N = steps to get from initial to final

time
,

total error is



Midpoint Method or Modified Euler

Recall centred difference jct ) =yt¥ ) +

or jct) =

or jct + E) =

solvefor

ylt+st) ylttst) =

= *

-

gain an order of accuracy if we can evaluate
f at the midpoint

- Use Taylor expansion of f to estimate midpoint value

ycttst)=

=

→ Need only a



* ylttst )=
try ycttstlz> =

I
>

This is an Euler step

call

sy-flyltl-s.gg
, tests )=

=

=

It works !

Write scheme as sy
=

yi+ ,
=

E.
g. SHO

I = { Klm = 1 in

j spring-midpoint - Cpp

Euler Midpoint

✗n + a

= Xu + ,
=

Vn + a = Vu-11 =

Show code where ✗mid
=

- two extra lines , more stable

- still unstable at large times Vmid =


