Ordinary Differential Equations - ODEs
Differential eq"s are super important in physics, e.g. Newton's $2^{\text {nd }}$ Law, Schrödinger eq", heat eq" etc

ODE - single independent variable (time or position)
PDE - multiple independent variables (time and position, say, or two spatial variables)
Three main types of ODE's

1) Initial value problem (IVP): time-dependent eq ns need knowledge of function at specified time e.g. $F=m a$
2) Boundary value problem: require knowledge of boundary conditions es.

Laplace eq" in $1-D$
3) Eigenvalue problem: sol ${ }^{\text {n }}$ exists only for selected parameter values. E.g. Schrödinger eq"

Systems of ODES and IVPS
E.g. Consider the simple harmonic oscillator (SHO)

$$
\begin{aligned}
F & =m a \\
-k x & =m \frac{d^{2} x}{d t^{2}} \quad m \ddot{x}=-k x
\end{aligned}
$$

Can rewrite this $2^{\text {nd }}$ order $O D E$ as two first-order ODEs

$$
\begin{gathered}
\text { position } \rightarrow y_{1} \equiv x \quad y_{2} \equiv \frac{d x}{d t}=\dot{x}=\dot{y}_{1} \\
-\frac{k}{m} x=\frac{-k}{m} y_{1}=\frac{d^{2} x}{d t^{2}}=\frac{d}{d t} y_{2}=\dot{y}_{2}
\end{gathered}
$$

We get a system of equations

$$
\begin{aligned}
& \dot{y}_{1}=y_{2} \\
& \dot{y}_{2}=-\frac{k}{m} y_{1}
\end{aligned}
$$

that are solved given initial $(t=0)$ position $y_{1}(0)$ and velocity $y_{2}(0)$.

In general, ODE of any order n (involving $\frac{d^{n} y}{d t^{n}}$) can be written as a set of n first-order ODEs.
often written in vector form

$$
\frac{d \vec{y}}{d t}=\vec{f}(\vec{y}, t)
$$

where $\vec{y}=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right)$ and $\vec{f}=\left(\begin{array}{c}f_{1}(\vec{y}, t)=f_{1}\left(y_{1}, y_{2}, \ldots y_{n}, t\right) \\ f_{2}(\vec{y}, t) \\ \vdots \\ f_{n}(\vec{y}, t)\end{array}\right)$

For SHO example

$$
\begin{array}{ll}
y_{1}=x & f_{1}=y_{2} \\
y_{2}=\frac{d y_{1}}{d t} & f_{2}=-\frac{k}{m} y_{1}
\end{array}
$$

(Note: independent variable
does not have to be time)
Formally, we can write sol as

$$
\vec{y}(t)=\vec{y}\left(t_{0}\right)+\int_{t_{0}}^{t} d t^{\prime} \vec{f}\left(\vec{y}\left(t^{\prime}\right), t^{\prime}\right)
$$

Problem is RHS requires \bar{y} for all t, but that's precisely what we need to find, and so we approximate the integral.

Euler Method

Consider discretization of indep. var.

$$
\begin{array}{r}
\Delta t=h=t_{i+1}-t_{i} \quad \text { so that } \\
\int_{t_{i}}^{t_{i+1}} d t^{\prime} \vec{f}\left(\vec{y}\left(t^{\prime}\right), t^{\prime}\right) \simeq \Delta t \vec{f}\left(\vec{y}\left(t_{i}\right), t_{i}\right)
\end{array}
$$

- equivalent to left-side rectangle rule
then

$$
\vec{y}\left(t_{i+1}\right)=\vec{y}\left(t_{i}\right)+\Delta t \vec{f}\left(\vec{y}\left(t_{i}\right), t_{i}\right)
$$

or $\vec{y}_{i+1}=\vec{y}_{i}+h \vec{f}_{i}$
or $y_{i+1}=y_{i}+h f_{i}$

Can rewrite $\left.\frac{\vec{y}_{i+1}-\vec{y}_{i}}{h}=\vec{f}_{i}=\frac{d y_{i}}{d t}\right\}$ from ODE itself
which is just the forward difference approximation
Example: SHO

$$
\left.\begin{array}{lc}
\frac{d x}{d t}=v & \frac{d}{d t}\binom{x}{v}=\binom{v}{-\frac{k}{m} x} \\
\frac{d v}{d t}=-\frac{k}{m} x & \uparrow \\
\vec{y} & \vec{f}
\end{array}\right) \begin{aligned}
& f_{1}=v=y_{2} \\
& f_{2}=-\frac{k}{m} x \\
& \\
&
\end{aligned}
$$

Euler: $\quad x(t+\Delta t)=x(t)+\Delta t v(t)$

$$
v(t+\Delta t)=v(t)-\Delta t \frac{k}{m} x
$$

or

$$
\begin{aligned}
& x_{i+1}=x_{i}+h v_{i} \\
& v_{i+1}=v_{i}-h \frac{k}{m} x_{i}
\end{aligned}
$$

show spring_enter.cpp results gnuplot spring.gnu
\rightarrow solus not good, as amplitude and energy grow in time
$E=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}$ should be constant

$$
\begin{array}{r}
\frac{d E}{d t}=\dot{E}=m v \dot{v}+k x \dot{x}=v(\underbrace{m a+k x}_{0 \Delta E})=0 \\
\dot{E}=0 \rightarrow E \pi
\end{array}
$$

Truncation error - recall forward difference

$$
\frac{d y_{i}}{d t}=\frac{y_{i+1}-y_{i}}{h}+\theta(h)
$$

So for Euler we get (vote $\frac{d y}{d t}=f_{i}$)

$$
\begin{aligned}
y_{i+1} & =y_{i}+h f_{i}+h \theta(h) \\
& =y_{i}+h f_{i}+\theta\left(h^{2}\right)
\end{aligned}
$$

For $N=\frac{t_{f}-t_{0}}{h}$ steps to get from initial to final
time, total error is $\quad N \theta\left(k^{2}\right)=\theta(k)$
"accurate to first order"
" first-ordar method"

Midpoint Method or Modified Euler
Recall centred difference $\dot{y}(t)=\frac{y(t+\Delta t)-y(t-\Delta t)}{2 \Delta t}+\theta\left(\Delta t^{2}\right)$ or $\dot{y}(t)=\frac{y(t+\Delta t / 2)-y(t-\Delta t / 2)}{\Delta t}+\theta\left(\Delta t^{2}\right)$
or $\dot{y}\left(t+\frac{\Delta t}{2}\right)=\frac{y(t+\Delta t)-y(t)}{\Delta t}+\theta\left(\Delta t^{2}\right)$
solve for

$$
\begin{aligned}
\begin{array}{c}
\text { silver } \\
y(t+\Delta t)
\end{array} y(t+\Delta t) & =y(t)+\Delta t \dot{y}(t+\Delta t / z)+\theta\left(\Delta t^{3}\right) \\
& =y(t)+\Delta t f(t+\Delta t / z)+\theta\left(\Delta t^{3}\right)
\end{aligned}
$$

- gain an order of accuracy if we can evaluate f at the midpoint - Use Taylor expansion of f to estimate midpoint value

$$
\begin{aligned}
y(t+\Delta t) & =y(t)+\Delta t\left[\begin{array}{l}
\left.f(t)+\frac{\Delta t}{2} \frac{d f}{d t}(t)+\theta\left(\Delta t^{2}\right)\right]+\theta\left(\Delta t^{3}\right) \\
\dot{y}(t)
\end{array}\right. \\
& =y(t)+\Delta t \dot{y}(t)+\frac{\Delta t^{2}}{2} \ddot{y}(t)+\theta\left(\Delta t^{3}\right)
\end{aligned}
$$

\rightarrow Need only a first-order approximation to $f\left(t+\frac{\Delta t}{2}\right)$

$$
\begin{array}{r}
\text { A } y(t+\Delta t)=y(t)+\Delta t f(y(t+\Delta t / 2), t+\Delta t / 2)+\theta\left(\Delta t^{3}\right) \\
\quad \operatorname{rry} y(t+\Delta t / 2)=y(t)+\frac{\Delta t}{2} f(y(t), t)+\theta\left(\Delta t^{2}\right) \\
l_{>} \frac{d y(t)}{d t}(\Delta \Delta E)
\end{array}
$$

This is an Euler step
call $\Delta y=\Delta t f(y(t), t)$

$$
\begin{aligned}
& f\left(y(t)+\Delta y_{/ 2}, t+\Delta t / 2\right)=f(y(t), t)+\frac{\Delta y}{2} \frac{\partial f}{\partial y}+\frac{\Delta t}{2} \frac{\partial f}{\partial t}+\theta\left(\Delta t^{2}\right) \\
& =f(y(t), t)+\frac{\Delta t}{2}\left[f(y(t), t) \frac{\partial f}{\partial y}+\frac{\partial f}{\partial t}\right]+\theta\left(\Delta t^{2}\right) \\
& =f(y(t), f)+\frac{\Delta t}{2}[\underbrace{\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial t}}]+\theta\left(s t^{2}\right) \\
& \text { It works! } \quad=f+\frac{\Delta t}{d t} \frac{d f}{d t}+\theta\left(\Delta t^{2}\right)
\end{aligned}
$$

Write scheme as

$$
\begin{aligned}
\Delta y & =\Delta t f\left(y_{i}, t_{i}\right) \\
y_{i+1} & =y_{i}+\Delta t f\left(y_{i}+\frac{1}{2} \Delta y, t_{i}+\frac{1}{2} \Delta t\right)
\end{aligned}
$$

E.g. SHO

$$
\begin{array}{ll}
\dot{x}=v \\
\dot{v}=-\frac{k}{m} x & \left\{\begin{array}{l}
\mathrm{k} / \mathrm{m}=1 \quad \text { in } \\
\text { spring-midpoint } . \text { cPD }
\end{array}\right.
\end{array}
$$

Euler

$$
\begin{aligned}
& x_{n+1}=x_{n}+\Delta t v_{n} \\
& v_{n+1}=v_{n}-s t x_{n}
\end{aligned}
$$

Show code
-two extra l lines, more stable

- still unstable at large times

Midpoint

$$
\begin{aligned}
& x_{n+1}=x_{n}+\Delta t v_{m i d} \\
& v_{n+1}=v_{n}-\Delta t x_{m i d}
\end{aligned}
$$

where

$$
x_{\text {mid }}=x_{n}+\Delta t / 2 v_{n}
$$

$$
v_{\text {mid }}=v_{n}-s t / 2 x_{n}
$$

Another way of writing out the midpoint scheme, closer to how it would appear in code is

$$
\begin{aligned}
& y_{\text {mid }}=y_{i}+\frac{h}{2} f_{i} \\
& y_{i+1}=y_{i}+h f\left(y_{\text {mid }}, t_{i}+\Delta t / 2\right)
\end{aligned}
$$

