The midpoint method is an example of a

Los use function calls to - need to find

write 
$$y(t+h) =$$
  
 $y'(t) = \frac{dy}{dt} =$   
 $\frac{d^2y}{dt^2} =$   
 $\frac{d^3y}{dt} =$ 

Con also write y(++h) =

where C1 =

C<sub>2</sub> =

۲<sub>3</sub> -

Cm =

Example m=2 (2<sup>nd</sup> order RK) - keep terms y(++h) = (Taylor) ★ y(t+h)= C, = C<sub>2</sub> = so y(t+h) = 2 Compare with Taylor series - freedom to choose some parameters

| Let's choose $\alpha_1 = 0 - 3$ |                 |
|---------------------------------|-----------------|
|                                 |                 |
|                                 |                 |
|                                 | This is the     |
| C. =                            | Midpoint method |
|                                 |                 |
| <u>د</u> ج                      |                 |
|                                 |                 |
| or as choose will -             |                 |
|                                 |                 |
|                                 |                 |
| <u> </u>                        |                 |
| 0                               |                 |
|                                 |                 |
| ζ, =                            |                 |
| C <sub>2</sub> =                |                 |
| rewrite as                      |                 |
|                                 |                 |
| "Predictor                      |                 |
| Corrector 1/1+1                 |                 |
| Method "                        |                 |
|                                 |                 |
|                                 |                 |
| Common algorithm based on       |                 |
| "the" RK method "Classical RK"  |                 |
|                                 |                 |
| •                               |                 |
| 9(++h)=                         |                 |
| C, =                            |                 |
|                                 |                 |
|                                 |                 |
| C3 =                            |                 |
| Cu =                            |                 |
| ·                               |                 |
|                                 |                 |
| As with KK2,                    |                 |

Adaptive Time Step - Algorithm chooses time step to give - can significantly -> at each step, make sure -> h needs to be Simplest case: - want to step from t to t+h in one jump: and two jumps: Error in gn+1 is ~ Error in yn+1 is = 50 A = is a good estimate of the error.

Now stipulate that we want the to be smaller than a ıf , accept -> y(++h) = or, we might get a slightly better estimate by since  $\Delta$  is an setting estimate of (This will reduce the truncation error per step to O(43).) Should also consider , either or by increasing by a Ьу factor involving 1f , we need to and try again. option () option 2

Simple example dy = cos(x) Note: RHS does not dx depand on H depend on y. y(0) on x e [0,27]



y(x+2h)= full step of y(x+2h)= two steps each of ) 🛆 = ( c~ 2 ፈ ፈ If  $\Delta < \epsilon$ , set 55 set for a possible improvement (assuming 2 and make  $IF \Delta > \epsilon,$ If the current step size want to produce an error of , so set expect hnew = is a "safety factor." where

How "expensive" is this variable step size approach? Number of function evaluations is -> actually only "cost" of this variable step size approach is since we could get the better accuracy of , which takes