The midpoint method is an example of a Runge-Kutta scheme
\rightarrow use function calls to reduce truncation error \rightarrow need to find where to evaluate f^{\prime}, and associated weight
To obtain R-K scheme for $\frac{d y}{d t}=f(y, t)$ write $y(t+h)=y(t)+h y^{\prime}(t)+h^{2} / 2 y^{\prime \prime}(t)+h^{3} / 3!y^{\prime \prime \prime}(t)+\ldots$

$$
\begin{aligned}
y^{\prime}(t)=\frac{d y}{d t} & =f(y, t) \\
\frac{d^{2} y}{d t^{2}} & =\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial t}=f_{y} f+f_{t} \\
\frac{d^{3} y}{d t} & =\ldots
\end{aligned}
$$

$$
\begin{array}{r}
y(t+h)=y+h f+\frac{h^{2}}{2}\left(f_{t}+f f_{y}\right)+\frac{h^{3}}{6}\left(f_{t t}+2 f f_{t y}+f^{2} f_{y y}+f f_{y}^{2}\right. \\
\left.+f_{t} f_{y}\right)+\cdots
\end{array}
$$

Can also write

* $y(t+h)=y(t)+\alpha_{1} c_{1}+\alpha_{2} c_{2}+\ldots+\alpha_{m} c_{m}$
where $c_{1}=h f(y, t)$

$$
\begin{aligned}
& c_{2}=h f\left(y+\nu_{21} c_{1}, t+\nu_{21} h\right) \\
& c_{3}=h f\left(y+\nu_{31} c_{1}+\nu_{32} c_{2}, t+\nu_{31} h+\nu_{32} h\right) \\
& c_{m}=h f\left(y+\sum_{i=1}^{m-1} \nu_{m i} c_{i}, t+h \sum_{i=1}^{m-1} \nu_{m i}\right)
\end{aligned}
$$

Example $m=2$ ($2^{n d}$ order RK)

- keep terms of order h^{2}

$$
y(t+h)=y+h f+\frac{h^{2}}{2}\left(f_{t}+f f_{y}\right) \quad \text { (Taylor) }
$$

$$
y(t+h)=y+\alpha_{1} c_{1}+\alpha_{2} c_{2}
$$

$$
c_{1}=h f(y, t) \quad[Q(u)]
$$

$$
c_{2}=h f\left(y+\nu_{21} c_{1}, t+\nu_{2,} h\right) \quad[\text { expand }]
$$

$$
\bumpeq h f+h f_{y} \nu_{21} c_{1}+h f_{t} \nu_{21} h
$$

$$
=h f+h^{2} f f_{y} \nu_{21}+h^{2} f_{t} \nu_{21}
$$

$$
=h f+h^{2} \nu_{21}\left(f f_{y}+f_{t}\right)
$$

$$
\text { so } \begin{aligned}
y(t+h) & =y+\alpha_{1} h \underline{f}+\alpha_{2}\left(h f+h^{2} \nu_{2}\left(f f_{y}+f_{t}\right)\right) \\
& =y+\left(\alpha_{1}+\alpha_{2}\right) h f+\alpha_{2} \nu_{2} h^{2}\left(f f_{y}+f_{t}\right)
\end{aligned}
$$

Compare with Taylor series

$$
\alpha_{1}+\alpha_{2}=1, \quad \alpha_{2} \nu_{21}=1 / 2
$$

2 eqºs, 3 unknowns $\left(\alpha_{1}, \alpha_{2}, \nu_{21}\right)$ In general: m ens and $m+\frac{m(m-1)}{2}$ parameters - freedom to choose some parameters

Let's choose $\alpha_{1}=0 \rightarrow \quad \alpha_{2}=1, \quad \nu_{21}=1 / 2$
then $\quad y_{i+1}=y_{i}+c_{2}$
This is the
$c_{1}=h f$
Midpoint method
$c_{2}=h f\left(y+c_{1 / 2}, t+h / 2\right)$
or, e.g. choose $\alpha_{1}=\frac{1}{2} \rightarrow \quad \alpha_{2}=\frac{1}{2}, \nu_{21}=1$

$$
\begin{aligned}
y_{i+1} & =y_{i}+1 / 2 c_{1}+1 / 2 c_{2} \\
c_{1} & =h f\left(y_{i}, t_{i}\right) \\
c_{2} & =h f\left(y_{i}+c_{1}, t_{i}+h\right)
\end{aligned}
$$

rewrite as

$$
\begin{aligned}
& \text { rewrite as } \\
& \begin{array}{l}
\text { "Predictor } \\
\begin{array}{l}
\text { Corrector } \\
\text { Method" }
\end{array} \\
y_{i+1}=y_{i+1}+h f\left(y_{i}, t_{i}\right)
\end{array} \quad y_{i}+\frac{1}{2} h\left[f\left(\tilde{y}_{i+1}, t_{i+1}\right)+f\left(y_{i}, t_{i}\right)\right] \\
& \text { step }
\end{aligned}
$$

Common algorithm based on $m=4$ "the" RK method, "Classical RK"

$$
\begin{aligned}
y(t+h) & =y(t)+\frac{1}{6}\left(c_{1}+2 c_{2}+2 c_{3}+c_{4}\right) \\
c_{1} & =h f(y, t) \\
c_{2} & =h f\left(y+c_{1 / 2}, t+h / 2\right) \\
c_{3} & =h f\left(y+c_{2} / 2, t+h / 2\right) \\
c_{4} & =h f\left(y+c_{3}, t+h\right)
\end{aligned}
$$

As with RK2, choice of parameters is not unique

Adaptive Time Step

- Algorithm chooses time step to give desired accuracy at each iteration
- can significantly decrease run time
\rightarrow at each step, make sure y_{n+1} is good enough
$\rightarrow h$ needs to be small enough, but not too sural or finding sol will take too long

Simplest case: Euler with step halving

- want to step from t to $t+h$ in
one jump: $y_{n+1}^{*}=y_{n}+h f\left(y_{n}, t_{n}\right)=y_{n}+h f_{n}$ $\Delta t=h$
and
two jumps: $y_{n+1}=y_{n}+\frac{h}{2} f\left(y_{n}, t_{n}\right)+\frac{h}{2} f\left(y_{n+1 / 2}, t_{n+1 / 2}\right)$

$$
\Delta t=h / 2
$$

where $y_{n+1 / 2}=y_{n}+\frac{n}{2} f\left(y_{n}, t_{n}\right)$

$$
y_{n+1}=y_{n+1 / 2}+\frac{h}{2} f\left(y_{n+1 / 2}, t_{n+1 / 2}\right)
$$

Error in y_{n+1}^{*} is $\simeq-\frac{h^{2}}{2} y^{\prime \prime}(t)$
Error in y_{n+1} is $\simeq-2\left(\frac{h}{2}\right)^{2} \frac{y^{\prime \prime}(t)}{2}=-\frac{1}{2} \frac{h^{2}}{2} y^{\prime \prime}(t)$
so $\Delta \equiv y_{n+1}^{*}-y_{n+1} \approx-\frac{1}{2} \frac{h^{2}}{2} y^{k}$
is a good estimate of the error.

Now stipulate that we want the error Δ to be smaller than a prescribed limit ϵ

If $|\Delta|<\epsilon$, accept y_{n+1} as the f^{n} value

$$
\rightarrow y(t+h)=y_{n+1} \quad \text { (two halt-steps) }
$$

or, we might get a slightly better estimate by setting $y(t+h)=y_{n+1}-\Delta$ since Δ is an estimate of the truncation error in y_{n+1}. (This will reduce the truncation error per step to $\theta\left(h^{3}\right)$.)

Should also consider making h bigger, either by doubling (simple) or by increasing by a factor involving $\left|\frac{\Delta}{\epsilon}\right|$

If $|\Delta|>\epsilon$, we need to decrease h and try again.
option (1) $h \rightarrow \frac{h}{2}$, and then reuse $y_{n+1 / 2}$ as y_{n+1}^{*} when we retry
option (2) decrease h in a way involving $\left|\frac{\Delta}{\epsilon}\right|$

Simple example

$$
\begin{array}{ll}
\frac{d y}{d x}=\cos (x) \quad \text { Note: RHS does } \\
y(0)=0, \text { on } x \in[0,2 \pi] & \text { depend on } \\
x=0, y=0, d x=0.0001, \quad \text { tel }=0.0005
\end{array}
$$

do while $(x<2 \pi)$

$$
\begin{aligned}
& y \text { full }=y+d x \cos (x) \\
& y \text { half }=y+0.5 d x(\cos (x)+\cos (x+0.5 d x)) \\
& \text { if }\left(a b_{s}\right. \\
& y=y \text { half } \\
& x=x+d x \\
& d x=d x * 2.0
\end{aligned}
$$

else

$$
d x=0.5 * d x
$$

end if
end do
(we will overshoot endpoint

$$
\left.x_{f}=2 \pi\right)
$$

The same approach can be applied to RKU

$$
\begin{aligned}
y(x+2 h)=y_{R K K}^{*}+(2 h)^{5} \cdot C+\theta\left(h^{6}\right) \quad \text { full step of } \Delta x=2 h \\
y(x+2 h)=y_{R K 4}+2(h)^{5} \cdot C+\theta\left(h^{6}\right) \quad \text { two steps each of } \\
\Delta x=h
\end{aligned} \quad \begin{aligned}
&\left(C \sim \frac{d^{5} y}{d x^{5}}\right) \quad \Delta=y_{R K 4}^{*}-y_{R K 4} \rightarrow \text { compare to } \epsilon \\
&=\left(2-2^{5}\right) h^{5} C+\theta\left(L^{6}\right)=-30 h^{5} C+\theta\left(h^{6}\right) \\
& \Delta \alpha h^{5} \quad \Delta / 15=-2 h^{5} C
\end{aligned}
$$

If $\Delta<\epsilon$, set $y_{u+1}=y_{R k u}$
or
set $\begin{aligned} y_{n+1}=y_{R K K}-\frac{\Delta}{15} & \left.=y(x+2 h)-2 h^{5} C+\theta\left(k^{6}\right)-\frac{\Delta}{15}+\theta / h^{6}\right) \\ & =y(x+2 h)+\theta\left(h^{6}\right)\end{aligned}$ $=y(x+2 h)+\theta\left(h^{6}\right)$
for a possible improvement (assuming C is constant) and make 4 bigger

$$
h_{\text {next }} \propto h\left(\frac{\epsilon}{\Delta}\right)^{1 / 5}
$$

If $\Delta>\epsilon$, try again with h smaller. Again $k_{\text {next }} \propto h\left(\frac{\epsilon}{\Delta}\right)^{1 / 5} \rightarrow$ want $h_{\text {next }}$ to produce an error of $n \in$.

If the current step size h produces error $\Delta \propto h^{n}$ want hnext to produce an error of $\Delta_{n e x t} \leqslant \epsilon$ expect $h_{\text {new }}=h\left(\frac{\Delta_{\text {next }}}{\Delta}\right)_{\text {where }}^{1 / n} S<1(0.9$ so say $)$ is a "safety $h_{\text {ness }}=S h\left(\frac{t}{\Delta}\right)^{1 / n}$, where $S<1(0.9$, say) is a "safety factor."

How "expensive" is this variable step size approach?
Number of function evaluations is

4
(full step)

\rightarrow actually only 11 since first evaluation of f is used in both $y^{* R K 4}$ and $y_{R K 4}$
"cost" of this variable step size approach is

$$
\frac{11}{8}=1.375
$$

since we could get the better accuracy of YRKY , which takes 8 steps.

