Fehlberg Method (Embedded RK formula) - 5th order acuracy, variable time step, only 6 th calls

Generally, RK (4+m) - m orders higher than 4 requires more than m additional f⁼ calls, but not more than m+2.

Fellberg discovered an RK5 with 6
$$f^{m}$$
 calls
 $k_1 = hf(y_n, x_n)$
 $k_2 = hf(y_n + b_{21}k_1, x_n + a_2h)$
 $k_3 = hf(y_n + b_{31}k_1 + b_{32}k_2, x_n + a_3h)$
:
 $k_6 = hf(y_n + b_{61}k_1 + b_{62}k_2 + ... + b_{65}k_5, x_n + a_6h)$

$$y_{n+1} = y_n + c_1 k_1 + c_2 k_2 + c_3 k_3 + c_4 k_4 + c_5 k_5 + c_6 k_6$$

= $y(x+h) + O(h^6)$ RK5

that also yield a 4th orker method (RK4) with the Same f⁼ calls

 $y_{n+1}^{*} = y_n + c_1^{*} k_1 + c_2^{*} k_2 + c_3^{*} k_3 + c_4^{*} k_4 + c_5^{*} k_5 + c_6^{*} k_4$ = $y(x+h) + O(4^5)$ RK4

The a; 's and b; 's are the same for both, but the C_i 's and C_i^* 's are different.

The parameters commonly used nowadays are due to Cash and Karp (see e.g. Numerical Recipes)

We get an RKS (Sthorder method) AND
an estimate of the error.

$$\Delta = y_{n+1} - y_{n+1}^{*} = \sum_{i=1}^{6} (C_i - C_i^{*}) k_i \sim O(h^{i})$$
with only 6 f² calls. More efficient than RK4-based
step haiving/doubling.
As before, it stepsize hoursest produces docurrent
we want stepsize hoursest produces docurrent
we want stepsize hoursest $\left| \frac{E}{docurrent} \right|^{1/n}$ $n = 5$
 $\Delta^{-1}h^{5} \rightarrow h_{new} = h_{current} \left| \frac{E}{docurrent} \right|^{1/n}$ $n = 5$
In Numerical Recipes notation
 $h_0 = 5h_1 \left(\frac{\Delta_0}{\Delta_1} \right)^{1/5}$ with $3 = 0.9$
Practical implementation issues regarding A_0 , the desired
accuracy
 $= currently$ an absolutely value
 $= different for every component of \vec{y}
 $= not$ general for different problems
better: want solution "good to one part in 106"$

set
$$\Delta_0 = 6$$
 y with $e = i\sigma^{-6}$ -relative error
tolerance
but what if y oscillates (and y to comptimes)?
set $\Delta_0 = 6$ yscale
In NR code
yscale (i) = |y(i)| + |h dydx(i)| + Tiny
 i^{-20}
yscale (i) = |y(i)| + |h dydx(i)| + Tiny
 i^{-20}
yscale (i) = |y(i)| + |h dydx(i)| + Tiny
 i^{-20}
yscale (i) = |y(i)| + |h dydx(i)| + Tiny
 i^{-20}
yscale (i) = |y(i)| + |h dydx(i)| + Tiny
 i^{-20}
yscale (i) = |y(i)| + |h dydx(i)| + Tiny
 i^{-20}
yscale (i) = |y(i)| + |h dydx(i)| + Tiny
 i^{-20}
 i^{-20}
 j^{-20}
use largest relative
 i^{-1}
use largest yer (i) to control step size
 i^{-1}
 $i^$

Alternatively, may want to limit global error
(error at final integration point),
global error limit
$$\cong N \Delta_0 \cong t_f - t_i$$
: Δ_0
 \vdots want $\Delta_0 \sim h$ (target error at a step abould
scale with h)
choose $\Delta_0 = eh dy_{dx}$ as in NR's yscale
But then our formule $h_0 = h_1 \left| \frac{\Delta_0}{\Delta_1} \right|^{1/5}$ needs to
change (since global error $\sim O(h^{4})$)
to $h_0 = h_1 \right| \frac{d_0}{\Delta_1} \int_{1}^{1/4}$
Note that $V_4 = 0.25$
and $V_5 = 0.2$ are not too different.
NR takes a pregnatic, general, and conservative
approach (not increasing or decreasing h too much per step).
When increasing step size ($\Delta_1 \leq \Delta_0$)
use $h_0 = Sh_1 \left| \frac{\Delta_0}{\Delta_1} \right|^{0.20}$ (yields smaller ho than
use $h_0 = Sh_1 \left| \frac{\Delta_0}{\Delta_1} \right|^{0.20}$

When decreasing step size $(\Delta, > \Delta_{\circ})$ (yields smaller ho than with exponent of 0.20) use $h_0 = 5 h_1 \left| \frac{\Delta_0}{\Delta_1} \right|^{0.25}$ but ho > O.I h, lower limit on stepsize decrease Also check that h does not become too small, ie, check that x+h = x These aspects of the implementation are not rigourous, but are experience - based, practical steps to produce robust code that will solve most problems. User must supply derive function that returns dydx (F(y,x)) and initialize y. Part of Project 2 deals with using NR code to solve a physics problem.

Appendix - Details on global error

$$\Delta_{1} = \operatorname{error} \text{ estimate at each step } - O(h^{5})$$

$$\Delta_{2} = C h^{5}$$

$$\Delta_{0} = \operatorname{desired} \operatorname{local} \operatorname{error} : \Delta_{0} = \operatorname{dhdg}_{dx}$$

$$\Delta_{1}^{3} = \operatorname{approx}, \operatorname{global} \operatorname{error} :$$

$$\Delta_{1}^{3} = \operatorname{A} \Delta_{1} - \Delta_{1} - O(h^{4}) = Dh^{4}$$

$$\Delta_{0}^{3} = \operatorname{desired} \operatorname{global} \operatorname{error} :$$

$$\Delta_{0}^{3} = \operatorname{desired} \operatorname{$$