
Fehlberg Method ( Embedded RK formula )
- 5+4 order accuracy , variable time step , only 6 fu calls

Generally , RK(4 -1m) - m orders higher than 4 -

requires more than m additional f ' calls
,

but not more than m -12 .

Feldberg discovered an RK5 with 6 f= calls
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that also yield a 4th order method CRK4) with the

-

f ' callssame

*
= yn + cfki-CFkz-cjkz-cfky-c.tk, + Cj KsYn -11
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The ai 's and bij 's are the same for both , but the

Ci 's and 4.* 's are different
.

The parameters commonly used nowadays are due to Cash and Karp
( see e.g. Numerical Recipes )



We get an RK5 ( 5th order method ] AND

an estimate of the error
.

6

* -
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5--1

with only 6 f-= calls
.
More efficient than RKY - based

step halving /doubling .

As before
,
if stepsize Incurrent produces tcurreut

we want stepsize knew that produces / Anew I = C-

1
""

b- h5 → knew = Incurrent / E- n=5

bcurre.at '
In = 0.2

In Numerical Recipes notation

ho = Sh
, ( Ig )

" "

with 5=0.9

Practical implementation issues regarding so , the desired
accuracy

- currently an absolutely value

- different for every component of 5
- different components may differ orders of magnitude
- not general for different problems

better : want solution
"

good to one part in 106
"



set so -_ c- y with c- = co
- b

- relative error
tolerance

but what if y
oscillates ( and y=o

sometimes ) ?

set do = C- Y scale

In NR code

→
co
-30

yscaleci ) = lyci ) / + / hdydxci ) / + Tiny
if

I = 1
, . . . n → for each vector dimension

- if I yci ) / = 0 , yscaie is set by the derivative

knew -_ Sh / 1° /
""

use largest relative
t ' min / i =L , . . - u ) error -1, over all

so

= Sh ( min / c- yscace / )
""

components
i
E-
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""

i
c- yscale

use largest jerri to control step size

c- yscaleli )



Alternatively , may
want to limit global error

( error at final integration point ) ,

global error limit = Nso = tf - ti so
I

•

•

. want so ~ h ( target error at a step should
scale with h )

choose So = Eh dyydx as in NR 's yscale

But then our formula ho=h , /÷
,
/
"5

needs to

change ( since global error ~ Och " ) )

to ho =L , / Io /
" "

1
,

Note that
'
14 = 0.25

and 45 = 0-2 are not too different
.

NR takes a pragmatic , general , and conservative

approach ( not increasing or decreasing h too much per step ) .

When increasing step size ( s, < So )

0-20 ( yields smaller ho than

use ho= S h
, / If / with exponent of 0.25 )

but ho £ 5h
, ( upper limit on stepsize increase )



When decreasing step size ( s ,
> so)

(yields smaller ho than
use ho = S h

, / Io /
"25

with exponent of 0.20 )
1
,

but ho 7 0.1 h
,

lower limit on stepsize
decrease

Also check that h does not become

too small
,
ie
,
check that ✗ + h I ✗

These aspects of the implementation are

not rigorous , but are experience - based ,

practical steps to produce robust code

that will solve most problems .

User must supply derius function that

returns dydx ( f- ( § , x ) )

and initialize § .

Part of Project 2 deals with using NR code

to solve a physics problem .



Appendix - Details on global error
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