Stability
While the accuracy (truncation error) of a method can be determined by using Taylor series, in some cases a particular method for a particular problem may be unstable:
small deviations from the true solution (what the algorithm ideally gives) grow as the algorithm progresses.

Consider Euler algorithm for $\dot{y}=f(y, t)$

Assume that there is an error,, arising initially from e.g. roundotf error, associated with each step

$$
\begin{aligned}
f_{n}=f\left(y_{n}, t_{n}\right) & \rightarrow f\left(y_{n}+\delta y_{n}, t_{n}\right) \\
& =
\end{aligned}
$$

Euler becomes

$$
y_{n+1}+\delta y_{n+1} \doteq
$$

Error δy_{n} will at each step if
Euler is stable if $|g|<1$
Consider three archetypal cases (α positive)
growth $y=y_{0} e^{\alpha t} \rightarrow$
decay $\quad y=y_{0} e^{-\alpha t} \rightarrow$
oscillation $y=y_{0} e^{i \alpha t} \rightarrow$
For growth $g=1+\Delta t \frac{\partial f}{\partial y}=$
decay $g=$
oscillation $g=$

$$
|g|^{2}=
$$

What about $2^{\text {nd }}$ order RK (midpoint method)?

Midpoint Method

$$
\begin{gathered}
y_{n+1 / 2}=y_{n}+\frac{1}{2} \Delta t f\left(y_{n}, t_{n}\right) \\
y_{n+1}=y_{n}+\Delta t f\left(y_{n+1 / 2}, t_{n+1 / 2}\right) \\
y_{n+1}=y_{n}+\Delta t f\left(y_{n}+1 / 2 \Delta t f\left(y_{n}, t_{n}\right), t+\Delta t / 2\right) \\
=y_{n}+\Delta t\left[f\left(y_{n}, t_{n}\right)+\left.\frac{1}{2} \Delta t f_{n} \frac{\partial f}{\partial y}\right|_{n}+\left.\frac{\Delta t}{2} \frac{\partial f}{\partial t}\right|_{n}\right]+\theta\left(n^{3}\right) \\
y_{n+1} \equiv y_{n}+\Delta t f_{n}+1 / 2 \Delta t^{2}\left(\left.f_{n} \frac{\partial f}{\partial y}\right|_{n}+\frac{\partial f}{\partial t}\right)
\end{gathered}
$$

As before,

$$
\begin{aligned}
& y_{n} \rightarrow \\
& f_{n} \rightarrow
\end{aligned}
$$

growth: $\frac{\partial f_{n}}{\partial y}=\alpha$
decay: $\frac{\partial f_{n}}{\partial y}=-\alpha$

$$
-1<g<1 \rightarrow
$$

oscillation $\frac{\partial f_{n}}{\partial y}=i \alpha$
errors will accumulate quite slowly

Monte Carlo Simulations
-based on taking averages of many different realizations of a system. These configurations are generated using (pseudo) random numbers.

- Most random number generators use a chaotic sequence.
e.g. multiplicative congruent method
- based on large integers
that have no

$$
x_{n+1}=
$$

where is the remainder after dividing

$$
x \% \circ y=
$$

e.g. $\bmod (12,5)=$

This sequence generates integers less than in a "random" order.

- first value
- for a given
- for a new
- not at all

For this simple algorithm, quality of pseudorandom sequence depends a lot on choice of

A good pair is (Lewis, Goodman, Miller 1969)
$a=$
$b=$
(largest 32-bit unsigned integer is)

When implementing, need to take care that integer product can be stored (
J

- either use unsigned long integer (64-bit integer) or use computational tricks (see Numerical Recipes)

A slightly more general class of psendo-RNG is the

$$
x_{n+1}=
$$

C congruent map
linear: \quad

Basic idea: multiply two big integers \rightarrow

To get result on $[0,1\rangle$, simply take
Many algorithms exist for generating RNs on see NR, www, google

