Demonstration
I/ Show program random_LCG.cpp

$$
\begin{aligned}
& x_{0}=1, \quad a=16807, b=2^{31}-1=2147483647 \\
& c=0 \quad \text { (Lewis-Goodman-Miller parameters) }
\end{aligned}
$$

Also $a=3, b=32$
$c=0,3,4$ observe periodicity
from Klein and Godunov

$$
a=65, \quad b=65537, \quad c=319
$$

/random_LCG a bc 1 awl ' $\{\text { print } \$ 1, \$ 3\}^{\prime}$
I xmgrace -p p.par -
or
/random_LCG a bc n I xmgrace - p p.par - block - -bxy 1:3

- series looks good - show histogram (deviations should be
- show correlations when plotting Gaussian) $x_{n+1}$ us $x_{n}$ (./example.sh)
- periodicity: a short periodicity is bad longest periodicity is $b$
periodicity kicks in as soon as a number is repeated e.g. $57 \quad 9 \quad 13 \quad 57 \quad 9 \ldots$

However a truly random sequence can have repeats randomlists.com/random_numbers random.org/sequences
-setting the seed allows us to reproduce results

- changing seed gives another realization of the simulation

Another approach: Generalized Feedback Shift Register Method
$n, p$ and $q$ are integers, $p>q$
$\rightarrow$ using some approach, generate
e.g. $p=5, \quad q=3$

$$
\begin{aligned}
& x_{1}= \\
& x_{6}=
\end{aligned}
$$

where $\oplus$ is operation on representing
e.g.
$4 \oplus 7=$ ?

$$
\begin{aligned}
& 4_{10}= \\
& 7_{10}=
\end{aligned}
$$

4
7 $\qquad$
one of, but not both
result of exclusive or

$$
x_{6}=
$$

This is an example of - requires bit manipulation $f$ f
Must choose $p$ and $q$ carefully (521 and 168 work well) In $C / C+t 4 \Theta 7$ is show xor.cpp Fortran \$NR-based programs

Can combine two generators
e.g. use 2 LCGS or $1 L C G$ and 1 bit shuffler
-use RNGI to get, say, $N=256$ RN

- store in a list
- use RNG 2 to pick a random number $M$ between 1 and 256
- replace $M^{\text {th }}$ element by $R N$ generated by $R N G 1$

$$
\rightarrow \quad "
$$

In the end, simulation results must be independent of the RNG - can confirm this by getting same results

Even if RNG passes statistical tests, results may be
e.g. If process is sensitive to numbers in the range $0.7112 \pm 0.0001$, small bias in RNG will have

Note from Numerical Recipes

- Never use
- Never use method with
- Never use method that
- Never use

UPSHOT: It's hard to be random!

Monte Carlo (MC) Integration

Usual methods like Simpson's rule work well in

For $d$-dimensional integration, trapezoid rule has error , where $N$ is \# of integrand evaluations

For MC method, error -independent of
$\rightarrow M C$ converges faster for

Classical approaches


$$
2-D
$$


$t_{\text {cpu }} \alpha$
$d-D$

$$
t_{\text {cpu }} \alpha
$$

E.g. from statistical mechanics

$u=$ potential energy of whole system


$$
=
$$

Average energy at temperature $T$ is given by

$$
\langle U\rangle=\frac{1}{Q}
$$

this is a $d=$

For classical method $t_{\text {cpu }} \sim$ (let)
For processor $\rightarrow$ that does

MC Approach \# 1


Generate pairs of RNs $\left(x_{i}, y_{i}\right)$
st.
and
probability that point $\left(x_{i}, y_{i}\right)=$
falls under $f(x)$ curve

