Demonstration
I/ Show program random_LCG.cpp

$$
\begin{aligned}
& x_{0}=1, \quad a=16807, b=2^{31}-1=2147483647 \\
& c=0 \quad \text { (Lewis-Goodman-Miller parameters) }
\end{aligned}
$$

Also $a=3, b=32$
$c=0,3,4$ observe periodicity
from Klein and Godunov

$$
a=65, \quad b=65537, \quad c=319
$$

/random_LCG a bc 1 awl ' $\{\text { print } \$ 1, \$ 3\}^{\prime}$
I xmgrace -p p.par -
or
/random_LCG a bc n I xmgrace - p p.par - block - -bxy 1:3

- series looks good - show histogram (deviations should be
- show correlations when plotting Gaussian) x_{n+1} us x_{n} (./example.sh)
- periodicity: a short periodicity is bad longest periodicity is b
periodicity kicks in as soon as a number is repeated e.g. $57 \quad 9 \quad 13 \quad 57 \quad 9 \ldots$

However a truly random sequence can have repeats randomlists.com/random_numbers random.org/sequences
-setting the seed allows us to reproduce results

- changing seed gives another realization of the simulation

Another approach: Generalized Feedback Shift Register Method

$$
x_{n}=x_{n-p} \oplus x_{n-q}
$$

n, p and q are integers, $p>q$
\rightarrow using some approach, generate p random integers
e.g. $p=5, \quad q=3$

$$
\begin{aligned}
& x_{1}=4,12,7,27,20, x_{6} \\
& x_{6}=x_{6-5}+x_{6-3}=x_{1}+x_{3}
\end{aligned}
$$

where \oplus is "exclusive or" operation on bits representing x_{n-p} and x_{n-q}
e.g

$$
\begin{aligned}
& 4 \oplus 7=? \\
& 400100 \\
& 7 \frac{0111}{0011} \rightarrow 3_{10}
\end{aligned}
$$

$$
4_{10}=(0100)_{2}
$$

$$
7_{10}=\left\langle\begin{array}{llll}
0 & 1 & 1 & 1
\end{array}\right)_{2}
$$

one of, but not both
result of exclusive or

$$
x_{6}=3
$$

This is an example of "bit shuffling" - requires bit manipulation $f^{n}{ }_{s}$
Must choose p and q carefully (521 and 168 work well) In $C / C+4 \Theta)_{7}$ is $4^{\wedge} 7$ show xor.cpp Fortran ieor $(4,7)$ \$NR-based programs

Can combine two generators
e.g. use 2 LCGs or $1 L C G$ and 1 bit shuffler
-use RNG1 to get, say, $N=256$ RN

- store in a list
- use RNG2 to pick a random number M between 1 and 256
- replace $M^{\text {th }}$ element by RN generated by RNGI
\rightarrow " list shuffling"

In the end, simulation results must be independent of the $R N G$ - can confirm this by getting same results with 2 different RNGS

Even if RNG passes statistical tests, results may be sensitive to rare events
e.g. If process is sensitive to numbers in the range 0.7112 ± 0.0001, small bias in RNG will have longe impact on results

Note from Numerical Recipes

- Never use LCG
- Never use method with period $<2^{64} \simeq 2 \times 10^{19}$
- Never use method that distinguishes between randomness of low order and high order bit
- Never use built-in C and $C+t$ generators

UPSHOT: It's hard to be random! Pay affention to the RNG you use.

Monte Carlo (MC) Integration

Usual methods like Simpson's rule work well in 1 or 2 dimensions

For d-dimensional integration, trapezoid rule has error $\sim N^{-2 / d}$, where N is \#of integrand evaluations

For $M C$ method, error $\sim N^{-1 / 2}$ - independent of
$\rightarrow M C$ converges faster for $d>4$ ($5+$ dimensions)

Classical approaches

$$
1 \rightarrow \infty \quad \underbrace{\left\|\| \prod_{\text {cpu }}\right.}_{n \text { intervals }} \propto n
$$

$$
2-D
$$

$$
t_{\text {cpu }} \propto n^{2}
$$

$d-D$

$$
\begin{aligned}
& t_{\text {cpu }} \alpha n^{d} \\
& \text { "curse of dimensionality" }
\end{aligned}
$$

E.g. from statistical mechanics

Consider 50 atoms on a surface
$U=$ potential energy of whole system

$$
=u\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots x_{50}, y_{50}\right)
$$

Average energy at temperature T is given by

$$
\langle u\rangle=\frac{1}{Q} \int d x_{1} \int d y_{1} \int d x_{2} \int d y_{2} \ldots \int d x_{50} \int d y_{50} u\left(x_{1} \ldots y_{50}\right) e^{-\beta U}
$$

this is a $d=2.50=100$-dimensional

$$
\beta=\frac{1}{k_{B} T}
$$ integral

For classical method $t_{c p u} \sim n^{d} \quad($ let $n=10)$

$$
\sim 10^{100}
$$

For $\sim / G H_{z}$ processor $\rightarrow \quad 6 \times 10^{9}$ operations $/ \mathrm{s}$ that does 6 flops $a 10^{10} \mathrm{ops} / \mathrm{s}$ per cycle

$$
\frac{10^{100} \mathrm{ops}}{10^{10} \mathrm{ops} / \mathrm{s}}=10^{90} \mathrm{~s}=3.2 \times 10^{82} \mathrm{y} / \mathrm{s}
$$

MC Approach \#1

$$
F=\int_{a}^{b} f(x) d x
$$

Generate pairs of RNs $\left(x_{i}, y_{i}\right)$

$$
\text { s.t. } \quad a \leq x_{i} \leq b
$$

and $0 \leqslant y_{i} \leqslant H$ where $H>f(x)$ for all $x \in[a, b]$
probability that point $\left(x_{i}, y_{i}\right)=$ Area under curve
falls under $f(x)$ curve
Area of rectangle

$$
\frac{n_{\text {hit }}}{n}=\frac{\int_{a}^{b} f(x) d x}{H(b-a)}
$$

