
Demonstration

✗ Show program
random

-
LCG . cpp

Xo = 1
,
a = 16807 , b = 2

"
- I = 2147483647

c=o (Lewis - Goodman - Miller parameters]

Also a =3
,
b = 32

c = 0
,
3
,

4 observe periodicity

from Klein and Godunov

a= 65
,

b. = 65537
,

C = 319

./ random - LCG a b e n / awk
'

{ print $1 , $3 }
'

I xmgrace - p p -par
-

or

-/ random - LCG a b e n I xmgrace - p p -par
- block - - bxy I :3

- series looks good - show histogram (deviations should be

- show correlations when plotting Gaussian]

✗ n+ ,
us Xu (. / example -

Sh)

- periodicity : a short periodicity is bad

longest periodicity is b

periodicity kicks in as soon as a number is repeated
e.g. 57 9 13 57 9 . . .

- -

However a truly random sequence can have repeats

random lists .com/random- numbers random .org/ sequences
- setting the seed allows us to reproduce results
- changing seed gives another realization of the simulation y

Another approach : Generalized Feedback Shift Register Method

Xn = ✗n - p ④ ✗n - q

n
, p and q are integers , p > q

→ using some approach , generate p random integers

e.g . p=5 , g =3
←
✗3

✗ ,
= 4

,
12

,
7
,
27 , 20 ,

✗6

✗6
= ✗

6-g-
① ✗

6- 3
=

Xi ④ ✗3

where ① is
"

exclusive or
"

operation on bits

representing ✗
n - p

and Xu -q

e.g.
4 ④ 7 = ? 4,0 = (010072

7,0 = (o l l 1) z

4 0 I 0 0
one of

,
but not both

7- -01-11

O O l l → 3,0 result of exclusive or

✗6
= 3

This is an example of "bit shuffling
"

- requires bit manipulation
f- Is

must choose p and q carefully (521 and 168 work well)

In C/Ctt 4+07 is 4^7 show ✗or - Cpp

Fortran ieor (4,7) &NR - based programs

Can combine two generators
e.g. use 2 LCGS or I LCG and I bit shuffler

- use RNGI to get , say , N = 256 RNS

- store in a list

- use RNGZ to pick a random number M between 1 and 256

- replace Mth element by RN generated by RNG I

11

→
"
list shuffling

In the end
,
simulation results must be independent of the

RNG - can confirm this by getting same results

with 2 different Routes

Even if RNG passes statistical tests, results may be

sensitive to rare events

e.g. If process is sensitive to numbers in the

range 0-7112+-0.0001
,
small bias in RNG will

have large impact on results

Note from Numerical Recipes
- Never use LCG

- Never use method with period < 26
"
I 2×10

"

- Never use method that distinguishes between

randomness of low order and high order bit
-

Never use built - in C and C++ generators
UPSHOT : It's hard to be random ! Pay attention to the RNG you use .

Monte Carlo (Me) Integration

Usual methods like Simpson 's rule work well in
1 or 2 dimensions

For d- dimensional integration, trapezoid rule
-Zld

has error ~N
,
where N is #of integrand evaluations

For MC method
,
error

~Ñ
"
"
- independent of

→ MC converges faster for d > 4

(5-1 dimensions)

classical approaches

tcpu ✗ ni -i I
-

n intervals

m22-☐
tapu ✗

ndd-D tapu 2
"
curse of dimensionality

"

(X , , Yi)E.g. from statistical mechanics
,
< > z 1×2,92)

consider 50 atoms on a surface ☐
< >

⇐
^

I
~ (✗3,13)

U = potential energy of whole system <→ 3

= U(✗ , , Yi , Xz , Yz , - - . ✗50, 950)

Average energy at temperature T is given by

LU> =L fdx, fdyifdxefdyzr-nfdxs-ofdys-olllxin.gs/e-B
"

Q

this is a D= 2.50=100 - dimensional
B " ¥-1

integral

For classical method tcpu ~ nd (let n= /o)
~ [☐

100

For ~ / GHz processor → 6 ✗ 109 operations Is
that does 6 flops = 101° ops/s

per cycle

10'°°ops_ =
20%5 = 3.2 ✗co

yes

101°
ops/S

MC Approach # 1 b

f- = J fix)dx
Y a

"

✓ y=fc×>
Generate pairs of RNS (Xi , Yi)

✗

a b
S.t. a a- ✗ i ⇐ b

and 0 I yi I 1-1 where 1-1> fix)
for all ✗ c- [a>b]

probability that point cxi,y ;) = Areaunder.eu#
falls under fcx) curve Area of rectangle

b
fix > dx

nhit

=

= SEE

