ie. $\quad \int_{a}^{b} f(x) d x=H(b-a) \frac{n_{n i t}}{n}=I$
n : \# of random points used

Count hits nit as number of points $\left(x_{i}, y_{i}\right)$ that satisfy $y_{i} \leqslant f\left(x_{i}\right)$
"Hit-or-miss MC" - need uniform RN generator - call $\rho=\frac{n_{n i t}}{n}$, uncertainty in I is $H(b-a) \sqrt{\frac{\rho-\rho^{2}}{n}}$

Useful for
e.g. Want area of

- difficult classically
- For MC, use "if"
statements to determine if (x_{i}, y_{i}) is a "hit" or not.
Egg.

$\frac{\pi}{4}=I=$ Area $=\int_{0}^{1} d x \int_{0}^{1} d y g(x, y)$ where $g(x, y)= \begin{cases}1, & x^{2}+y^{2} \leq 1 \\ 0 & \text { otherwise }\end{cases}$ sum $=0$
do $i=1, N$
$x_{i}=$ rand on 0,1
$y_{i}=$ rand on 0,1
if $\left(x_{i}^{2}+y_{i}^{2} \leqslant 1\right)$ then
endif sum $=$ sum +1
end do

$$
\text { area }=\operatorname{sum} / N
$$

MC Approach \#2 "Sample Mean Method"
Recall definition for

$$
\langle f\rangle=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

-ave. value of f on $[a, b]$

estimate $\langle f\rangle$ by sampling $f(x)$

Generate RN uniformly on $[a, b]$
Calculate $\langle f\rangle \approx \frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right)$

$$
\Rightarrow \quad \int_{a}^{b} f(x) d x=\frac{b-a}{N} \sum_{i=1}^{N} f\left(x_{i}\right)
$$

- works well for high d

For domains with complicated geometries

$$
I=\frac{A}{N} \sum_{i=1}^{N} f\left(x_{i}, y_{i}\right) H\left(x_{i}, y_{i}\right)
$$

where $H(x, y)= \begin{cases}1 & \text { if }(x, y) \text { inside } R \\ 0 & \text { if }(x, y) \text { outside } R\end{cases}$

Metropolis Algorithm and Thermodynamics
Consider a container filled with a fluid - a collection of molecules - at temperature T. Particle positions and velocities, as well as system properties like potential energy, are different at different times.

System samples different configurations

Thermodynamic average of some property f is
$\langle f\rangle=\sum \quad f_{i} p_{i}$
all possible
configuration
-pi probability of counting i
$-f_{i}$ property of config i

Could randomly, uniformly sample all possible particle configurations, but

- MANY, too many configurations
- vast majority of states have negligible p_{i}

Better to sample states according to p_{i} and use

$$
\langle f\rangle=\frac{c}{N} \sum_{i} f_{i}
$$

But how do we generate a sequence of states sampled from (the equilibrium distribution) p ?

In thermal equilibrium $p_{i}=\frac{1}{z} e^{-\beta E_{i}}$ (Boltzmann distribution)
$-E_{i}$ is energy of state $i \quad, \beta=\frac{1}{k_{B} T}, k_{B} \doteq 1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
Boltzmann constant
$Z=\sum_{i} e^{-E_{i} / k_{g} T} \quad$ is the "Partition function" all states

- normalization factor such that $\sum_{i} p_{i}=1$ ($\begin{aligned} & \text { system exists } \\ & \text { in some }\end{aligned}$ state)
We will invoke "detailed balance"

$$
p_{i} T_{i \rightarrow j}=p_{j} T_{j \rightarrow i}
$$

$T_{i \rightarrow j}$ is transition probability - prob. that system in state i changes to state j (in a step of the

-ensures that distribution of states remains stationary, ie. unchanging in time (steps of algorithm \Leftrightarrow time) by balancing "probability flux" between every pair of states.

- allows construction of algorithms that generate sets of states sampled according to the Boltzmann distribution.

$$
T_{i \rightarrow j}=\alpha_{i \rightarrow j} \quad a c c{ }_{i \rightarrow j}
$$

Two parts to $T_{i \rightarrow j}:$
$\alpha_{i \rightarrow j}$ prob of selecting a trial state j given the current state $:$
$a c c_{i \rightarrow j}$ prob. of accepting the proposed change from i to j

Detailed balance $P_{i} T_{i \rightarrow j}=P_{j} T_{j \rightarrow i}$

$$
p_{i} \alpha_{i \rightarrow j} a<c_{i \rightarrow j}=P_{j} \alpha_{j \rightarrow i} a c c j \rightarrow i
$$

\rightarrow construct algorithm such that $\alpha_{i \rightarrow j}=\alpha_{j \rightarrow i}$
e.g. trial particle coordinate $x_{j}=x_{i}+\underset{\text { rand }}{\text { uniform }}(-0.5,0.5)$
works, since, say, generating $x_{j}=6.2$ from $x_{i}=6.0$ is just a likely as generating $x_{j}=6.0$ from $x_{i}=6.2$
but for $x_{j}=x_{i} \leftarrow \operatorname{rand}(0,1), \quad \alpha_{i \rightarrow j} \neq \alpha_{j} \rightarrow i$
since you can generate $x_{j}=6.2$ from $x_{i}=6.0$
but you can't generate $x_{j}=6.0$ from $x_{i}=6.2$
Detailed balance $\Rightarrow \frac{a c c_{i \rightarrow j}}{a \subset c_{j} \rightarrow i}=\frac{P_{j}}{P_{i}}=\frac{e^{-\beta E_{j}}}{e^{-\beta E}}=e^{-\beta\left(E_{j}-E_{i}\right)}$
ΔE is the change in energy that would result from going from state i to stable j
a couple of possibilities for the acceptance probability
$\rightarrow a<c_{i \rightarrow j}=\frac{e^{-\beta \Delta E}}{1+e^{-\beta \Delta E}} \quad$ drawback: requires expensive
$\rightarrow a c c{ }_{i \rightarrow j}=\left\{\begin{array}{l}1 \text { if } \Delta E \leqslant 0 \text { i.e. if energy decrecses for }\end{array}\right.$ proposed move
ie. It energy decreases, accept the move
If energy increases, accept the nerve with probability

$$
e^{-\beta \Delta E}
$$

As T increases, β decrease and $e^{-\beta \Delta E}$ approaches 1 \rightarrow all proposed states accepted at infinite T
\rightarrow uphill energy moves usually rejected at low T

Algorithm

1) choose 1 of N particles at random when system is in state i
2) consider a new state j generated by moving/changing the chosen particle, and compute $\Delta E=E_{j}-E_{i}$
3) if $\Delta E \leqslant 0$, change to state j
4) if $\Delta E>0$, generate uniform random number $r \in[0,1]$, and if $r<e^{-\beta \Delta E}$, then change to state j (accept change)
5) if state did not change, state i is repeated in the sequence of states
6) Carry out steps 1-5 N times. This is 1 MC "sweep" MCS
7) Do many MCS to equilibrate system and to get good statistics.
