Ising Model
At low T, some crystalline solids are magnetized
have non-zero magnetization
$$\vec{M}$$
 This arises
from individual atomic spins \vec{S}_i ($i=1,...,N$ lattice
 $\vec{M} = \frac{1}{N} \sum_{i=1}^{N} \vec{S}_i$, $|\vec{M}| = \frac{1}{N} |\vec{\Sigma} \vec{S}_i|$
We can use MC simulations of model spins to study such materials.
To get the thermal average at some T, we need
 $\langle \vec{M} \rangle = \frac{1}{N} \langle \vec{\Sigma} \vec{S}_i \rangle$ or $\langle |\vec{M}| \rangle = \frac{1}{N} \langle |\vec{\Sigma} \vec{S}_i| \rangle$
some $\langle ... \rangle$ is an average over many MCS.
 $\langle \vec{M} \rangle = \frac{1}{N} \langle \vec{S} \vec{S}_i \rangle$ or $\langle \vec{M} \vec{N} \rangle$.
At low T, interactione tend to align spins $\rightarrow \vec{M} \neq 0$
At high T, \vec{S}_i rendomize $\Rightarrow \vec{M} = 0$
As T varies, the system undergoes a phase bransition $dt T_c$
partial odu
 $\langle \vec{M} \rangle = \frac{1}{N} \langle \vec{S}_i | \vec{S}_i \rangle$ "thermodynamic limit
 $\langle \vec{M} \rangle = \frac{1}{N} \langle \vec{S}_i | \vec{S}_i \rangle$ "thermodynamic limit
 $\langle \vec{M} \rangle = \frac{1}{N} \langle \vec{S}_i | \vec{S}_i \rangle$ $(large N)$
 $|\vec{M}|^2$
Heisenberg model: $|\vec{S}_i|^2 = 1$, but can point in any direction (3D)
lsing model: $\vec{S}_i = 21$ ($\vec{S}_i = \pm \hat{z}$)
spins point along \hat{z} , either up or down:
 $\therefore M = (N_F - N_F) \rangle_N$ $N_F \neq f$ up spins

for
$$T > T_c$$
, $N_f = N_b$ $\rightarrow M = 0$
 $0 < T < T_c$, $N_f > N_b$ (or $N_b > N_f$)
 $M > 0$ $M < 0$
 $T = 0$ $N_f = N$ (or $N_b = N$)
 $M = 1$
 $M = 1$

- double counted interactions with double sum - hence divide sum by 2 0 k-1, e MC allows us to quantify effects of T energy of interaction -> align spins thermal energy -> sample unfavourable spins configurations -> generate many spin configurations at a particular T and average Procedure 1) Initialize spins on all lattice sites (randomly up or down, or all up say) 2) Choose a spin at random to flip or keeps E the came 3) If flip lowers, the energy, accept the new state. If flip increases the energy, accept the new state the probability p= e^BSE. It not accepted, retain original configuration.

4) update M, E and any other quantities - accumulate averages 5) go back to step 2 many times until you're run long enough - stationary "time" series - good statistics report M(T), E(T) etc 6) change T and repeat (from step 2) Note: surfaces will strongly affect system properties for small systems - and we want bulk properties -> use periodic boundary conditions for 2 × L square lattice h=1+1 neighbours for spin Sk, l k=L+-on boundary SL+1, R = SIJE $k \uparrow k=1$ $S_{k,L+1} = S_{k,1}$ 0 R=1 2 ... + 5 1 L+1 $S_{0,l} = S_{L,l}$ L L Sk,o = Sk,h

Using the MC procedure will generate a sequence of configurations, values of M, values of E - do not use first part of sequence while system is

average this e.g. for NA MCS, ignore first NA/10 MCS M Part then use sweeps $\frac{N_A}{10} + 1$ to N_A -MCS to get <...> (everages)

magnetic χ_{1} χ_{2} χ_{1} χ_{2} χ_{1} χ_{2} χ_{1} χ_{2} χ_{1} χ_{2} χ_{2} χ_{1} χ_{2} $\chi_{$ magnetic $\chi = \frac{N}{k_{B}T} \left(\langle M^{2} \rangle - \langle M \rangle^{2} \right)$ or, if we call $S = \sum_{i} S_{i}^{2}$ $= \frac{1}{Nk_{B}T} \left(\langle s^{2} \rangle - \langle s \rangle^{2} \right) \left(M = \frac{1}{N} S \right)$ We expect X and Cv to diverge at T=Tz in thermolynamic lineit (N->A). For finite N, divergence becomes "rounded". 2D Ising model can be solved analytically $(N \rightarrow \infty)$ $T_c = J = \frac{2}{k_B} \ln(1+J_z)$ $\approx 2.269 = J$ Note on DE - for single spin flips, only interactions that include proposed spin contribute to change in system energy Can define E; = - JS; (Sup + Sdown + Sright + Sleft) here t t; t S;=1 t E;=-2 initial

 $\Delta E = E_{\text{final}} - E_{\text{initial}} = E_{\text{j}}^{\prime} - E_{\text{j}} = -E_{\text{j}} - E_{\text{j}} = -2E_{\text{j}}$ Ej can take on 5 values -4, -2, 0, 2, 4 . If E; ? O, accept the proposed flip IF E; < O, - DE = 2E; and acceptance probability is -AE/kBT = eZEj/kBT and acceptance probability is I oops There are only 2 such probabilities: - 8 J/kgT - 4 J/kgT e and e

These values can be stored to avoid frequent recalculation.