Using Model
At low T, some crystalline solids are magnetized - have non-zero magnetization \vec{M} This arises from individual atomic spins $\vec{s}_{i} \quad L i=1, \ldots N$ lattice

$$
\vec{M}=\frac{1}{N} \sum_{i=1}^{N} \vec{s}_{i},|\vec{M}|=\frac{1}{N}\left|\sum_{i} \vec{s}_{i}\right|
$$

We can use MC simulations of model spins to study such materials. To get the thermal average at some T, we need

$$
\left.\langle\vec{M}\rangle=\frac{1}{N}\left\langle\sum_{i} \vec{s}_{i}\right\rangle \text { or }\langle | \vec{M}\left\rangle=\frac{1}{N}\langle | \sum_{i} \vec{s}_{i}\right|\right\rangle
$$

where $\langle\ldots\rangle$ is an average over many MCS.

$$
\langle\vec{M}\rangle=\frac{1}{\# M C S} \sum_{\alpha=1}^{\#_{1} \text { Mes }_{1}} \vec{M}_{\alpha}
$$

At low T, interactions tend to align spins $\rightarrow \vec{M} \neq 0$
At high T, \vec{S}_{i} randomize $\rightarrow \vec{M}=0$
As T varies, the system undergoes a phase transition at T_{c}

Heisenberg model: $\left|\vec{S}_{:}\right|=1$, but can pointing any direction (3D)
|sing model: $s_{i}= \pm 1 \quad\left(\vec{s}_{i}= \pm \hat{z}\right)$
spins point along \hat{z}, either up or down:
$\therefore M=\left(N_{\uparrow}-N_{\downarrow}\right) / N \quad N_{\uparrow}$ \# of up spins
for $T>T_{c}, \quad N_{\hat{\imath}}=N_{\downarrow} \rightarrow M=0$

$$
\begin{array}{ll}
\left.0<T<T_{c}, \quad N_{\uparrow}>N_{\downarrow} \quad \text { (or } \quad N_{\downarrow}>N_{\uparrow}\right) \\
M>0 & M<0
\end{array}
$$

no preferred direction: $|M|>0$

$$
\begin{gathered}
T=0 \quad N_{\uparrow}=N \quad\left(\operatorname{or} \quad N_{\downarrow}=N\right) \\
\\
|M|=1
\end{gathered}
$$

Why do spins align? Exchange interaction
\rightarrow QM in origin
\rightarrow short-range interaction, usually only between nearest neighbours (NN)

$$
E=-\sum_{i, j}^{N} J_{i j} \vec{S}_{i} \cdot \vec{s}_{j}
$$

sum over NN pairs

$$
\begin{aligned}
& E=-\sum_{i j}^{N N} J_{i j} s_{i} s_{j} \\
& E=-J \sum_{\langle i j\rangle} s_{i} s_{j}
\end{aligned}
$$

(Heisenberg model)
$J_{i j}$ - exchange constant between spins i and j
(Ising)
$J_{i j}=J$ if all spins are the same
$J>0 \rightarrow$ low energy for个个 or $\downarrow \downarrow$

$$
=-\frac{J}{2} \sum_{k=1}^{L} \sum_{l=1}^{L} s_{k, \ell}\left(s_{k, \ell+1}+s_{k, l-1}+s_{k+1, l}\right)
$$

for a $2 D$ square lattice $L \times L$ spins k, l - lattice row and column indices

- double counted interactions with double sum
\rightarrow hence divide sum by 2

MC allows us to quantify effects of T energy of interaction \rightarrow align spins thermal energy \rightarrow sample unfavourable spins configurations
\rightarrow generate many spin configurations at a particular T and average

Procedure

1) Initialize spins on all lattice sites (randomly up or down, or all up say)
2) Choose a spin at random to flip or keeps E the same
3) If flip lowers, the energy, accept the new state. If flip increases the energy, accept the new state the probability $p=e^{-\beta \Delta E}$. if not accepted, retain original configuration.
4) update M, E and any other quantities - accumulate averages
5) go back to step 2 many times until you've run "long enough" - stationary "time" series

- good statistics
report $M(T), E(T)$ etc

6) change T and repeat (from step 2)

Note: surfaces will strongly affect system properties for small systems - and we want bulk properties \rightarrow use periodic boundary conditions
for $L \times L$ square lattice

neighbours for spin $s_{k, l}$ on boundary

$$
\begin{aligned}
& S_{L+1, l}=s_{1, l} \\
& s_{k, L+1}=s_{k, 1} \\
& s_{0, l}=S_{L, l} \\
& S_{k, 0}=S_{k, L}
\end{aligned}
$$

Using the MC procedure will generate a sequence of configurations, values of M, values of E

- do not use first part of sequence while system is

Donotuse average this
$M \sim^{\text {average this }}$ eng. for N_{A} MAS,
ignore first $N_{A / 10} M C S$ then use sweeps $\frac{N_{A}}{10}+1$ to N_{A} to get $\langle\ldots\rangle$ (averages)

Quantities of interest are

$$
\begin{aligned}
& \langle M\rangle \text { vs } T \\
& \text { or }\langle | M\rangle \text { vs } T \\
& |M| \begin{array}{l}
\text { useful for small } \\
\text { systems }
\end{array} \\
& \frac{\langle E\rangle}{J N} \text { vs } T
\end{aligned}
$$

$$
\langle M\rangle \text { finite } N
$$

(can set $\left.J=1, \quad k_{B}=1\right)$

$$
c_{v}=\frac{1}{N} \frac{1}{k_{B} T^{2}}\left(\left\langle E^{2}\right\rangle-\langle E\rangle^{2}\right)=\frac{1}{N} \frac{d\langle E\rangle}{d T}
$$

$X=\frac{N}{k_{B} T}\left(\left\langle M^{2}\right\rangle-\langle M\rangle^{2}\right) \quad$ or, if we call $S=\sum_{i} S_{i}$

$$
=\frac{1}{N k_{B} T}\left(\left\langle s^{2}\right\rangle-\langle S\rangle^{2}\right) \quad\left(M=\frac{1}{N} S\right)
$$

We expect X and C_{V} to diverge at $T=T_{c}$ in thermodynamic limit ($N \rightarrow A$).
For finite N, divergence becomes "rounded".
2D using model can be solved analytically

$$
(\omega \rightarrow \infty) \quad T_{c}=\frac{J}{k_{B}} \frac{2}{\ln (1+\sqrt{2})} \approx 2.269 \frac{J}{k_{B}}
$$

Note on ΔE - for single spin flips, only interactions that include proposed spin contribute to change in system energy

Can define $E_{j}=-J s_{j}\left(s_{u p}+s_{\text {down }}+s_{\text {right }}+s_{\text {left }}\right)$ initial proposed / final

$$
\Delta E=E_{\text {final }}-E_{\text {initial }}=E_{j}^{\prime}-E_{j}=-E_{j}-E_{j}=-2 E_{j}
$$

$\frac{E}{J} j$ can take on 5 values $-4,-2,0,2,4$
\therefore if $E_{j} \geqslant 0$, accept the proposed flip
If $E_{j}<0,-\Delta E=2 E_{j}$ and acceptance probability is $e^{-\Delta E / k_{B} T}=e^{2 E_{j} / k_{B} T}$
and acceptance probability is τ oops
There are only 2 such probabilities:

$$
e^{-8 J / k_{B} T} \text { and } e^{-4 J / k_{B} T}
$$

These values can be stored to avoid frequent recalculation.

