Matrices and Eigenvalues

Many scientific problems can be represented using
3 main types of matrix problems
1)
2)
3)

Matrix types include

- Hermitian
- Real
- Positive Definite: $\operatorname{Re}\left\{z^{+} M z\right\}>0$ for all complex z For M also Hermitian: $r=$
and all eigenvalues are
- Unitary
- Diagonal
- Tridiagonal
- Upper and Lower Triangular
- Sparse Matrix
- Useful to recognize if number

Goal: manipulate matrix

Matrix Algebra
Optimal matrix manipulation depends on In C, the matrix is stored
In Fortran, matrix is stored

C: $F:$
Example: In Fortran
do $=1, u$
$d_{0}=1, n$

$$
A(i, j)
$$

end do end do

$$
\text { do }=
$$

do

$$
A(i, j)=
$$

end do end do

F90 has built-in matrix manipulation routines

- above is just
$-A=$ is
- $A=B * C$ is show Inner Loop Row .fao, Inner LoopCUL. f 90 ...

Systems of Linear Equations
Consider solving for

$$
()()=()
$$

- for solution to exist,

We can use Gaussian elimination
-idea: transform set of ens so that coefficient matrix is

- at each step of algorithm, eliminate

Ex $3 \times 3 \quad a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1} \quad$ (1)

- multiply (1) by
- multiply (1) by

$$
\Rightarrow \quad a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1}
$$

where $a_{i j}^{\prime}=$

$$
b_{i}^{\prime}=
$$

x_{1} eliminated from
Now eliminate
taking and subtracting from

$$
\Rightarrow \quad a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1}
$$

where

For $n \times n$ matrix, this procedure is done Once in , we get \vec{x} through
in general

$$
\alpha_{11} x_{1}+\alpha_{12} x_{2}+\alpha_{13} x_{3}+\ldots+\alpha_{1 n} x_{n}=\tilde{b}_{1}
$$

$$
\begin{aligned}
& x_{n}= \\
& x_{i}=
\end{aligned}
$$

Number of operations required for a set of is proportional to

Large matrices

For matrix manipulations it is best to use efficient algorithms/routines freely available from egg.

- such routines, available here as reference implementations, have been incorporated in various libraries like GEL \& MK
(But using libraries without any idea of how they work can lead to trouble sooner or later.)
such routines are
E.g. Our simple Gaussian elimination would

These problems can be reduced by, or rearranging rows st.

Depending on type of matrix (different routines exist for

Manipulating matrices is often the
browse through LAPACK
Note on

Employs

$$
\begin{aligned}
& A=(\\
& A_{x}=b
\end{aligned}
$$

Show use of SGESV to solve

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
3 & 8 & 9
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) \quad \begin{aligned}
& x_{1}=0 \\
& x_{2}=-2 \\
& x_{3}=5 / 3
\end{aligned}
$$

