
Matrices and Eigenvalues

Many scientific problems can be represented using
matrix equations ( includes PDE )

3 main types of matrix problems
1) Algebraic manipulations e.g. A

+ B or AB

2) Solving systems of eq
Is

e.g. solve for I in AI =
b-

3) Eigenvalues A. I = ✗I

Matrix types include
*

,
At __ A

,
At -=(At)*- Hermitian Aji = Ai

,

Hermitian conjugate At is complex conjugate
of transpose .

- Real Symmetric : Aji = Aij AT -_ A

- Positive Definite : Re {ztmz} > 0 for all complex 2-

For M also Hermitian : r = 2-
+
Mz is real and positive

and all eigenvalues are real and positive

Utu = I a-
'
= at- Unitary

- Diagonal Aij - o for it j
- Tri diagonal non - zero elements only for
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- Upper and Lower Triangular

Aij -- o for i > j or i < j

(
✗ ✗ ✗ - .

✗ ✗ o o . - )00 ✗ =) or (
✗ ooo . . .

0 ✗ ✗
✗ ✗ ✗ 0

✗ ✗ ✗ ✗
-

.
.

^
-
,

- Sparse Matrix - most elements are zero

- Useful to recognize
if number of non-zero

elements is - N (not NZ) in N×N matrix .

Goal : manipulate matrix without storing all elements .

Matrix Algebra
Optimal matrix manipulation depends on language used .

In C
,
the matrix is stored row after row .

In Fortran
,
matrix is stored column after column

C :
"

row major
"

F :
"

column major
"

Example : In Fortran

do j = 1) u is faster do I = Is n

do I = 1
, in

then do j = 1
,
n

Ali,j) = Bci,j>+ Cci,j ) Ali,j)= Bcijgiccigj)
end do F

run over all end do T

rows i in
run over j

enddo
column j

enddo columns of row I

1=90 has built- in matrix manipulation routines

- above is just A -- Btc - A- = MATMULCB ,c) is
usual matrix malt .

- A -_ Btc is Aij -- Bij # Cij
Show Inner Loop ROW .f9o , Inner LoopCOL .f9O . . .



Systems of Linear Equations
Consider solving for

all 912 r - - Ain X
,

bi A is n ✗ n

921 Aziz - . . Azn Xz =

↳
2

: : : :

an, Anz . . .
Ann Xu bn

- for solution to exist
,

def (A) =/At ⇒ 0

We can use Gaussian elimination

• idea : transform set of eq 's so that coefficient

matrix is upper (or lower ) triangular
• at each step of algorithm , eliminate lower ( upper )

elements of the matrix

Ex 3×3 an X , + a
,z Xz 1- 9,3×3 = b

, (1)

Az , ✗ , + 622 Xz + 623 Xz = bz (z )

431 ✗ I
+ 932 Xz + 433×3 = 63 (3)

-

multiply (1) by
¥

and subtract from (2)
an

- multiply (1) by 63 , and "
"

(3)
AT

⇒ all X , + aiz Xz 1- 9,3 Xz = b
,

o + aziz Xz + airs Xz = bz
'
(2- )

0 + air Xz + a-53 Xz = b)
where aij =

aij - a1j
2 i = 2

,
.- .
n

an

J j = 1
,
- .. nbit = bi - b

,
ait

ai
✗ ,
eliminated from (2) and (3)

Now eliminate xz from (5) via



/

taking Ezz ✗ (2 ' ) and subtracting from (3)
a'zz

⇒ a ,, ✗ , + a
,z Xz 1- 9,3 Xz = b

,

a.is Xz tazzxz = bz
'

o + azjxz = bs
"

where
- aiz 7

"

= aij -

azj ⇐Gig i =3
,
- - . n

} j = 2
,
. . . n

bi
"

= bi
'
- bi ai ,

AI
For nxn matrix

,
this procedure is done n - l times

Once in upper triangular form ,
we get E through

u back substitution
"

×,
= b%j

,

xz - ¥, ( bi - Ga's Xz )

In general
✗ Il Xi + Liz Xz + ✗ iz Xz + . . .

+ ✗
in Xu = Ñ

,

O ✗
zz Xz + ✗23×3 + - - - ← ✗

zu Xu
= BI

0 0 233 Xzt - -- +23m Xu = 53
:

onn Xn
= I

✗n=
Ñn /✗a-

-

- E✗i
= 1- ( bi

"

dijxj )
✗ ii j=i- i

2-= 4- 1
, U -2 ,

- - - 1

Number of operations required for a set of n egas
is proportional to n

3

Large matrices can take a lot of time



For matrix manipulations it is best to use efficient

algorithms / routines freely available from

e. g. www.neflib.org ( BLAS , LA PACK )

- such routines
,
available here as reference implementations , have

been incorporated in various libraries like

GSL GNU Scientific Library & MKL Math kernel Library
( But using libraries without any idea of how they work can lead
to trouble sooner or later . ]

Such routines are optimized , thoroughly tested ,
and can avoid or flag potential problems .

E.g. Our simple Gaussian elimination would fail if any
diagonal elements were Zero

,
and would amplify

errors if small

These problems can be reduced by pivoting , or rearranging
rows 5. t.ae, > azz > azz >

- - -
> 9am

Depending on type of matrix ( symmetric > tridiagonal etc )
different routines exist for carryout out the

required manipulations .

Manipulating matrices is often the most time-consuming
part of a computational problem and hence the

limiting step .

Therefore
, spending time to find the best

routines for your problem is well worth it
,

and it can change the way you do research .



browse through LAPACK

Note on SGESV LAPACK routine used to solve

AI=5 for A a general matrix

Employs

A = KU = p , , 0 0 0 . . . d)I 212 diz - - -

µ" B" ° ° . '
'

° °" &" ' ' '

B -31 B3z Bzz 0 . . .

0 ° ✗33 - - .

O O O
'

e
.i.
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i.

Ax=b

Lux = b

< ( Ux ) -_ b → Ux = y

Ly = b → solve first for y using
it

"

forward substitution
"

y ,
-_I ,yi=_ [bi -{ Pijyj ]
Bu Pii j=,

I = 2,3, - . -
N

then get x through back substitution .

Show use of SGESV to solve

I 2 3 X
,

I
X
,
= 0

4 5 6 Xz
=

0 Xz = -2

3 8 9 Xy
- l Xz = 5/3


