Application of solving a linear system: 1-D Poisson Equation
V is electrostatic potential associated with
or gravitational potential with

Discretize second derivative and get

$$
\begin{gathered}
h=\quad f_{n}=, n= \\
x_{0}<
\end{gathered}
$$

and we assume that we know

$$
\begin{aligned}
& V_{0}= \\
& V_{N+1}=
\end{aligned}
$$

We get

$$
\begin{gathered}
n=1 \\
n=2 \\
n=3 \\
\vdots \\
n=N
\end{gathered}
$$

which is a matrix equation
$\left(\begin{array}{l}\square \\ \end{array}\right)=\left(\begin{array}{l} \\ \end{array}\right)$
or

$$
A \vec{x}=\vec{b}
$$

with A a

Best to find routine specialized for tridiagonal matrices

$$
\rightarrow \text { avoid }
$$

show A4, Q1

$$
\rightarrow
$$

Show code for
Poisson problem

Note: In 2D we have

Can map matrix of unknowns () to a

$$
\begin{array}{r}
(m, n)= \\
i=
\end{array}
$$

$$
\rightarrow \quad i=
$$

Eigenvalue Problems
Many physics problems, especially from QM, can be expressed as
(1)

$$
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 N} x_{N}=\lambda x_{1}
$$

like system of linear eq ns, except and solutions exist only for

- Solutions are
(1) can be rewritten as

For non-trivial solution (), this implies , for which an $N \times N$ matrix leads to an
which has N solutions for λ, ie., Finding all roots for an N-degree polynomial

Rather than solving the difficult polynomial problem,
e.g. See Jacob: method for symmetric matrices (which employs "Givens rotations")
or a general method based on $Q R$ decomposition.
Let $A_{0}=$

$$
A_{k}=
$$

R-upper triangular
$\operatorname{set} A_{k+1}=$
A_{k} converges to an

- eigenvalues of an upper triangular matrix are

LAPACK: Different routines for different types of matrices.

Application: Time-Independent Schrödinger Eq" in $t>$
(1)
multiply by , define $V=$

$$
E=
$$

discretize: $\frac{d^{2} \psi}{d x^{2}} \rightarrow$
(1) becomes

If $\psi(x)=$, get

$$
E=
$$

Each eigenvalue will have an associated eigenvector $\vec{\psi}$, the components of which are $\psi\left(x_{i}\right)$ - the eigenfunction sampled at discrete points.

Notes on A4 Q2

For harmonic potential

1) $V(x)=\frac{1}{2} m \omega^{2} x^{2}$, energy eigenvalues are
2) $\quad E_{n}=\hbar \omega(n-1 / 2) \quad, n=1,2, \ldots$

Here

$$
\hbar=\quad, \quad m=
$$

so $\quad V(x)=$

$$
E_{n}=
$$

Now,

$$
V(x)=
$$

$\omega:$

E:

For 3D problems, having N^{3} gridpoints makes the problem difficult.

Alternative: write wavefunctions as a linear combination of

$$
\psi(\vec{r})=
$$

The $\phi_{\beta}(\vec{r})$'s are known functions that solve part of the problem. E.g.

Goal is to find coefficients that solve the S.E.

$$
-\nabla^{2} \psi+V(\vec{r}) \psi=E \psi
$$

multiply by ψ_{α}^{*} and integrate

$$
\begin{aligned}
\sum_{\beta} \int d^{3} \vec{r} \phi_{\alpha}^{*}(\vec{r}) & \left(-\nabla^{2}+V(\vec{r})\right) \phi_{\beta}(\vec{r}) a_{\beta} \\
= & E \sum_{\beta} \int d^{2} \vec{r} \phi_{\alpha}^{*}(\vec{r}) \phi_{\beta}(\vec{r}) a_{\beta}
\end{aligned}
$$

Define elements of two matrices

$$
\begin{aligned}
& H_{\alpha \beta}=\int d^{3} \vec{r} \\
& S_{\alpha \beta}=\int d^{3} \vec{r} \quad \text { (overlap matrix) }
\end{aligned}
$$

Schrödinger Equation becomes

$$
\sum_{\beta}=E \sum_{\beta}
$$

or $\$$-generalized eigenvalue problem

If q's are orthonormal, then

If not, need to transform \mathcal{A}, as through a Cholesky factorization, an $L U$ decomposition of a positive-definite Hermitian matrix S :

$$
S=L L_{i}^{+} \quad\left(L_{i j}^{+}=L_{j i}^{*}\right)
$$

lower triangular upper triangular

* becomes $H I \vec{a}=E L L^{+} a$

$$
\begin{aligned}
H\left(L^{+}\right)^{-1} L^{+} \vec{a} & =E L\left(L^{+} \vec{a}\right) \\
L^{-1} H\left(L^{+}\right)^{-1}\left(L^{+} \vec{a}\right) & =E\left(L^{+} \vec{a}\right)
\end{aligned}
$$

