Application of solving a linear system: 1-D Poisson Equation V is electrostatic potential associated with or gravitational potential with Discretize second derivative and get \_\_\_\_\_\_ fu = h = , n= X0 < and we assume that we know V0 = VN+1 = We get NSI n=2 **Ν·3** : n=N

## which is a matrix equation



Eigenvalue Problems especially from QM, can be Many physics problems, expressed as  $\bigcirc$  $a_{11} \times_1 + a_{12} \times_2 + \ldots + a_{1N} \times_N = \lambda \times_1$ like system of linear eq=s, except and solutions exist only for - Solutions are () can be rewritten as For non-trivial solution ( ), this implies , for which an NXN matrix leads to an which has N solutions for ), i.e., Finding all roots for an N-Legree polynomial

Rather than solving the difficult polynomial problem, e.g. see Jacobi method for symmetric matrices (which employs "Givens rotations") or a general method based on QR decomposition. Let A<sub>o</sub> = A k = Q -R-upper triangular set Ak+1 = Ak converges to an - eigenvalues of an upper triangular matrix are LAPACK : Different routines for different types of matrices.



Shows code for AU Q2 Notes on A4 Q2 For harmonic potential i) V(x) = 1 m w<sup>2</sup> x<sup>2</sup>, energy eigenvalues are 2)  $E_n = t_{12} (n - \frac{1}{2}), n = 1, 2, ...$ Here h= , m= 30 V(x)= En= Now V(x) = ω: : تك

For 3D problems, having 
$$N^3$$
 gridpoints makes  
the problem difficult.  
Alternative: write wavefunctions as a linear  
combination of  
 $\psi(\vec{r}) =$   
The  $\psi_{\mathcal{B}}(\vec{r})$ 's are known functions that solve part of  
the problem. E.g.  
Goal is to find coefficients that solve the S.G.  
 $-\nabla^2 t + V(\vec{r})t = E t$   
multiply by  $\psi_{\mathcal{A}}^*$  and integrate  
 $\sum_{\mathcal{A}} \int d^{2\vec{r}} \psi_{\mathcal{A}}^*(\vec{r}) (-\nabla^2 + V(\vec{r})) \psi_{\mathcal{B}}(\vec{r}) \alpha_{\mathcal{B}}$   
 $= E \sum_{\mathcal{A}} \int d^{2\vec{r}} \psi_{\mathcal{A}}^*(\vec{r}) \psi_{\mathcal{B}}(\vec{r}) \alpha_{\mathcal{B}}$   
Define elements of two matrices  
 $H_{\mathcal{A}\mathcal{B}} = \int d^{3\vec{r}}$  (overlap matrix)

Schrödinger Equation becomes  $\sum_{\beta} = E \sum_{\beta}$ or A - generalized eigenvalue problem -If q's are orthonormal, then and we get If not, need to transform #, as through a Cholesky factorization, an LU decomposition of a positive-definite Hermitian matrix S: S = L L (Lij = Lji) lower triangular \* becomes HIA = ELLTA  $H(L^{\dagger})^{-1}L^{\dagger}a^{\dagger} = EL(L^{\dagger}a)$  $L'H(L^{\dagger})'(L^{\dagger}\bar{a}) = E(L^{\dagger}\bar{a})$