Application of solving a linear system: 1-D Poisson Equation

$$
\frac{d^{2} V}{d x^{2}}=f(x)
$$

V is electrostatic potential associated with a charge distribution $\rho(x) \quad\left[f(x)=-\frac{\rho(x)}{\epsilon_{0}}\right]$
or gravitational potential with $f(x)=-4 \pi G \rho(x)$, where $\rho(x)$ is mass distribution
Discretize second derivative and get

$$
v_{n-1}-2 v_{n}+v_{n+1}=n^{2} f_{n}
$$

$$
\begin{gathered}
h=\Delta x \quad, f_{n}=f\left(x_{n}\right), n=1,2, \ldots N \\
x_{0}<x_{n}<x_{N+1}
\end{gathered}
$$

and we assume that we know

$$
\begin{aligned}
& V_{0}=V\left(x_{0}\right) \\
& V_{N+1}=V\left(x_{N+1}\right)
\end{aligned}
$$

We get

$$
\begin{array}{cl}
n=1 & -2 V_{1}+V_{2}=h^{2} f_{1}-V_{0} \\
n=2 & V_{1}-2 V_{2}+V_{3}=h^{2} f_{2} \\
n=3 & V_{2}-2 V_{3}+V_{4}=h^{2} f_{3} \\
\vdots & \\
n=N & V_{N-1}-2 V_{N}
\end{array}
$$

which is a matrix equation

$$
\left(\begin{array}{ccccccccc}
-2 & 1 & 0 & 0 & 0 & 0 & & & 0 \\
1 & -2 & 1 & 0 & 0 & 0 & \cdots & & 0 \\
0 & 1 & -2 & 1 & 0 & 0 & & & 0 \\
0 & 0 & 1 & -2 & 1 & 0 & & & 0 \\
\vdots & & & & & & & & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & 1 & -2 \\
0 & 0 & 0 & \cdots & & & 0 & 1 & -2
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
\vdots \\
v_{N-1} \\
v_{N}
\end{array}\right)=\left(\begin{array}{c}
h^{2} f_{1}-v_{0} \\
h^{2} f_{2} \\
h^{2} f_{3} \\
h^{2} f_{4} \\
\vdots \\
h^{2} f_{N-1} \\
h^{2} f_{N}-v_{N+1}
\end{array}\right)
$$

or

$$
A \vec{x}=\vec{b}
$$

with A a tridiagonal matrix
Best to find routine specialized fortridiagonal matrices
\rightarrow avoid storing all the zeros
\rightarrow faster

Note: In 2D we have $V_{m, n-1}+V_{m, n+1}+V_{m-1, n}+V_{m+1, n}$

$$
-4 V_{m, n}=h^{2} f_{m, n}
$$

Can map matrix of unknowns ($V_{m, n}$'s) to a vector \hat{V}_{i} via "dictionary orders"

$$
\begin{aligned}
& C m, n)=(1,1)(1,2) \ldots(1, N)(2,1)(2,2) \ldots(2, N) \ldots(N, 1) \ldots(N, N) \\
& i=1 \quad 2 \quad N \quad N+1 N+2 \quad 2 N \quad(N-1) N+1 \quad N^{2} \\
& \rightarrow \quad i=n+(m-1) N \quad \leftrightarrow \quad(m, n)
\end{aligned}
$$

Eigenvalue Problems
Many physics problems, especially from QM, can be expressed as eigenvalue problems
(1) $A \vec{x}=\lambda \vec{x}$

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 N} x_{N}=\lambda x_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 N} x_{N}=\lambda x_{2} \\
& \vdots \\
& a_{N 1} x_{1}+a_{N 2} x_{2}+\ldots+a_{N N} x_{N}=\lambda x_{N}
\end{aligned}
$$

like system of linear eq ns, except RHS is unknown and solutions exist only for certain λ ''s (eigenvalues)

- Solutions are eigenvectors
(1) can be rewritten as $(A-\lambda I) \vec{x}=0$

For non-trivial solution $(\vec{x}=0)$, this implies
$\operatorname{det}(A-\lambda I)=0 \quad$ for which an $N \times N$ matrix leads to an N-degree polynomial for λ

$$
C_{N} \lambda^{N}+C_{N-1} \lambda^{N-1}+\ldots+C_{1} \lambda+c_{0}=0
$$

which has N solutions for λ, ie., N eigenvalues Finding all roots for an N-degree polynomial is hard for large N.

Rather than solving the difficult polynomial problem, iterative methods are used.
e.g. See Jacob: method for symmetric matrices (which employs "Givens rotations")
or a general method based on $Q R$ decomposition.

Let $A_{0}=A$

$$
A_{k}=Q_{k} R_{k} \quad Q \text {-orthogonal Cbunch of }
$$ Givens rotations)

R-upper triangular
$\operatorname{set} A_{k+1}=R_{k} Q_{k}$

$$
\begin{aligned}
& =Q_{k}^{-1} Q_{k} R_{k} Q_{k} \\
& =Q_{k}^{-1} A_{k} Q_{k}=Q_{k}^{\top} A_{k} Q_{k}
\end{aligned}
$$

similarity transformation
A_{k} converges to an upper triangular matrix

- eigenvalues of an upper triangular matrix are the diagonals

LAPACK: Different routines for different types of matrices.

Application: Time-Independent Schrödinger $E q^{n}$ in l^{-}
(1) $-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi(x)+\tilde{V}(x) \psi(x)=\tilde{E} \psi(x)$
multiply by $\frac{2 m}{\hbar^{2}}$, define $V=\frac{2 m}{\hbar^{2}} \tilde{V}$

$$
E=\frac{2 m}{\hbar^{2}} \tilde{E}
$$

discretize: $\frac{d^{2} \psi}{d x^{2}} \rightarrow \frac{\psi_{j-1}-2 \psi_{j}+\psi_{j+1}}{\Delta x^{2}}$
(1) becomes $-\psi_{j-1}+\left(2+\Delta x^{2} V_{j}\right) \psi_{j}-\psi_{j+1}=\Delta x^{2} E \psi_{j}$

If $\psi(x)=0$ on boundaries, get tridiagonal matrix

$$
\left(\begin{array}{ccccc}
2+v_{1} \Delta x^{2} & -1 & 0 & 0 & \cdots \\
-1 & 2+v_{2} \Delta x^{2} & -1 & 0 \\
0 & -1 & 2+v_{3} \Delta x^{2} & -1 & \\
0 & \vdots & -1 & \ddots &
\end{array}\right)\left(\begin{array}{c}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4} \\
\vdots
\end{array}\right)=\epsilon\left(\begin{array}{c}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4} \\
\vdots
\end{array}\right)
$$

$$
E=\frac{\epsilon}{(\Delta x)^{2}} \rightarrow \text { eigenvalue }
$$

Each eigenvalue will have an associated eigenvector $\vec{\psi}$, the components of which are $\psi\left(x_{i}\right)$ - the eigenfunction sampled at discrete points.

For harmonic potential

1) $V(x)=\frac{1}{2} m \omega^{2} x^{2}$, energy eigenvalues are
2) $\quad E_{n}=\hbar \omega(n-1 / 2) \quad, \quad n=1,2, \ldots$

Here

$$
\hbar=1, m=1 / 2
$$

so $\quad V(x)=\frac{1}{4} \omega^{2} x^{2}$

$$
E_{n}=\omega(n-1 / 2)
$$

Now,

$$
\begin{aligned}
& V(x)=10^{5}(x-1 / 2)^{2} \\
& \omega: \quad 10^{5}=\frac{1}{4} \omega^{2} \\
& \omega=\int \frac{4 \times 10^{5}}{} \\
& \downarrow \\
& E: E_{n}=\omega(n-1 / 2)
\end{aligned}
$$

For 3D problems, having N^{3} gridpoints makes the problem difficult.

Alternative: write wavefunctions as a linear combination of basis function

$$
\psi(\vec{r})=\sum_{\beta} a_{\beta} \psi_{\beta}(\vec{r})
$$

The $\phi_{\beta}(\vec{r})$'s are known functions that solve part of the problem. E.g. atomic wavefunctions when $\psi(\vec{r})$ is for a molecule.
Goal is to find coefficients a_{β} that solve the S.E.

$$
\begin{aligned}
& -\nabla^{2} \psi+V(\vec{r}) \psi=E \psi \\
& \sum_{\beta} a_{\beta}\left(-\nabla^{2}+V(\vec{r})\right) \phi_{\beta}(\vec{r})=E \sum_{\beta} a_{\beta} \phi_{\beta}(\vec{r})
\end{aligned}
$$

multiply by ψ_{α}^{*} and integrate

$$
\begin{aligned}
\sum_{\beta} \int d^{3} \vec{r} \phi_{\alpha}^{*}(\vec{r}) & \left(-\nabla^{2}+V(\vec{r})\right) \phi_{\beta}(\vec{r}) a_{\beta} \\
= & E \sum_{\beta} \int d^{2} \vec{r} \phi_{\alpha}^{*}(\vec{r}) \phi_{\beta}(\vec{r}) a_{\beta}
\end{aligned}
$$

Define elements of two matrices

$$
\begin{aligned}
& H_{\alpha \beta}=\int d^{3} \vec{r} \phi_{\alpha}^{*}\left(-\nabla^{2}+V(\vec{r})\right) \phi_{\beta}(\vec{r}) \\
& S_{\alpha \beta}=\int d^{3} \vec{r} \phi_{\alpha}^{*}(\vec{r}) \phi_{\beta}(\vec{r}) \quad \text { (overlap matrix) }
\end{aligned}
$$

Schrödinger Equation becomes

$$
\sum_{\beta} H_{\alpha \beta} a_{\beta}=E \sum_{\beta} S_{\alpha \beta} a_{\beta}
$$

or $\$ \vec{a}=E S \vec{a}$-generalized eigenvalue problem

If $\phi^{\prime} s$ are orthonormal, then $S=I$ and we get

$$
H \vec{a}=E \vec{a}
$$

If not, need to transform \mathcal{A}, as through a Cholesky factorization, an LU decomposition of a positive-definite Hermitian matrix S :

$$
S=L_{\lambda} L_{i}^{+} \quad\left(L_{i j}^{+}=L_{j i}^{*}\right)
$$

lower triangular upper triangular

* becomes $H I \vec{a}=E L L^{+} a$

$$
\begin{aligned}
H\left(L^{+}\right)^{-1} L^{+} \vec{a} & =E L\left(L^{+} \vec{a}\right) \\
\underbrace{L^{-1} H\left(L^{+}\right)^{-1}\left(L^{+} \stackrel{\rightharpoonup}{a}\right)}_{A} & =E\left(L^{+} \vec{a}\right) \\
\vec{y} & =E \vec{y} \quad-a \text { regular }
\end{aligned}
$$

$$
\vec{y}=L^{+} \vec{a}
$$ eigenvalue problem

$\vec{a}=\left(L^{+}\right)^{-1} \vec{y}-$ eigenvector of original $\&$

