Partial Differential Equations - PDEs
Three main types of $P D E_{s}$ in physics

1) Elliptic -static problems $\left(\nabla^{2}\right.$, no time) egg.

- generally, boundary conditions given around

2) Parabolic $\left(\nabla^{2}\right.$ and $\left.\partial / \partial t\right)$ egg.
3) Hyperbolic - propagation (∇^{2} and $\partial^{2} \partial t^{2}$, but not always) egg.

Note: Schrödinger's eq ${ }^{n}$
can be viewed as a diffusion eq n with
For a general form

$$
a \frac{\partial^{2} V}{\partial x^{2}}+b \frac{\partial^{2} V}{\partial x \partial y}+c \frac{\partial^{2} V}{\partial y^{2}}+d \frac{\partial V}{\partial x}+e \frac{\partial V}{\partial y}+f V+g=0
$$

These are examples of

Another important eq \underline{n} is the
applied to a small volume of fluid fluid)

$\vec{v}-$	$\eta-$
$\rho-$	$p-$

- the (diffusive) term gives a character. If this term is negligible, the eq" is more

Also important in fluids is the

The different types of PDEs have different

We will consider the different approaches in the next lectures.

Do you need a numerical solver?

Separation of Variables
Simplifying PDE analytically can make applying numerical algorithms easier.
E.g. $1-D$ wave eq $n \quad \frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0$
string with ends fixed at $x=0$ and $x=L$ C - wave speed $\sqrt{\frac{T}{\rho}}$, T-tension, $\rho=\frac{M}{L}$

$$
\text { B.c.'s } u(x=0, t)=0=u(x=L, t)
$$

assume $u(x, t)=y(x) f(t)$-doesn't always work plug into $P D E \ldots$

$$
\begin{aligned}
& \rightarrow y(x)=A \sin (k x)+B \cos (k x) \quad B . C . \rightarrow B=0 \text {, } \\
& k=k_{n}=\frac{n \pi}{L}, n=1,2, \ldots \\
& f(t)=C \sin \left(\omega_{n} t\right)+D \cos \left(\omega_{n} t\right) \quad \omega_{n}^{2}=c^{2} k_{n}^{2} \\
& u(x, t)=\sum_{n=1}^{\infty}\left(a_{n} \sin \left(\omega_{n} t\right)+b_{n} \cos \left(\omega_{n} t\right)\right) \sin \left(k_{n} x\right) \\
& a_{n}=\frac{2}{\omega_{n} L} \int_{0}^{L} v_{0}(x) \sin \left(k_{n} x\right) d x \\
& b_{n}=\frac{2}{L} \int_{0}^{L} u_{0}(x) \sin \left(k_{n} x\right) d x
\end{aligned}
$$

$u_{0}(x)$ initial displacement, $v_{0}(x)$ initial velocity
Problem of solving PDE reduces to evaluating definite integrals numerically, unless $u_{0}(x)$ and $v_{0}(x)$ are simple.
otherwise, if eq" not separable, must discretize PDE.

Example: Time -Dependent Schrödinger Equation

$$
H \psi(\vec{r}, t)=i \hbar \frac{\partial}{\partial t} \psi(\vec{r}, t)
$$

- for simplicity, set $m=\quad, \hbar=$
$1-D$
-parabolic eq $-\psi \quad-|\psi|^{2}$
BiC.
normalization

In discretized system: $\psi(x, t) \rightarrow$

- magnitude
\therefore want an algorithm equivalent to

$$
H=-\frac{\partial^{2}}{\partial x^{2}}+V(x)
$$

Formal sol $\underline{\text { u }}$ to $i \frac{\partial}{\partial t} \psi=H \psi$ is
For $t \rightarrow \Delta t$, approximate

So might use
but is not unitary, so probability won't be conserved.

Instead, use expression

$$
e^{-i H \Delta t} \simeq
$$

which is

$$
\begin{aligned}
& \tilde{\xi} \\
& P=\quad, \quad P^{+}= \\
& H \text { Hermitian } \\
& H=H^{+} \\
& \text {\% } \quad P P^{+}= \\
& \stackrel{2}{\sim} \tilde{p} \tilde{p}^{+}=
\end{aligned}
$$

so we get $\psi_{j}^{n+1}=$
or

$$
H \psi_{j}^{n+1}=
$$

$$
\left(1+\frac{1}{2} H_{i} \Delta t\right) \psi_{j}^{n+1}=
$$

Similarly $\left(1-1 / 2 H_{i \Delta t}\right) \psi_{j}^{n}$

$$
=
$$

call

$$
T=
$$

$$
T^{*}=
$$

get
or

$$
T \vec{\psi}^{n+1}=\vec{b}
$$

$$
\uparrow
$$

$$
\stackrel{\rightharpoonup}{b}=
$$

Solve for unknown wave function at next time step

$$
\vec{\psi}=(
$$

Boundary conditions imply

