Partial Differential Equations - PDEs
Three main types of $P D E_{s}$ in physics

1) Elliptic -static problems $\left(\nabla^{2}\right.$, no time)
e.g. Poisson eq" $\nabla^{2} \phi=-P / \epsilon_{0}$

Laplace eq $\quad \nabla^{2} \phi=0$

- generally, boundary conditions given around a closed boundary

2) Parabolic $\left(\nabla^{2}\right.$ and $\left.\partial / \partial t\right)$
e.g. Diffusion eq n $\frac{\partial n}{\partial t}(\vec{r}, t)-\nabla \cdot(D(\vec{r}) \nabla n(\vec{r}, t))=S(\vec{r}, t)$
$n(\vec{r}, t)$ - concentration if $D=$ cost and $S=0$
$D(\vec{r})$ - diffusion wefficient get $\frac{\partial n}{\partial t}=D D^{2} n$
$S(\vec{r}, t)$ - source of matter
3) Hyperbolic - propagation (∇^{2} and $\partial^{2} \partial t^{2}$, but not always)
e.g. Wave eq" $\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}(\vec{r}, t)-\nabla^{2} u(\vec{r}, t)=R(\vec{r}, t)$
\vec{u} is a displacement of some sort
R is a source term
Note: Schrodinger's eq $\underline{n}\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\vec{r})\right) \psi(\vec{r}, t)=\frac{-\hbar}{i^{2}} \frac{\partial}{\partial t} \psi(\vec{r}, t)$ can be viewed as a diffusion eq n with imaginary time.

For a general form

$$
a \frac{\partial^{2} V}{\partial x^{2}}+b \frac{\partial^{2} V}{\partial x \partial y}+c \frac{\partial^{2} V}{\partial y^{2}}+d \frac{\partial V}{\partial x}+e \frac{\partial V}{\partial y}+f V+g=0
$$

$b^{2}<4 a c$ Elliptic (Poisson $b=d=e=f=0$)
$b^{2}=4 a c$ Parabolic (Diff $b=c=d=f=g=0$)
$b^{2}>4 a c$ Hyperbolic (Wave $a=-1, b=d=e=f=0$) $\{x \leftrightarrow t\}$

These are examples of linear eq \mathfrak{n}_{3}-linear in dependent variable ($\&, n, u, \psi$)

Another important eq \underline{n} is the Navier-Stokes eq" $\vec{F}=m \vec{a}$ applied to a small volume of fluid

$$
\begin{gathered}
\frac{\partial \vec{v}}{\partial t}+(\vec{v} \cdot \nabla) \vec{v}+\frac{1}{\rho} \nabla P-\frac{n}{\rho} \nabla^{2} v=0 \\
\vec{v}-\text { flow velocity } \quad \eta-\text { viscosity } \\
\rho-\text { density } \quad P \text { - pressure }
\end{gathered}
$$

- the (diffusive) term $\frac{n}{p} \nabla^{2} v$ gives a parabolic character. If this term is negligible, the eq" is more hyperbolic.

Also important in fluids is the continuity

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot \rho \vec{v}=0
$$

The different types of PDEs have different numerical approaches.

We will consider the different approaches in the next lectures.

Do you need a numerical solver?

Separation of Variables
Simplifying PDE analytically can make applying numerical algorithms easier.
E.g. $1-D$ wave eq $n \quad \frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0$
string with ends fixed at $x=0$ and $x=L$ C - wave speed $\sqrt{\frac{T}{\rho}}$, T-tension, $\rho=\frac{M}{L}$

$$
\text { B.c.'s } u(x=0, t)=0=u(x=L, t)
$$

assume $u(x, t)=y(x) f(t)$-doesn't always work plug into $P D E \ldots$

$$
\begin{aligned}
& \rightarrow y(x)=A \sin (k x)+B \cos (k x) \quad B . C . \rightarrow B=0 \text {, } \\
& k=k_{n}=\frac{n \pi}{L}, n=1,2, \ldots \\
& f(t)=C \sin \left(\omega_{n} t\right)+D \cos \left(\omega_{n} t\right) \quad \omega_{n}^{2}=c^{2} k_{n}^{2} \\
& u(x, t)=\sum_{n=1}^{\infty}\left(a_{n} \sin \left(\omega_{n} t\right)+b_{n} \cos \left(\omega_{n} t\right)\right) \sin \left(k_{n} x\right) \\
& a_{n}=\frac{2}{\omega_{n} L} \int_{0}^{L} v_{0}(x) \sin \left(k_{n} x\right) d x \\
& b_{n}=\frac{2}{L} \int_{0}^{L} u_{0}(x) \sin \left(k_{n} x\right) d x
\end{aligned}
$$

$u_{0}(x)$ initial displacement, $v_{0}(x)$ initial velocity
Problem of solving PDE reduces to evaluating definite integrals numerically, unless $u_{0}(x)$ and $v_{0}(x)$ are simple.
otherwise, if eq" not separable, must discretize PDE.

Example: Time -Dependent Schrödinger Equation

$$
\begin{gathered}
H \psi(\vec{r}, t)=i \hbar \frac{\partial}{\partial t} \psi(\vec{r}, t) \\
\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\vec{r}, t)\right) \psi(\vec{r}, t)=i \hbar \frac{\partial}{\partial t} \psi(\vec{r}, t)
\end{gathered}
$$

$$
\text { - for simplicity, set } m=1 / 2, \hbar=1
$$

$1-D$

$$
i \frac{\partial}{\partial t} \psi(x, t)=-\frac{\partial^{2}}{\partial x^{2}} \psi(x, t)+V(x) \psi(x)
$$

-parabolic eq ${ }^{n}-\psi$ complex $-|\psi|^{2}$ probability density that particle B.C. $\quad \psi \rightarrow 0$ at $x= \pm \infty$ is at x
normalization $\int_{-\infty}^{\infty}|\psi|^{2} d x=1$
In discretized system: $\psi(x, t) \rightarrow \vec{\psi}^{n}$ or ψ_{j}^{n}

- magnitude of $\vec{\psi}$ is fixed
\therefore want an algorithm
equivalent to $\vec{\psi}^{n+1}=P \vec{\psi}^{n}$
where P is unitary
n - tine index j-spatial

$$
\left\{\vec{\psi}=\left(\begin{array}{c}
\text { index } \\
\psi\left(x_{1}\right) \\
\psi\left(x_{2}\right) \\
\psi\left(x_{N}\right)
\end{array}\right)\right.
$$

Formal sol to $i \frac{\partial}{\partial t} \psi=H \psi$ is $\psi(x, t)=\psi(x, 0) e^{-i H t}$
For $t \rightarrow \Delta t$, approximate $e^{-i H \Delta t} \doteq 1-i H \Delta t$
So might use $\psi_{j}^{n+1}=(1-i H \Delta t) \psi_{j}^{n}$
but $1-i M \Delta t$ is not unitary, so probability won't be conserved.

Instead, use Cayley's form for finite difference expression
which is unitary

$$
e^{-i H \Delta t} \simeq \frac{1-1 / 2 i H \Delta t}{1+1 / 2 i H \Delta t} \quad \text { (2nd order } \quad \text { accurate) }
$$

$\tilde{\xi}$

$$
\begin{array}{ll}
P=e^{-i H \Delta t} & , P^{+}=e^{i H^{+} \Delta t}=e^{i H \Delta t} \\
P P^{+}=1 & H \text { Hermitian } \\
\tilde{P} \tilde{P}^{+}=\frac{1-1 / 2 i H \Delta t}{1+1 / 2 i H \Delta t} \cdot \frac{1+1 / 2 i H \Delta t}{1-1 / 2 i H \Delta t}=1 &
\end{array}
$$

so we get $\psi_{j}^{n+1}=\frac{1-1 / 2 i H \Delta t}{1+1 / 2 i H \Delta t} \psi_{j}$
or $\left(1+\frac{1}{2} i H \Delta t\right) \psi_{j}^{n+1}=(1-1 / 2 i H \Delta t) \psi_{j}=b$
\uparrow complex tridiagonal matrix because of $\frac{\partial^{2}}{\partial x^{2}}$

$$
\begin{aligned}
& H \psi_{j}^{n+1}=-\frac{\left(\psi_{j+1}^{n+1}-2 \psi_{j}^{n+1}+\psi_{j-1}^{n+1}\right)+V_{j} \psi_{j}^{n+1}}{\Delta x^{2}} \\
& \left(1+\frac{1}{2} H i \Delta t\right) \psi_{j}^{n+1}=\frac{-i \Delta t}{2 \Delta x^{2}}\left(\psi_{j+1}^{n+1}-2 \psi_{j}^{n+1}+\psi_{j-1}^{n+1}\right)+\frac{i \Delta t}{2} V_{j} \psi_{j}^{n+1}+\psi_{j}^{n+1} \\
& =\frac{-i \Delta t}{2 \Delta x^{2}} \psi_{j+1}^{n+1}+\left(\frac{i \Delta t}{\Delta x^{2}}+\frac{i \Delta t}{2} V_{j}+1\right) \psi_{j}^{n+1}-\frac{i \Delta t}{2 \Delta x^{2}} \psi_{j-1}^{n+1} \\
& =\frac{i \Delta t}{2 \Delta x^{2}}\left[-\psi_{j+1}^{n+1}+\left(2+\Delta x^{2} V_{j}-\frac{\left.\left.i \frac{2 \Delta x^{2}}{\Delta t}\right) \psi_{j}^{n+1}-\psi_{j-1}^{n+1}\right]}{}\right.\right.
\end{aligned}
$$

Similarly $\left(1-1 / 2 H_{i \Delta t}\right) \psi_{j}^{n}$

$$
=\frac{-i \Delta t}{2 \Delta x^{2}}\left[-\psi_{j+1}^{n}+\left(2+\Delta x^{2} V_{j}+\frac{i 2 \Delta x^{2}}{\Delta t}\right) \psi_{j}^{n}-\psi_{j-1}^{n}\right]
$$

call

$$
T=\left(\begin{array}{ccccc}
\left(2+v_{1} \Delta x^{2}-i \frac{2 \Delta x^{2}}{\Delta t}\right) & -1 & 0 & 0 & \ldots \\
-1 & \left(2+v_{2} \Delta x^{2}-i 2 \Delta \frac{x^{2}}{\Delta t}\right) & -1 & 0 & \cdots \\
0 & -1 & \left(\ldots v_{3} \ldots\right) & -1 & \cdots \\
0 & 0 & -1 & \ddots &
\end{array}\right)
$$

$$
T^{*}=\left(\begin{array}{cccc}
\left(2+v_{1} \Delta x^{2}+i \frac{\Delta x^{2}}{\Delta t}\right) & -1 & 0 & \cdots \\
-1 & \left(2+v_{2} \Delta x^{2}+i \frac{\Delta x^{2}}{\Delta t}\right) & -1 & 0 \\
0 & -1 & \left(\ldots v_{3} \cdots\right)-1 & \cdots \\
0 & 0 & -1 & \\
& \vdots & & \ddots
\end{array}\right)
$$

get

$$
\begin{array}{ll}
T \dot{\psi}^{n+1}=-T^{*} \vec{\psi}^{n} & \vec{b}=-T^{*} \psi^{n} \\
T \vec{\psi}^{n+1}=\vec{b} &
\end{array}
$$

solve for unknown "wave f^{\prime} " at next time step
or

$$
T \vec{\psi}^{n+1}=\vec{b}
$$

$$
\uparrow
$$

$$
\vec{b}=-T^{*} \dot{k}^{n}
$$

Solve for unknown wave function at next time step

$$
\vec{\psi}=\left(\begin{array}{c}
\psi\left(x_{1}\right) \\
\psi\left(x_{2}\right) \\
\vdots \\
\psi\left(x_{J}\right)
\end{array}\right)
$$

Boundary conditions imply $\quad \psi_{0}=0=\psi_{J+1}$

