
Discrete solutions of Hyperbolic Equations ( Wave eq "- )
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Eq^- (1) is similar to continuity eq± ( Lib) and is
called the

Try simple algorithm :

Euler for time

and

centred diff for space



get ZJ
"

- Éj + c ( zjEj . . ) = o

it Zsx

n -11

=

Zj

However
,
this method is

( we shall a little later examine . )

Lax Method - slight modification of the above

Replace first term on RHS of algorithm with a
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Analysis shows that this approach is stable for all

wavelengths if



Example Maxwell 's Equations
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Other discretization schemes for hyperbolic eq 's include

- Lax - Wendroff methods } Numerical Recipes
- Leap - frog
- Leterrier

Two- step Lax - Wendroff
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More generally these steps can be written for
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F is a function of

wave eq
"-

can be written in this form too

via
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where r = and s =
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Wave eg
" becomes

Note :

Once s is obtained
, original f

"
u can be determined via
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Discrete Parabolic Equations : Diffusion

I -D

simple approach : Euler for t :

centred diff . for × :

n -11

=Uj

stability condition is st

Drawback : If we need to improve accuracy by
then we must use

→ # of computations

Dufort - Frankel Method

Trick : Replace

and take
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call 2 = and solve for
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This algorithm is

while accuracy demands sufficiently small ,

there is no longer a relation between them that must

be satisfied
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the Dufort - Frankel method is an

example of an method
,

which are often

Recall trapezoid rule for integration
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For an ODE this translates to

or Ji -11 =

for decay and Igt
oscillation
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for growth , call error cry ; = ,
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and we want ( absolute error grows since
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[ unstable : solution becomes large when ]
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→ stable also for growth
( relative error is stable )



for Diffusion - like equations

E- =

other implicit methods include

Backwards Euler and Crank- Nicolson

need to solve algebraic equations for

E.g .
Backward Euler for

ei=

:
A Jen -1 ' = I =

T

- matrix eg
"
can be solved efficiently


