Discrete Solutions of Hyperbolic Equations (Wave eq")

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=(\quad) u(\pi, t) \\
\rightarrow(&)(\quad u(x, t)=0
\end{aligned}
$$

write as two eg ns: (1)
(2)

Note: if $u(x, t=0)=$
and $\left.\frac{\partial u}{\partial t}\right|_{t=0}=$, taking eq (2) at $t=0$
gives $\quad Z_{0}(x)=$
$E_{q}=(1)$ is independent of u This yields
$E_{q}=(1)$ is similar to continuity eq n $(L 16)$ and is called the

Try simple algorithm:

Euler for time and
centred diff for space
get $\frac{z_{j}^{n+1}-z_{j}^{n}}{\Delta t}+c\left(\frac{z_{j+1}^{n}-z_{j-1}^{n}}{2 \Delta x}\right)=0$

$$
z_{j}^{n+1}=
$$

However, this method is (We shall a little later examine .)

Lax Method -slight modification of the above
Replace first term on RHS of algorithm with a

$$
\begin{aligned}
& z_{j}^{n} \rightarrow \\
& z_{j}^{n+1}=
\end{aligned}
$$

Analysis shows that this approach is stable for all wavelengths if

Example Maxwell's Equations

$$
\nabla \times \stackrel{\rightharpoonup}{E}=
$$

in free space -no currents

Other discretization schemes for hyperbolic eq "s include

- Lax-Wendroff methods
- Leap-frog ${ }_{3}^{2}$ Numerical Recipes
- Lelevier

Two-step Lax-Wendroff

half-steps are first calculated with

$$
\begin{aligned}
& z_{j+1 / 2}^{n+1 / 2}= \\
& z_{j-1 / 2}^{n+1 / 2}=
\end{aligned}
$$

then find $z_{j}^{n+1}=$
More generally these steps can be written for

$$
\begin{aligned}
& \quad \frac{\partial u}{\partial t}= \\
& u_{j+1 / 2}^{n+1 / 2}= \\
& u_{j}^{n+1}=
\end{aligned}
$$

F is a function of

Wave eq"
can be written in this form too
via

$$
\frac{\partial r}{\partial t}=\quad \text { and } \frac{\partial s}{\partial t}=
$$

where $r \equiv$ and $s \equiv$

Calling $\vec{v}=\quad \vec{F}(\vec{v})=(\quad) \cdot \overrightarrow{ }=$
Wave eq" becomes
Note:
Once s is obtained, original $f^{n} u$ can be determined via

$$
u_{j}^{n+1}=
$$

Discrete Parabolic Equations: Diffusion 1-D
simple approach: Euler for t :
Centred diff. for x :

$$
u_{j}^{n+1}=
$$

stability condition is Δt

Drawback: It we need to improve accuracy by then we must use
\rightarrow \#f computations
Dufort - Frankel Method
Trick: Replace
and take

$$
u_{j}^{n+1}=
$$

call $\alpha=$ and solve for

$$
u_{j}^{n+1}=
$$

This algorithm is
While accuracy demands sufficiently small there is no longer a relation between them that must be satisfied

Since u_{j}^{n+1} appears on
, the Dufort-Frankel method is an example of an method, which are often

Recall trapezoid rule for integration

$$
\int_{t_{i}}^{t_{f}} f(t) d t=
$$

For an ODE this translates to
or $\quad y_{i+1}=$
for decay and $|g|$
oscillation,$|g|^{2}=$
for growth, call error $\delta y_{i}=, \epsilon$ is
and we want
(absolute error grows since
[unstable: solution becomes large when

$$
\begin{array}{r}
\delta y_{i+1}=g \delta y_{i} \\
y_{i+1} \epsilon_{i+1}=
\end{array}
$$

\rightarrow stable also for growth (relative error is stable)
for Diffusion-like equations

$$
\frac{\partial u}{\partial t}=
$$

other implicit methods include
Backwards Euler
and Crank-Nicolson
need to solve algebraic equations for
E.g. Backward Euler for

$$
\frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}=
$$

or
or

$$
\sum A \vec{u}^{n+1}=\vec{b}=
$$

- matrix eq" can be solved efficiently

