
Discrete solutions of Hyperbolic Equations ( wave eqI )
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Other discretization schemes for hyperbolic eq 's include

- Lax - Wendroff methods } Numerical Recipes
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- Leterrier
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F is a function of u and its spatial derivatives .
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Discrete Parabolic Equations : Diffusion
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Dufort - Frankel Method
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This algorithm is unconditionally stable .

While accuracy demands sufficiently small stand sx ,

there is no longer a relation between them that must

be satisfied to maintain stability .
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Since Uj appears on both sides of the finite
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the Dufort - Frankel method is an
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which are often unconditionally stable .
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for Diffusion - like equations
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other implicit methods include
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