Discrete Solutions of Hyperbolic Equations (Wave eq")

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=\left(\frac{\partial^{2}}{\partial t^{2}}-c^{2} \frac{\partial^{2}}{\partial x^{2}}\right) u(x, t)=0 \\
\rightarrow & \left(\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t}-c \frac{\partial}{\partial x}\right) u(x, t)=0
\end{aligned}
$$

write as two ens: (1) $\frac{\partial z}{\partial t}+c \frac{\partial}{\partial x} z=0$

$$
\text { (2) } \frac{\partial u}{\partial t}-c \frac{\partial u}{\partial x}=z
$$

Note: if $u(x, t=0)=u_{0}$
and $\left.\frac{\partial u}{\partial t}\right|_{t=0}=v_{0}$, taking eq n (2) at $t=0$
gives $\quad z_{0}(x)=v_{0}-c \frac{\partial}{\partial x} u_{0}$
$E_{q} \cong(1)$ is independent of u and can be solved on its own. This yields $z(x, t) \rightarrow$ plug into (2) and solve for u.
$E_{q}=(1)$ is similar to continuity eq n (L16) and is called the Advection equation.

Try simple algorithm:
Euler for time $\frac{\partial z}{\partial t}=\frac{z^{n+1}-z^{n}}{\Delta t}+\theta(\Delta t)$
and centred diff for space

$$
\frac{\partial z}{\partial x}=\frac{z_{j+1}-z_{j-1}}{2 \Delta x}+\theta\left(\Delta x^{2}\right)
$$

get $\frac{z_{j}^{n+1}-z_{j}^{n}}{\Delta t}+c\left(\frac{z_{j+1}^{n}-z_{j-1}^{n}}{2 \Delta x}\right)=0$
time index

$$
z_{j}^{n+1}=z_{j}^{n}-\frac{c \Delta t}{2 \Delta x}\left(z_{j+1}^{n}-z_{j-1}^{n}\right)
$$

space index
However, this method is unstable for any Δt and Δx. (We shall a little later examine stability.)

Lax Method -slight modification of the above
Replace first term on RHS of algorithm with a spatial average

$$
\begin{aligned}
& z_{j}^{n} \rightarrow 1 / 2\left(z_{j+1}^{n}+z_{j-1}^{n}\right) \text { to get } \\
& z_{j}^{n+1}=\frac{1}{2}\left(z_{j+1}^{n}+z_{j-1}^{n}\right)-\frac{c \Delta t}{2 \Delta x}\left(z_{j+1}^{n}-z_{j-1}^{n}\right)
\end{aligned}
$$

Analysis shows that this approach is stable for all wavelengths if

$$
\begin{array}{lr}
\frac{\Delta x}{\Delta t} \geqslant c & \text { (Courant-Friedrichs - } \\
\text { Aware } & \text {-Lew condition }
\end{array}
$$

speed of information © wave -Lew condition) propagation in algorithm

Example Maxwell's Equations

$$
\begin{aligned}
& \nabla \times \vec{E}=-\frac{1}{c} \frac{\partial \vec{B}}{\partial t} \\
& \nabla \times \vec{B}=\frac{1}{c} \frac{\partial \vec{E}}{\partial t} \\
& \vec{B}{\underset{\vec{E}}{Z}}_{\underset{\longrightarrow}{z}} \\
& \text { Let } \vec{E}=E(x, t) \hat{y} \quad, \vec{B}=B(x, t) \hat{z} \\
& \rightarrow \nabla \times \vec{E}=\frac{\partial E}{\partial x} \hat{z} \quad \nabla \times \vec{B}=-\frac{\partial B}{\partial x} \hat{y} \\
& \frac{\partial B}{\partial t}+C \frac{\partial E}{\partial x}=0 \quad B_{j}^{n+1}=\frac{1}{2}\left(B_{j+1}^{n}+B_{j-1}^{n}\right)-\frac{c \Delta t}{2 \Delta x}\left(E_{j+1}^{n}-E_{j-1}^{n}\right) \\
& \frac{\partial E}{\partial t}+c \frac{\partial B}{\partial x}=0 \quad E_{j}^{n+1}=\frac{1}{2}\left(E_{j+1}^{n}+E_{j-1}^{n}\right)-\frac{c \Delta t}{2 \Delta x}\left(B_{j+1}^{n}-B_{j-1}^{n}\right)
\end{aligned}
$$

$=$
Other discretization schemes for hyperbolic eq "s include

- Lax-Wendroff methods \quad S Numerical Recipes
- Leap-frog
- Lelevier

Two-step Lax-Wendroff $\quad \frac{\partial z}{\partial t}+c \frac{\partial z}{\partial x}=0$ $t, n \prod_{x, j} \quad$ half-steps are first calculated with regular

$$
\begin{aligned}
& z_{j+1 / 2}^{n+1 / 2}=\frac{1}{2}\left(z_{j+1}^{n}+z_{j}^{n}\right)-\frac{c \Delta t}{2 \Delta x}\left(z_{j+1}^{n}-z_{j}^{n}\right) \\
& z_{j-1 / 2}^{n+1 / 2}=\frac{1}{2}\left(z_{j}^{n}+z_{j-1}^{n}\right)-\frac{c \Delta t}{2 \Delta x}\left(z_{j}^{n}-z_{j-1}^{n}\right)
\end{aligned}
$$

then find $z_{j}^{n+1}=z_{j}^{n}-c \frac{\Delta t}{\Delta x}\left(z_{j+1 / 2}^{n+1 / 2}-z_{j-1 / 2}^{n+1 / 2}\right)$
More generally these steps can be written for

$$
\begin{gathered}
\frac{\partial u}{\partial t}=-\frac{\partial}{\partial x} F(u) \quad F \text { is conserved flux } \\
u_{j+1 / 2}^{n+1 / 2}=\frac{1}{2}\left(u_{j+1}^{n}+u_{j}^{n}\right)-\frac{\Delta t}{2 \Delta x}\left(F_{j+1}^{n}-F_{j}^{n}\right),{ }_{=\frac{1}{2}\left(u_{j}^{n}+u_{j-1}^{n}\right)}^{u_{j-1 / 2}^{n}}-\frac{-\Delta t}{2 \Delta x}\left(F_{j}^{n}-F_{j-1}^{n}\right)
\end{gathered}
$$

F is a function of u and its spatial derivatives.

Wave eq u $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ can be written in this form too via

$$
\frac{\partial r}{\partial t}=c \frac{\partial s}{\partial x} \quad \text { and } \quad \frac{\partial s}{\partial t}=c \frac{\partial r}{\partial x}
$$

where $r \equiv c \frac{\partial u}{\partial x} \quad$ and $s \equiv \frac{\partial u}{\partial t}$

Calling $\vec{v}=\binom{r}{s} \quad \vec{F}(\vec{v})=\left(\begin{array}{cc}0 & -c \\ -c & 0\end{array}\right) \cdot \vec{v}=\binom{-c s}{-c r}$ Wave eq" becomes $\frac{\partial \vec{v}}{\partial t}=-\frac{\partial \vec{F}}{\partial x}$
Note:
Once s is obtained, original $f^{n} u$ can be determined via

$$
u_{j}^{n+1}=u_{j}^{n}+\frac{\Delta t}{2}\left(s_{j}^{n+1}+s_{j}^{n}\right)
$$

Discrete Parabolic Equations: Diffusion

$$
1-D \quad \frac{\partial u}{\partial t}-D \frac{\partial^{2} u}{\partial x^{2}}=0
$$

simple approach: Euler for $t: \frac{\partial u}{\partial t} \doteq \frac{u^{n+1}-u^{n}}{\Delta t}$
Centred diff. for x :

$$
u_{j}^{n+1}=u_{j}^{n}+D \frac{\Delta t}{(\Delta x)^{2}}\left(u_{j+1}^{n}-2 u_{j}^{n}+u_{j-1}^{n}\right)
$$

stability condition is $\Delta t \leqslant \frac{1}{2} \frac{\left(\Delta x^{2}\right)}{D}$
Drawback: It we need to improve accuracy by $\Delta x \rightarrow \Delta x / 2$ then we must use $\Delta t \rightarrow \Delta t / 4$
\rightarrow of computations increases by factor of 8

Dufort-Frankel Method
Trick: Replace $2 u_{j}^{n}$ on RHS by time average $u_{j}^{n+1}+u_{j}^{n-1}$
and take a double time step

$$
u_{j}^{n+1}=u_{j}^{n-1}+\frac{2 D \Delta t}{\Delta x^{2}}\left(u_{j+1}^{n}-\left(u_{j}^{n+1}+u_{j}^{n-1}\right)+u_{j-1}^{n}\right)
$$

call $\alpha=\frac{2 D \Delta t}{\Delta x^{2}}$ and solve for u_{j}^{n+1}

$$
u_{j}^{n+1}=\left(\frac{1-\alpha}{1+\alpha}\right) u_{j}^{n-1}+\frac{\alpha}{1+\alpha}\left(u_{j+1}^{n}+u_{j-1}^{n}\right)
$$

This algorithm is unconditionally stable.
While accuracy demands sufficiently small Δt and Δx, there is no longer a relation between them that must be satisfied to maintain stability.

Since u_{j}^{n+1} appears on both sides of the finite difference equation, the Dufort-Frankel method is an example of an intrinsic (also called implicit) method, which are often unconditionally stable.

Recall trapezoid rule for integration

$$
\int_{t_{i}}^{t+} f(t) d t=\frac{\Delta t}{2}\left(f_{i+1}+f_{i}\right)
$$

For an $O D E \quad y^{\prime}=\alpha y \quad$ this translates to

$$
y_{i+1}-y_{i}=\frac{\Delta t}{2} \alpha\left(y_{i+1}+y_{i}\right)
$$

or $y_{i+1}=\left(\frac{1+1 / 2 \Delta t \alpha}{1-1 / 2 \Delta t \alpha}\right) y_{i}$
This is g from our $O D E$ stability analysis.
for decay $\alpha<0$ and $|g|<1$

$$
\text { oscillation } \alpha=i \omega,|g|^{2}=\frac{1+1 / 2 \Delta t i \omega}{1-1 / 2 \Delta t i \omega} \cdot \frac{1-1 / 2 \Delta t i \omega}{1+1 / 2 \Delta t i \omega}=1
$$

for growth, call error $\delta y_{i}=y_{i} \epsilon_{i}, \epsilon$ is relative error
and we want ϵ not to grow (absolute error grows since solution grows exponentially
[unstable: solution becomes large when true solution does not]

$$
\begin{aligned}
\delta y_{i+1} & =g \delta y_{i} \\
y_{i+1} \epsilon_{i+1} & =g y_{i} \epsilon_{i} \\
g y_{i} \epsilon_{i+1} & =g y_{i} \epsilon_{i} \rightarrow \text { stable also for growth } \\
\epsilon_{i+1} & =\epsilon_{i} \quad \text { (relative error is stable) }
\end{aligned}
$$

for Diffusion-like equations

$$
\frac{\partial u}{\partial t}=F\left(u, \frac{\partial u}{\partial x}, \frac{\partial^{2} u}{\partial x^{2}}\right)
$$

other implicit methods include
Backwards Euler
and Crank-Nicolson

$$
\frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}=F_{i}^{n+1} \quad \frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}=\frac{1}{2}\left(F_{i}^{n+1}+F_{i}^{n}\right)
$$

need to solve algebraic equations for u_{i}^{n+1}
E.g. Backward Euler for $\frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}} \quad\left\{F=D \frac{\partial^{2} u}{\partial x^{2}}\right.$

$$
\frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}=F_{i}^{n+1}=\frac{D}{\Delta x^{2}}\left(u_{i-1}^{n+1}-2 u_{i}^{n+1}+u_{i+1}^{n+1}\right)
$$

ar

$$
-u_{i-1}^{n+1}+u_{i}^{n+1}\left(2+\frac{\Delta x^{2}}{D \Delta t}\right)-u_{i+1}^{n+1}=D \frac{\Delta t}{\Delta x^{2}} u_{i}^{n}
$$

or
tridiagonal

- matrix eq" can be solved efficiently

