Discrete Solutions of Hyperbolic Equations (Lance eqc)

$$\frac{\partial^{2}u}{\partial t^{2}} = \frac{c^{2}}{\partial x^{2}} = \left(\frac{\partial^{2}}{\partial t^{2}} - \frac{c^{2}}{\partial x^{2}}\right)u(x,t) = 0$$

$$\Rightarrow \left(\frac{\partial}{\partial t} + c\frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t} - c\frac{\partial}{\partial x}\right)u(x,t) = 0$$
arite as two $eq^{2}s$: (1) $\frac{\partial z}{\partial t} + c\frac{\partial}{\partial x} = 0$
(2) $\frac{\partial u}{\partial t} - c\frac{\partial u}{\partial x} = 2$
Note: If $u(x,t=0) = U_{0}$
and $\frac{\partial u}{\partial t}\Big|_{t=0}^{2} = V_{0} - c\frac{\partial}{\partial x}$
 $eq^{2}(z) ct t=0$
gives $Z_{0}(x) = V_{0} - c\frac{\partial}{\partial x}$
 $Eq^{2}(1)$ is independent of u and can be solved on its own.
This gields $Z(x,t) \Rightarrow plug$ into (2) and solve for u .
 $Eq^{2}(1)$ is similar to continuity $eq^{2}(Lb)$ and is
called the Advection equation.
Try simple algorithm:
Euler for time $\frac{\partial z}{\partial t} = \frac{z^{n+1} - z^{n}}{dt} + O(4t)$
and $\frac{\partial z}{\partial t} = \frac{z^{n+1} - z}{dt} + O(4t)$

get
$$\underline{z}_{j+1}^{n+1} - \underline{z}_{j}^{n} + c\left(\underline{z}_{j+1}^{n} - \underline{z}_{j-1}^{n}\right) = 0$$

time index
 $\underline{z}_{j}^{n+1} = \underline{z}_{j}^{n} - \underline{c} \underline{at}\left(\underline{z}_{j+1}^{n} - \overline{z}_{j-1}^{n}\right)$
space index
However, this method is unstable for any at and Δx .
(Lee shall c little leter examine stability .)
Lax Hethod - slight modification of the above
Replace first term on RHS of algorithm with a spatial
average
 $\underline{z}_{j}^{n} \rightarrow \frac{1}{2}(\underline{z}_{j+1}^{n} + \underline{z}_{j-1}^{n}) + to get$
 $1 - \underbrace{1}_{\underline{z} \underline{\Delta x}} (\underline{z}_{j+1}^{n} + \underline{z}_{j-1}^{n}) + to get$
1 $\underline{z}_{j}^{n+1} = \frac{1}{2}(\underline{z}_{j+1}^{n} + \underline{z}_{j-1}^{n}) - \underline{cat}(\underline{z}_{j+1}^{n} - \underline{z}_{j-1}^{n})$
Analysis shows that this approach is stable for all
wavelengths if
 $\underline{\Delta x} \rightarrow c$ (Courant-Friedrichs-
 $\underline{at} \qquad x_{propagation}^{n}$ in algorithm

Maxwell's Equations $\nabla \times \vec{E} = -\frac{1}{c} \stackrel{\rightarrow}{\xrightarrow{\partial B}}$ Éxample in free space -no currents $\nabla \times \vec{B} = \frac{1}{2} \frac{\partial \vec{E}}{\partial t}$ $\vec{B} = \frac{1}{2} \frac{\partial \vec{E}}{\partial t}$ $\vec{B} = B(\tau, t) \hat{z}$ $\vec{E} = \sqrt{2} \times \vec{E} = \frac{\partial E}{\partial \tau} \hat{z}$ $\nabla \times \vec{B} = -\frac{\partial E}{\partial \tau} \hat{g}$ $\frac{\partial B}{\partial t} + C \frac{\partial E}{\partial x} = 0 \qquad B_{j}^{n+1} = \frac{1}{2} \left(B_{j+1}^{n} + B_{j-1}^{n} \right) - \frac{c \delta t}{2 \delta x} \left(E_{j+1}^{n} - E_{j-1}^{n} \right)$ $\frac{\partial E}{\partial t} + C \frac{\partial B}{\partial x} = 0 \qquad E_{j}^{n+1} = \frac{1}{2} \left(\frac{E_{j+1}^{n}}{2} + \frac{E_{j-1}^{n}}{2} \right) - \frac{Cst}{24\pi} \left(\frac{B_{j+1}}{2} - \frac{B_{j-1}}{2} \right)$ \leq Other discretization schemes for hyperbolic eq=s include - Lax-Wendroff methods ? Numerical Recipes - Leap-frog - Lelevier Two-step Lax-Wendroff <u>dz</u> + c <u>dz</u> = 0 t,n 1 0 k,n 1 0 x,j 0 half-steps are first calculated with regular x,j j-1 j j+1 Lax scheme $z_{j+1/2}^{n+1/2} = \frac{1}{2} \left(z_{j+1}^{n} + z_{j}^{n} \right) - \frac{c_{a}t}{2\Delta x} \left(z_{j+1}^{n} - z_{j}^{n} \right)$ $z_{j-1/2}^{n+1/2} = \frac{1}{2} \left(z_{j}^{n} + z_{j-1}^{n} \right) - c_{st} \left(z_{j}^{n} - z_{j-1}^{n} \right)$

then find
$$Z_{j}^{n+1} = Z_{j}^{n} - C \frac{dt}{dx} \left(Z_{j}^{n+1} Z_{j}^{n} - Z_{j}^{n+1} Z_{j}^{n} \right)$$

More generally these steps can be written for

$$\frac{\partial u}{\partial t} = -\frac{\partial}{\partial x} F(u)$$

$$F = (z \text{ conserved flux})$$

$$u_{j+1/2}^{n+1/2} = \frac{1}{2} \left(u_{j+1}^{n} + u_{j}^{n} \right) - \frac{dt}{2dx} \left(F_{j+1/2}^{n} - F_{j}^{n} \right) \left(u_{j+1/2}^{n+1/2} - \frac{1}{2(u_{j}^{n} + u_{j-1}^{n})} - \frac{dt}{dx} \left(F_{j+1/2}^{n} - F_{j-1/2}^{n+1/2} \right) \right)$$

$$F = u_{j}^{n} - \frac{dt}{dx} \left(F_{j+1/2}^{n+1/2} - F_{j-1/2}^{n+1/2} \right)$$

$$F = u_{j}^{n} - \frac{dt}{dx} \left(F_{j+1/2}^{n+1/2} - F_{j-1/2}^{n+1/2} \right)$$

$$U_{j}^{n+1} = u_{j}^{n} - \frac{dt}{dx} \left(F_{j+1/2}^{n+1/2} - F_{j-1/2}^{n+1/2} \right)$$

$$F = u_{j}^{n} - \frac{dt}{dx} \left(F_{j+1/2}^{n+1/2} - F_{j-1/2}^{n+1/2} \right)$$

$$U_{j}^{n+1} = u_{j}^{n} - \frac{dt}{dx} \left(F_{j+1/2}^{n+1/2} - F_{j-1/2}^{n+1/2} \right)$$

$$U_{j}^{n+1} = u_{j}^{n} - \frac{dt}{dx} \left(F_{j+1/2}^{n+1/2} - F_{j-1/2}^{n+1/2} \right)$$

$$U_{j}^{n+1} = u_{j}^{n} - \frac{dt}{dx} \left(F_{j+1/2}^{n+1/2} - F_{j-1/2}^{n+1/2} \right)$$

$$U_{j}^{n+1} = u_{j}^{n} - \frac{dt}{dx} \left(F_{j+1/2}^{n+1/2} - F_{j-1/2}^{n+1/2} \right)$$

$$U_{j}^{n+1} = u_{j}^{n} - \frac{dt}{dx} \left(F_{j+1/2}^{n+1/2} - F_{j-1/2}^{n+1/2} \right)$$

$$U_{j}^{n+1} = u_{j}^{n} - \frac{dt}{dx} \left(F_{j+1/2}^{n+1/2} - F_{j-1/2}^{n+1/2} \right)$$

$$U_{j}^{n+1} = u_{j}^{n} + \frac{dt}{dx} \left(S_{j}^{n+1/2} - F_{j-1/2}^{n+1/2} \right)$$

$$U_{j}^{n+1} = u_{j}^{n} + \frac{dt}{2} \left(S_{j}^{n+1/2} - F_{j-1/2}^{n+1/2} \right)$$

$$U_{j}^{n+1} = u_{j}^{n} + \frac{dt}{2} \left(S_{j}^{n+1} + S_{j}^{n} \right)$$

$$U_{j}^{n+1} = u_{j}^{n} + \frac{dt}{2} \left(S_{j}^{n+1} + S_{j}^{n} \right)$$

Discrete Parabolic Equations: Diffusion
1-D
$$\frac{\partial u}{\partial t} - D \frac{\partial^2 u}{\partial x^2} = 0$$

simple approach: Euler for $t : \frac{\partial u}{\partial t} = \frac{u^{n+1} - u^n}{\Delta t}$
 $centred diff. for x :
 $u_j^{n+1} = u_j^n + D \frac{\Delta t}{(\Delta x)^2} \left(\frac{u_{j+1}^n - 2u_j^n + u_{j-1}^n}{\Delta t} \right)$
stability condition is $\Delta t \leq \frac{1}{2} \left(\frac{\Delta x^2}{D} \right)$
Dreuback: It we need to improve accuracy by $\Delta x \rightarrow \frac{\Delta x_2}{2}$
then we must use $\Delta t \rightarrow \delta t/4$
 $\rightarrow \#$ of computations increases by factor of 8
Dufort - Frankel Method
Trick: Replace $2u_j^n$ on RHS by time average $u_j^{n+1} + u_j^{n-1}$
and take a double time step
 $u_j^{n+1} = u_j^{n-1} + 2D \frac{\Delta t}{\Delta x^2} \left(u_{j+1}^n - (u_{j+1}^{n+1} + u_{j-1}^n) + u_{j-1}^n \right)$
call $d = \frac{2D \delta t}{\Delta x^2}$ and solve for $u_j^{n+1}$$

This algorithm is unconditionally stable. While accuracy demands sufficiently small st and sx, there is no longer a relation between them that must be satisfied to maintain stability.

Since
$$u_j^{n+1}$$
 appears on both sides of the finite
difference equation, the Dufort-Frankel method is an
example of an intrinsic (also called implicit) method,
which are often unconditionally stable.

Recall trapezoid rule for integration

$$\int_{t_{1}}^{t_{1}} f(t) dt = \frac{dt}{2} \left(-\frac{1}{1+1} + \frac{1}{1-1} \right)$$
ti
For an ODE $g' = dg$ this translates to
 $g_{1+1} - g_{1} = \frac{dt}{2} d \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)$
or $g_{1+1} = \left(-\frac{1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}}{1 - \frac{1}{2} + \frac{1}{2} + \frac{1}{2}} \right) g_{1}$
This is g from our ODE stability analysis.
for decay $d < 0$ and $1g_{1} < 1$
oscillation $d = i\omega$, $1g_{1}^{2} = \frac{1 + \frac{1}{2} + \frac{1}{2}$

for Diffusion-like equations

$$\frac{\partial u}{\partial t} = F(u, \frac{\partial u}{\partial x}, \frac{\partial^{2} u}{\partial x^{2}})$$
ofter implicit methods include
Backwards Euler and Crank-Alicolson

$$u_{i}^{n+1} - u_{i}^{n} = F_{i}^{n+1} \qquad u_{i}^{n+1} - u_{i}^{n} = \frac{1}{2}(F_{i}^{n+1} + F_{i}^{n})$$
need to solve algebraic equations for u_{i}^{n+1}
F.g. Backward Euler for $\frac{\partial u}{\partial t} = D \frac{\partial^{2} u}{\partial x^{2}} > F = D \frac{\partial^{2} u}{\partial x^{2}}$

$$u_{i-1}^{n+1} - u_{i}^{n} = F_{i}^{n+1} = D (u_{i-1}^{n+1} - 2u_{i}^{n+1} + u_{i+1}^{n+1})$$

$$\frac{u_{i-1}^{n+1} - u_{i}^{n}}{\Delta t} = F_{i}^{n+1} = D (u_{i-1}^{n+1} - 2u_{i}^{n+1} + u_{i+1}^{n+1})$$
or

$$A \overline{u}^{n+1} = \overline{b} = D \frac{\Delta t}{\Delta x^{2}}$$
or

$$A \overline{u}^{n+1} = \overline{b} = D \frac{\Delta t}{\Delta x^{2}}$$

$$\frac{d \overline{u}^{n+1}}{dx^{2}}$$

$$\frac{d \overline{u}^{n+1}}{dx^{2}} = \overline{b} = D \frac{d t}{dx^{2}} \overline{u}^{n}$$