vo Neumann Stability Analysis
Recall solution to the wave e $=\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ by sep. of variables

$$
u(x, t)=
$$

We've seen that $\frac{\partial^{2} y}{\partial x^{2}} \rightarrow$ with A
So the separated eqns are and the

The sol$\underline{\text { n }}$ is of the form $\sum_{m}\left(a_{m} \sin \omega_{m} t+b_{m} \cos \omega_{m} t\right) \sin k_{m} x$
so consider a contribution to the discretized solution
$u_{j}^{n}=$
or generally $u_{j}^{n}=$
eigenmode contribution to sol $\underline{\text { n }}$ with $k=\frac{2 \pi}{\lambda}$ How does it grow in time?

Increasing time means
Solution is unstable if

Recall "simple" algorithm for advection eq"

$$
u_{j}^{n+1}=
$$

$$
\text { sub in } u_{j}=
$$

$\xi e=$

$$
\xi=
$$

$$
\Rightarrow|\xi|
$$

For Lax Method

$$
u_{j}^{n+1}=
$$

Elliptic Equations - PDEs in matrix form We've already seen $1-D$ Poisson eq". Now $2-D$
discretize: $x_{j}=$
$y_{e}=$
using $\frac{\partial^{2}}{\partial x^{2}} \rightarrow$
gives

AsIDE: can rearrange eq"

$$
u_{j, l}=
$$

1.e. $u_{j, l}$ is the average value of its neighbours plus a direct contribution from ρ. This forms the basis for relaxation methods, the simplest of which plugs in old values of $u_{j, l}$ in the RHS to generate new values - iterating until results $\}$ converge (Jacobi method).

Want to make a single (not 2-D matrix).
call $i=\quad$ for $j=0,1, \ldots J$ and

$$
l=0,1, \ldots L
$$

e.g. $J=L=3 \quad(4 \times 4)$

$$
\begin{gathered}
j=0 \quad \rightarrow i= \\
j=\quad \rightarrow i= \\
j=\quad \rightarrow i= \\
j=\quad \rightarrow i= \\
(j, l)=(0,0) \\
i=
\end{gathered}
$$

(column 1)
for $\quad j \rightarrow j+1, \quad i \rightarrow$

$$
\begin{aligned}
& j \rightarrow \\
& l \rightarrow \\
& l \rightarrow
\end{aligned}
$$

Difference eq n $u_{j+1, l}+u_{j-1, l}+u_{j, l+1}+u_{j, l-1}-4 u_{j, l}=h^{2} \rho_{j, l}$ becomes
τ
4 neighbours of
holds only at

$$
j=
$$

$$
e=
$$

At boundary points:

$$
\begin{aligned}
& j=\quad \rightarrow i= \\
& j=\quad \rightarrow i=
\end{aligned}
$$

$l=\quad \rightarrow i=$
$\boldsymbol{\ell}=$
must specify either u or its derivative
E.g. If, say, $\left.\frac{\partial u}{\partial x}\right|_{x J, y}=0$

$$
\rightarrow \quad=0 \quad \rightarrow
$$

or $\quad u_{\text {irightboundary }}=u_{\text {irightboundary }}-(\quad)$ with irightboundary given above for $j=J$ case

$2^{\text {nd }}$ derivative at an interior point A is evaluated using 4 nearest neighbours $(j \pm 1, l \pm 1)$ and itself (j, l)

- Boundary points B must be specified or
- With periodic boundary conditions $2^{\text {nd }}$ derivative at B involves point θ

Solving the PDE reduces to solving where A is a.k.a.

Each sub-block is
There are
sub-blocks $\rightarrow A$ is
use linear algebra routines for band matrices
Names of relaxation methods include

- Gauss-Seidel
- Successive Over-Relaxation

