
P3800 Project 2: Ordinary Differential Equations

1 Introduction

For this project you will be asked to numerically solve the equations of motion
for a charged particle in magnetic and electric fields. This physics problem is
described starting on page 10 of the MacKinnon notes (see course website), and
we reproduce the relevant parts here.

Consider a positively charged particle moving in the presence of constant
electric and magnetic fields. In the case where the particle experiences a drag
force, the equation of motion in vector notation is,

m
dv

dt
= qv ×B− γv + qE. (1)

In our case, the particle is initially at the origin, B = (0, 0, B), E = (0, E, 0),
and the initial velocity v0 = (0, v0, 0), and hence the motion of the particle is
confined to the xy plane.

As discussed in the MacKinnon notes, it is appropriate to introduce a new
dimensionless time variable τ = t qB/m. Further, it is convenient to also intro-
duce new position variables x̃ = x qB/m and ỹ = y qB/m. After making the
transformations, Eq. 1 in component form becomes,

dvx
dτ

= +vy −
γ

qB
vx, (2)

dvy
dτ

= −vx −
γ

qB
vy +

E

B
, (3)

dx̃

dτ
= vx, (4)

dỹ

dτ
= vy. (5)

The parameters of the system have values (in SI units) B = 10 T, q = 1.6 ×
10−16 C, m = 1.6 × 10−21 kg, γ = 8.0 × 10−17 kg s−1, E = 10 N C−1, v0 =
10 m s−1.

How does x̃(τ) relate to x(t)? The factor qB/m = 106 s−1, so going from τ =
0 to τ = 1 corresponds to a real time difference of 10−6 s, or 1 µs. Furthermore,
if x̃ = 1 m s−1, then x = 10−6 m or 1 µm (yes, x̃ has dimensions of velocity),
but dx̃

dτ = 1 is just 1 m s−1. When the dust settles, solving Eqs. 2-5 yields x̃(τ),
the graph of which is identical to x(t) when x is in µm and t in µs. Fig. 1 shows
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Figure 1: Trajectory of charged particle undergoing motion in constant crossed
electric and magnetic fields with drag as described in the Introduction.

the particle trajectory in the xy plane for the first 120 µs. The plot was actually
obtained by plotting ỹ(τ) and x̃(τ) parametrically for τ from 0 to 120, and then
relabeling the axes. For small drag, the dominant direction of the particle’s
trajectory is in the direction of E×B, not in the direction of the electric field.
For long times, the slope of the trajectory dy

dx is proportional to γ.
This problem can be solved analytically. The value of x at t = 120 µs is

129.554231971262952559848 µm.

2 Euler

For this section, you are required to write a program that uses Euler’s method
to numerically integrate the transformed equations of motion Eqs. 2-5. To do
this, it is helpful to rewrite Eqs. 2-5 in terms of a vector of dependent variables
(y1, y2, y3, y4) = (x̃, ỹ, vx, vy) to get,

dy1
dτ

= y3, (6)

dy2
dτ

= y4, (7)

dy3
dτ

= +y4 −
γ

qB
y3, (8)

dy4
dτ

= −y3 −
γ

qB
y4 +

E

B
. (9)

Your code should include a function or subroutine that returns the values
of dyi

dτ , given y. This function, in turn, should be utilized by a subroutine that
iterates Euler’s scheme, i.e. carries out,

yi(τ + ∆τ) = yi(τ) +
dyi(y(τ), τ)

dτ
∆τ.

Finally, there should be a main program that controls the whole process, pro-
vides output, etc.

Plot the trajectory of the particle for 120 µs, using a timestep of ∆τ = 0.001.
Report the position of the particle at t = 120 µs and the relative error in the
x-coordinate. Include your code in your submission.
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3 Euler with Adaptive Timestep

In your class notes on Euler adaptive timestep methods, there is an example
where an estimate of the truncation error is compared to a desired tolerance.
The timestep is accordingly multiplied or divided by 2 in order to find an ap-
proximate value of the largest ∆τ that will satisfy the desired tolerance. Come
up with a scheme of your own that uses a predefined tolerance to change the
timestep. For example, you could use the truncation error estimate itself to
determine how the stepsize is reduced or increased.

In your report, include a description of your prescription for varying ∆τ . Plot
the trajectory y(x), the x-coordinate x(t) and the timestep ∆τ(τ) after selecting
an appropriate tolerance. Include your code in your submission. Discuss your
results in terms of steps taken, accuracy of result and anything you wished to
explore, like varying the tolerance.

4 RK45

In the class notes there is a discussion of an adaptive timestep method uti-
lizing Runge-Kutta fourth and fifth order methods simultaneously to estimate
the error. The relevant sections and source code from Numerical Recipes are
included in relevant subdirectories in the project package. There is source code
in Fortran90 and C. The main codes are odeint, rkck and rkqs. There are also
additional source code files for C and Fortran90 that are necessary for making
use of the main routines.

You are required to write a routine derivs that returns the values of the
derivatives of the dependent variables, as well as a driver routine that calls
odeint. Use the code in the language of your choice to solve the system of
equations 6-9 and then plot the trajectory from τ = 0 to τ = 120. Also, plot
∆τ(τ) (you will need to modify odeint to do this). Report the final position of
the particle at 120 µs, and the relative error in the x-coordinate. In carrying out
the above, use the following parameters required by odeint: required accuracy
eps = 1× 10−6, initial step size h1 = 1× 10−5 and trajectory-saving increment
dxsav = 1 × 10−5. How many points along the trajectory does the routine
actually calculate? Briefly discuss these results in comparison to the simple
Euler and adaptive stepsize Euler results.

As a start, there is in the project package an example (in both C and
Fortran90) in which the simple harmonic oscillator is solved using Numerical
Recipes routines rk4 and rkdumb, i.e., the ones for fixed timestep fourth-order
Runge-Kutta.

5 Your Submission

Your written report should answer the specific questions posed in Sections 2-
4, and include relevant graphs with captions, axis labels etc. Include in your
submission all source code, Makefiles, and a script called run project2.sh that
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compiles all code and produces a summary of results. Your makefile should
include rules for generating figures from the data. As usual, code for generating
data should be written in C or Fortran. Feel free to use code from lecture on
Euler and the midpoint scheme as a starting basis for your code. Please use
Python for generating graphs for this project.
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