
P3800 Project 3: Monte Carlo Simulation of the 2D Ising Model

You are encouraged to be creative in your coding (but make sure you explain what you
did), in your exploration of the Ising model and in the presentation of your results.

For background information, see MacKinnon’s notes (pdf on course web page) and al-
most any book on statistical mechanics or statistical physics.

Your task is to write computer code in Fortran or C (or C++ for those who prefer
it) based on the Metropolis Monte Carlo method which simulates thermal averages of the
nearest-neighbor Ising model on a square lattice having a spin-dependent energy of the
form:

E = −J
NN∑
i,j

SiSj

where i, j is a sum over nearest neighbors (NN) only and Si = ±1. You will use periodic
boundary conditions and set J = 1 and kB = 1 for convenience. This model can be
solved exactly and shows a transition between a paramagnetic state where M = 0 and a
ferromegnetic state where M 6= 0 at a transition temperature Tc = 2/ ln

(
1 +
√

2
)
' 2.269.

Here, M(T) is the magnetization. Since there is no preferred direction (either up or down),
it is expedient to average over the absolute value of the sum of individual spins,

M =
1

N
〈 |S| 〉

with,

S =
N∑
i=1

Si

where Si is an individual spin, N is the number of spins and the brackets 〈. . .〉 indicate a
thermal average over Monte Carlo Steps (MCS) as described in class and in MacKinnon’s
notes: see his Project - Ising Model description starting on page 43 (we do not recommend
the mapping to a 1D problem). In addition to M(T), you should also calculate the heat
capacity CV (T) per spin,

CV =
1

N

1

(kBT 2)

[
〈E2〉 − 〈E〉2

]
and magnetic susceptibility χ(T) per spin,

χ =
1

N

1

(kBT)

[
〈S2〉 − 〈S〉2

]
.

1

You should get simulation results for these quantities for a range of temperatures around
Tc, something like 0.5 ≤ T ≤ 4.0 in steps of 0.05. Recall from class that for an infinite
lattice, CV (T) and χ(T) should diverge at Tc. It is useful to start at the higher T (using
either a ferromagnetic or a random configuration for the initial Si) and cool the system
down, using the final configuration from the previous T as the initial configuration of the
new T . Alternatively, try increasing the temperature instead (start with all spins up in this
case). It is also best to discard the first 10% of the runs (MCS0) for thermal equilibration
before using the results to get thermal averages. You should consider the effect of different
lattice sizes L × L with L including (at least the) sizes 4, 12, 36 and 100, as well as the
impact of using different number of MCS (say, 100, 1000 and 10000). NOTE, it is better
to consider one MCS to consist of L×L single MC spin flips, i.e., a “sweep” of the lattice.
Thus, for different lattice size, one MCS will allow, on average, every spin the chance to
flip and will serve as a better measure of “time” over which the system runs.

Below is an example of some old (and somewhat terse) Fortran code for the 3D Ising
model which contains parts you may find inspiring. It calculates M at one particular value
of T . Your code can be structured in a clearer manner. Consider the following when coding.

• Have a separate part that stores the five possible values of ∆E (see MacKinnon).

• Calculate the energy for a given configuration of spins using a subroutine.

• Choose spins Si to flip (or not) randomly instead of systematically.

• Flip a spin or not based on the if statements that avoid checking against a random
number if it is not really necessary.

In your write-up you should discuss any particular coding issues you think are relevant.
There should be lots of graphs of the quantities vs T for different lattices sizes (consider
putting data for the same quantity for different L on the same graph) and different MCS.
Maybe even a plot of your estimates for Tc vs L would be useful (try various log-log or semi-
log plots). Does it extrapolate to the correct value? How do divergences scale with N? Also
consider including illustrative results for Si at each lattice point for the case of T � TC as
well as T � TC which should show nearly all up-spins in the former case and nearly equal
numbers of up-spins and down-spins in the latter case. Consider using pyplot.matshow to
create plots of the configurations. Submit your completed project electronically (as with
previous projects) and also a hard copy of your write-up (pdf).

For your reference, the website includes reference data for the M(T) and χ(T) for large
systems.

2

Notes:

In 3D, a spin has 6 niehgbours, and there are only
7 possible changes in energy depending on whether
there are 0, 1, 2, … or 6 neighbours with the same
spin. The related probabilities are stored in an array
as a "look-up" table so that exp need not be calculated
each time.

This algorithm sweeps through all lattice sites
sequentially. Although this does not break detailed
balance, your implementation should randomly pick
spins to avoid possible kinetic correlations.

If the spin flip is rejected, M remains unchanged.

The algorithm only accumulates to the
running sum once N=L*L*L spin flips have
been attempted, i.e., after every "sweep"
of the lattice.

3

Fun with ChatGPT

In an attempt to simplify things, I asked ChatGPT to produce some code for it. Here is
what I asked, but I’ll only show the final outputs.

• Please produce code in C for the 2D Ising model.

• keep going

• The two code fragments you produced were not complete. Could you please produce
a complete code for the 2D Ising model.

• I liked the style of the first version of the code. Could you complete the following
code? [pasted code]

• Could you please produce a Fortran 90 version of the code?

• The Fortran version has at least one error arising because C is case sensitive and
Fortran is not. Could you fix the Fortran version?

• You’re using j and J to represent two different variables, but in Fortran j and J are
the same.

• Why do you stop generating the reponse without completing the code? Please pro-
duce a full version

• still there? [I had closed my laptop.]

• Ok, let’s try again. Please produce code in Fortran 90 for the 2D Ising model. Use a
random seed based on the time.

• Please don’t stop generating code until the equilibration stage and the measuring
stage are both finished.

• and use the variabe Jexch for the exchange constant

• keep going!

• . . . (I tried a few other things but did not get much further.)

Below are equivalent C and Fortran versions from ChatGPT for the 2D Ising model.
Note that in the Fortran code, the exchange constant is J, which conflicts with integer
variable j, and so should be renamed.

4

Here is the C code.

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

#define N 32 // lattice size

#define J 1.0 // exchange interaction strength

#define kB 1.0 // Boltzmann constant

#define warmupSteps 1000 // number of steps for equilibration

#define measureSteps 100 // number of steps for measuring observables

#define nTemps 100 // number of temperatures to simulate

#define Tmin 1.0 // minimum temperature

#define Tmax 5.0 // maximum temperature

#define dT (Tmax-Tmin)/(nTemps-1) // temperature step size

int main()

{

// Initialize the random number generator

srand(time(NULL));

// Allocate memory for the spin lattice

int **lattice;

lattice = (int **)malloc(N * sizeof(int *));

for (int i = 0; i < N; i++) {

lattice[i] = (int *)malloc(N * sizeof(int));

}

// Initialize the spin lattice to a random configuration

for (int i = 0; i < N; i++) {

for (int j = 0; j < N; j++) {

if (rand() < RAND_MAX/2) {

lattice[i][j] = 1;

} else {

lattice[i][j] = -1;

}

}

}

5

// Initialize the observables

double energy = 0.0;

double magnetization = 0.0;

// Loop over temperatures

for (int t = 0; t < nTemps; t++) {

double T = Tmin + t*dT;

printf("Temperature = %f\n", T);

// Equilibration

for (int i = 0; i < warmupSteps; i++) {

// Choose a random spin

int x = rand() % N;

int y = rand() % N;

// Compute the energy change if the spin is flipped

int deltaE = 2*J*lattice[x][y]*

(lattice[(x-1+N)%N][y] +

lattice[(x+1)%N][y] +

lattice[x][(y-1+N)%N] +

lattice[x][(y+1)%N]);

// Decide whether to flip the spin

if (deltaE < 0 || exp(-deltaE/(kB*T)) > ((double)rand())/RAND_MAX) {

lattice[x][y] = -lattice[x][y];

energy += deltaE;

magnetization += 2*lattice[x][y];

}

}

// Measuring observables

double sumEnergy = 0.0;

double sumEnergy2 = 0.0;

double sumMagnetization = 0.0;

double sumMagnetization2 = 0.0;

double sumAbsMagnetization = 0.0;

for (int i = 0; i < measureSteps; i++) {

// Choose a random spin

int x = rand() % N;

6

int y = rand() % N;

// Compute the energy change if the spin is flipped

int deltaE = 2*J*lattice[x][y]*

(lattice[(x-1+N)%N][y] +

lattice[(x+1)%N][y] +

lattice[x][(

And here is the Fortran code.

program ising_2d

implicit none

integer, parameter :: N=32 ! lattice size

real, parameter :: J=1.0 ! exchange interaction strength

real, parameter :: kB=1.0 ! Boltzmann constant

integer, parameter :: warmupSteps=1000 ! number of steps for equilibration

integer, parameter :: measureSteps=100 ! number of steps for measuring observables

integer, parameter :: nTemps=100 ! number of temperatures to simulate

real, parameter :: Tmin=1.0 ! minimum temperature

real, parameter :: Tmax=5.0 ! maximum temperature

real, parameter :: dT=(Tmax-Tmin)/(nTemps-1) ! temperature step size

integer :: i, j, t, x, y

integer, dimension(N,N) :: lattice

real :: T, energy, magnetization, deltaE

real :: sumEnergy, sumEnergy2, sumMagnetization, sumMagnetization2, sumAbsMagnetization

integer :: acceptCount

! Initialize the random number generator

call srand(time())

! Initialize the observables to zero

energy = 0.0

magnetization = 0.0

! Loop over temperatures

7

do t=0, nTemps-1

T = Tmin + t*dT

write(*,*) ’Temperature = ’, T

! Equilibration

do i=1, warmupSteps

! Choose a random spin

x = mod(rand(), N)

y = mod(rand(), N)

! Compute the energy change if the spin is flipped

deltaE = 2.0*J*lattice(x,y)* &

(lattice(mod(x-1+N,N),y) + &

lattice(mod(x+1,N),y) + &

lattice(x,mod(y-1+N,N)) + &

lattice(x,mod(y+1,N)))

! Decide whether to flip the spin

if (deltaE < 0.0 .or. exp(-deltaE/(kB*T)) > rand()/real(RAND_MAX)) then

lattice(x,y) = -lattice(x,y)

energy = energy + deltaE

magnetization = magnetization + 2.0*lattice(x,y)

endif

end do

! Measuring observables

sumEnergy = 0.0

sumEnergy2 = 0.0

sumMagnetization = 0.0

sumMagnetization2 = 0.0

sumAbsMagnetization = 0.0

acceptCount = 0

do i=1, measureSteps

! Choose a random spin

x = mod(rand(), N)

y = mod(rand(), N)

! Compute the energy change if the spin is flipped

deltaE = 2.0*J*lattice(x,y)* &

8

(lattice(mod(x-1+N,N),y) + &

lattice(mod(x+1,N),y) + &

lattice(x,mod(y-1+N,N)) + &

lattice(x,mod(y+1,N)))

! Decide whether to flip the spin

if (deltaE < 0.0 .or. exp(-deltaE/(kB*T)) > rand()/real(RAND_MAX)) then

lattice(x,y) = -lattice(x,y)

energy = energy + deltaE

magnetization = magnetization + 2.0*lattice(x,y

9

