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Low-density: Cluster phases in dipolar colloids
• Hugh Newman, M.Sc. (2008 - 2011)

• Amit Agarwal, post-doctoral researcher (2008 - 2009, now at DRDO, India)

• Ning Li, M.Sc. (2006 - 2008, now at Brandeis)

• Simulation Collaborations: Marek Bromberek (2009 - ), Prof. I. Saika-Voivod,
Ahmad Almudallal (Ph.D.), joint postdoctoral: Manuel Valera (now at SRU, PA).

Soft Matter Lab, Memorial University
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Ultrahigh-density: phases in ultrasoft+dipolar colloids
• Collaboration with Priti Mohanty and Peter Schurtenberger at Lund University.

Soft Matter Lab, Memorial University
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Intermediate density: cluster phase in protein solutions
• Suliman Barhoum, Ph.D. (2008 - )

Detection of Aggregate Structures in Protein and Micellar Solutions Using NMR
Diffusometry

• Funding: NSERC, CFI, ACENet, MUCEP

Soft Matter Lab, Memorial University



5/39

• Fluid-solid transition in computer simulation of hard spheres:
Alder & Wainwright, 1962.

• Existence of liquid state requires attractive interactions. In fact, a
sensitive balance between attractions and excluded volume repulsions.

What is Liquid?
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Generalization of the liquid state

• Competition of short-range attractions and long-range repulsions can
give rise to clusters in proteins and colloids
(Stradner et al., Nature 2004).

Cluster Phases
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Why would clusters have finite size in equilibrium?

• Micelles: Clustering arises from anisotropic interactions imposed by
the hydrophobic-hydrophilic interface.

• Competition of interactions can lead to a free energy minimum at a
finite, mesoscopic cluster size (Groenewold & Kegel, J. Phys. Chem. B,, 2001).

Clustering in Complex Fluids
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• How does one detect nanoscale clusters that are in constant mo-
tion?

Clusters in Protein Solutions
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An “Interference Peak” in SANS
• The “monomer” peak is at qm ≈ 2− 3 nm−1

• There is an “interference peak”: qc ≈ 1 nm−1

Stradner et al, Nature 432, 492 (2004). Shukla et al, PNAS 105, 5075 (2008).

Do Proteins Form “Equilibrium” Clusters?
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• Stradner et al: YES! qc represents equilibrium protein clusters

• Shukla et al: NO! Peak position moves with concentration !

• We decided to test with a different technique: NMR.

Stradner et al, Nature 432, 492 (2004). Shukla et al, PNAS 105, 5075 (2008).

Do Proteins Form “Equilibrium” Clusters?
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Neutron Spin Echo: Collective Diffusion at Short Times
• Commentary: “Different views from small angles”

• “Dynamic clusters at short times” (via Dc at q → 0)

“macroscopic properties at the long time limit still determined by monomeric proteins”

Clusters in Protein Solutions
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• In a uniform magnetic field: Larmor frequency of a proton is not
position dependent.

• In a field gradient: Larmor frequency is position-encoded. Co-
herence of signal is lost due to “dephasing”

• Stimulated Echo: “a pulse sequence” that refocuses signal loss
due to static fields

• Diffusion → irrecoverable signal loss → attenuation of echo.

• S(g) = S(0) exp (−kD), where k ≈ (γgδ)2∆, ∆ is the diffusion time.

Pulsed Gradient NMR is a unique probe



13/39

• A two-site exchange model is known to work well in NMR of
surfactant systems (Soderman & Stilbs, Prog. NMR Spec., 1994).

Dobserved =
bDmon + (1− b)Dagg

Normalization
(1)

• Polymer PEO (polyethyleneoxide), surfactant SDS (sodium do-
decyl sulphate). Barhoum & Yethiraj, J. Chem. Phys. 132, 024909 (2010).

Polymer-surfactant clusters
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• Unique to NMR: ps - ns molecular correlation times give rise to ms
- second NMR relaxation times.

• The relevant relaxation time in the stimulated echo is the longitu-
dinal relaxation time T1.

Relaxation-weighted Diffusion

• For single-species diffusion in the long-time limit: D cannot be a
function of ∆.

• For two species the observed diffusion-coefficient is a relaxation-
weighted average of D for each species (“m” for monomer, “a” for
aggregate):

Dobserved =
[bDm exp (−∆/T1,m) + (1− b)Da exp (−∆/T1,a)]

Normalization
(2)

Effects of NMR Relaxation
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Protein Solutions
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• We measure diffusion coefficient D in the long-time
limit: (∆ >> τBrownian)

• Dobserved vs protein volume fraction.

• Dobserved increases with ∆: this is consistent
with relaxation weighting.

Protein Solutions
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• We can fit different concentrations to obtain the monomer fraction
b and aggregate fraction 1− b.
• Monomer diffusion Dm is consistent with simulations for crowded

diffusion of model proteins (Han & Herzfeld, Biophys. J., 1993).

•Main point: short-range attractions and long-range repulsions
can result in energetically favourable finite-size clusters.
Barhoum, Yethiraj, J. Phys. Chem. B 2010.

Equilibrium Clusters Exist
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Colloids with Dipolar Interactions
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Point Dipolar Approximation
• Has inbuilt into it both repulsive and

attractive interactions.

• External electric field ~Eext induces dipoles.

• Dipoles interact:
Udip(r)/kBT ∼ − [σ6E2

ext/r
3] (3 cos2 θ − 1)/2

• Dipolar spheres self-organize into chains.

• Chains interact.

Stacked chains: repulsive. Staggered chains: attractive

Colloids with Dipolar Interactions
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Experimental
• Laser-scanning confocal microscopy.

• Brownian microspheres:
silica σ = 0.8µm or PNIPAM σ = 1.45µm at 20C

• AC electric fields: f > 100 kHz, oscillating too fast for double layer)

Colloids in Electric Fields
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Experimental
• Laser-scanning confocal microscopy

• Brownian (σ = 0.8µm) microspheres:
fluorescent-core–non-fluorescent-shell silica colloids in water-DMSO

• AC electric fields: f > 100 kHz, oscillating too fast for double layer)

Colloids in Electric Fields
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Dipolar colloids form body centred tetragonal (BCT) crystals.
• BCT is the theoretically minimum energy structure:

R. Tao et al, Phys. Rev. Lett., 1994.

• Experiment: J.E. Martin et al, Phys. Rev. E, 1998;

U. Dassanayake et al, J. Chem. Phys., 2000.

Colloids in Electric Fields are Dipolar
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Experiment (Yethiraj & van Blaaderen, Nature 2003, Int. J. Mod. Phys. 2002)

• High Densities: Percolating particulate regions, non-percolating particle-poor regions.

• Intermediate densities: Particulate clusters, percolating particle-poor regions.

2D Monte Carlo simulation (Almudallal & Saika-Voivod, Phys. Rev. E, 2011).

• Represent chains as particles with “stacked” or “staggered” effective interactions

• For φ > 5%, experiment

and simulation

agree.

• 3D: phase diagram at moderate to high densities Hynninen et al, PRE, 2005.

Microstructure at Lower Packing
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Coarsening of structures with time
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Unusual cellular structures at low densities (Φ < 4%)

• Granular dipolar: A. Kumar, B. Khusid, A. Acrivos, Phys. Rev. Lett., 2005.

• Colloidal dipolar:
A. Agarwal, A. Yethiraj, Phys. Rev. Lett., 2009.

Very Low Packing: The “Void Phase”
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Time Evolution of Voids Phase Diagram

Mechanism:

• Is likely an equilibrium structure: tobs = 5000 ∗ τBrownian

• Void phase (percolating non-crystalline particle networks)
only exists at low densities.

• The lengthscale increases with sample thickness.

A Low-Density Network-forming Phase
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Experiment

• High Densities: Percolating particulate regions, non-percolating particle-poor regions.

• Intermediate densities: Particulate clusters, percolating particle-poor regions.

• At very low densities: “re-entrant” percolation of particulate regions, surrounding voids

(particle-poor regions): not seen in 2D simulation.

“Re-entrant” Percolation of Clusters
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Competing Interaction Forces
• A sensitive balance between intermediate-range attractive forces

and shorter and longer range repulsions.

• Chain-chain undulations can produce fluctuation-induced attrac-
tions (Halsey & Toor, PRL 1990).

• Beyond a lengthscale ` > L tan(54◦), repulsions dominate again.

Mechanism for the void phase
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Clusters in Dipolar Colloids

• Along the field direction, there are well-formed chains
(a 1D crystal, albeit subject to strong fluctuations).

• At large packings: single-crystal or poly-crystalline BCT.

• At lower packings: crystalline cluster islands that do not
merge to form one big blob.

• At very low packing: an unusual percolating cluster (“void”)
phase

• Void phase characterized by disordered microstructure in the
plane perpendicular to the field.

As-yet unanswered question

What gives rise to the percolating networks at ultra-low densities?

Conclusion
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Amorphous State in Microgel colloids

• Interactions Yukawa-like for as > σ, much softer for as < σ.

• How does the introducing anisotropy affect phase behaviour?

• Graded dielectric spheres: what is the nature of the electro-
magnetic interactions? Can we make better electrorheologi-
cal fluids?

Ultrasoft and Dipolar Colloids
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Field-packing fraction phase diagram
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Amorphous to crystalline: φeff = 0.85

φeff = 0.85, E = 0.23 V/µm.

Field-driven transitions
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Field-packing fraction phase diagram
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Amorphous to amorphous: φeff = 2.0

• Field response at surprisingly low field strengths.

• Arrested phase separation at the highest packings: no sign
of anisotropy!!

• Theoretical input welcome - probably should include the ef-
fects of mobile ions.

Field-driven transitions
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Dipolar colloids: percolating particle clusters at ultralow packing

• A 2D model captures physics at moderate and high densities.

• Intermediate-range attractions: dielectrophoresis ?

• Unanswered: where does the void lengthscale come from?

Agarwal & Yethiraj, Phys. Rev. Lett. (2009).

Ultrasoft, dipolar colloids: new phases at ultrahigh packing

• Structure formation at low fields: mobile ions must be important

• Amorphous to crystal phase transition

• Amorphous to amorphous transition.

Mohanty, Yethiraj & Schurtenberger, Phys. Rev. Lett. (2009).

Equilibrium Clusters in Proteins
• Clusters exist in equilibrium.

• Long-time dynamics is a weighted average of monomer and
aggregate properties. Barhoum & Yethiraj, J. Phys. Chem. B (2010).

Conclusions
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Can quantify this by measuring equations of state
In zero field:

As a function of field strength:

N. Li, H. Newman, M. Valera, I. Saika-Voivod, AY, Soft Matter, 2009.

Colloids in Electric Fields ARE Dipolar
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An intermediate-range attractive force ?
• Dielectrophoretic particle segregation with patterned electrodes.

• The stable configuration is the region between the electrodes.

• The centre of the electrode is locally stable close to the bottom.

• With unpatterned electrodes, the particle-chains are the non-uniformity! S

Possible Origin of the Void Phase
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• The location AND shape of clusters can be controlled.

• The size of the clusters can be controlled with frequency and
(low!) field strength.

TOP BOTTOM

Patterning in 3D
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