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Ultrahigh-density: phases in ultrasoft+dipolar colloids
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Intermediate density: cluster phase in protein solutions

e Suliman Barhoum, Ph.D. (2008 - )
Detection of Aggregate Structures in Protein and Micellar Solutions Using NMR
Diffusometry

e Funding: NSERC, CFI, ACENet, MUCEP




What is Liquid?

e Fluid-solid transition in computer simulation of hard spheres:

Alder & Wainwright, 1962.

What is “liquid”’? Understanding the states of matter

J. A. Barker and D. Henderson
IBM Research Laboratory, Momterey and Cottle Roods, San Jose, cr:r!r'farhiu. 05193

Liquids exist in a relatively small part of the enormous range of temperatures and pressures existing in the
universe. Mevertheless, they are of vital importance for physics and chemistry, for technology, and for life
itself. A century of effort since the piomeering work of van der Waals has led to a fairly complete basic
understanding of the static and dynamic physicochemical properties of liguids. Advances in statistical
mechanics (the fundamental formulations of Gibbs and Boltzmann, integral equations and perturbation
theories, computer simulations), in knowledge of intermolecular forces, and in experimental technigues,
have all contributed to this. Thirty years ago the very existence of liguids seemed a Little mysterious: today
omne can make fairly precise predictions of the solid-liquid-gas phase diagram and of the microscopic and
macroscopic static and dynamic properties of liquids. This paper is a survey, with particular emphasis on
equilibrium properties, of the theory which underlies that basic understanding, which is now at least
comparable with our understanding of the physics of solids.

Reviews of Modermn Physics, Vol. 48, No. 4, October 1976 Copyright @ 1976 American Physical Society 5i

e Existence of liquid state requires attractive interactions. In fact, a
sensitive balance between attractions and excluded volume repulsions.



Cluster Phases

Generalization of the liquid state

e Competition of short-range attractions and long-range repulsions can
give rise to clusters in proteins and colloids
(Stradner et al., Nature 2004).
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Clustering in Complex Fluids

Why would clusters have finite size in equilibrium?

e Micelles: Clustering arises from anisotropic interactions imposed by
the hydrophobic-hydrophilic interface.

e Competition of interactions can lead to a free energy minimum at a
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Clustering in Complex Fluids

he tendency of molecules to associate with other molecules
of the same species and to shun dissimilar molecules by
bulk separation is well established. There is another kind of
association, however, that is less understood in science: how do
malecules or particles spontancously form clusters that contain
many particles or molecules and yet have a finite size? In the
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finite, mesoscopic cluster size (Groenewold & Kegel, J. Phys. Chem. B,, 2001).
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where the interaction is purely repulsive, the precise shape of
interparticle potential curve has critical, nonintuitive conse-
quences. A hard-core repulsion with a softer repulsive shoulder
(HCSS), for instance, forms a canonical sequence of phases with
Increasing pa rticle density or pressure: a superlattice of spherical
clusters, 2 2D array of columnar clusters, multilamellar stacks,
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Clusters in Protein Solutions

e How does one detect nanoscale clusters that are in constant mo-
tion?
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Do Proteins Form “Equilibrium” Clusters?

An “Interference Peak” in SANS

e The “monomer” peak is at g, ~ 2 — 3 nm™*

e There is an “interference peak”: ¢, ~ 1 nm™*

Stradner et al, Nature 432, 492 (2004). Shukla et al, PNAS 105, 5075 (2008).
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Do Proteins Form “Equilibrium” Clusters?

e Stradner et al: YES! ¢, represents equilibrium protein clusters
e Shukla et al: NO! Peak position moves with concentration !
e We decided to test with a different technique: NMR.

Stradner et al, Nature 432, 492 (2004). Shukla et al, PNAS 105, 5075 (2008).
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Clusters in Protein Solutions

Neutron Spin Echo: Collective Diffusion at Short Times
e Commentary: “Different views from small angles”

e “Dynamic clusters at short times” (via D, at ¢ — 0)

“macroscopic properties at the long time limit still determined by monomeric proteins”

SEE COMMENTARY

Absence of equilibrium cluster phase
in concentrated lysozyme solutions
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The different views from small angles
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tion-independent but does change wi extracted structure factor term by taking
temperature and ionic st N sthe  into account the asymmetric shape of ly-
lack of concentration dependence in the  sozy and the higher g (concentration-
tant information about the positions of both of these p is independent) peak they chtain is
structure of the protein and the nature the basis for their proposal of equilib- attributed to the orientational cou-
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Pulsed Gradient NMR is a unique probe

e In a uniform magnetic field: Larmor frequency of a proton is not
position dependent.

e In a field gradient: Larmor frequency is position-encoded. Co-
herence of signal is lost due to “dephasing”

£ 0.0
0.5 [Lysozyme]=245 mg/ml
84 solvent peaks A=100 ms
=1:0 D=5.40(2) x 10" m’s
& 4 § -1.5
E r “width of slice in 2 20
2] <, resonance” is inversely £~
protein peaks proportional to gradient 25
strength
E 3 -3.0
_”JUVM > : ' ;
5 0 5 10 15x10°
DR T o k=(y59)"(A-5/3)

e Stimulated Echo: “a pulse sequence” that refocuses signal loss
due to static fields

e Diffusion — irrecoverable signal loss — attenuation of echo.

® S(g) = S(O) exp (—l{?D), where k &~ (vg6)?A, A is the diffusion time.




Polymer-surfactant clusters

e A two-site exchange model is known to work well in NMR of
surfactant systems (Soderman & Stilbs, Prog. NMR Spec., 1994).

~ bDyon + (1 =)Dy,

D observed —

(1)

e Polymer PEO (polyethyleneoxide), surfactant SDS (sodium do-
decyl sulphate). Barhoum & Yethiraj, J. Chem. Phys. 132, 024909 (2010).
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Effects of NMR Relaxation

e Unique to NMR: ps - ns molecular correlation times give rise to ms
- second NMR relaxation times.

e The relevant relaxation time in the stimulated echo is the longitu-
dinal relaxation time 77.

Relaxation-weighted Diffusion
e For single-species diffusion in the long-time limit: D cannot be a
function of A.

e For two species the observed diffusion-coefficient is a relaxation-
weighted average of D for each species (“m” for monomer, “a” for

aggregate):
6D, exp (=A/Ty,,) + (1 —b)D,exp (—A/T1,)]

Normalization
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Protein Solutions
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Protein Solutions

e We measure diffusion coefficient D in the long-time

® D oervea VS protein volume fraction.
e D erved INcreases with A: this is consistent

with relaxation weighting.
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120x10 “ o |—— —— Global fit: relaxation-weighted diffusion
""""" D,, (dilute solution)
--- D, fitted (C= 169 mg/ml)
100 D, fitted (C= 254mg/ml)

D (m’ls)

T
400
A (ms)



Equilibrium Clusters Exist

e We can fit different concentrations to obtain the monomer fraction
b and aggregate fraction 1 — b.

e Monomer diffusion D,, is consistent with simulations for crowded
diffusion of model proteins (Han & Herzfeld, Biophys. J., 1993).
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e Main point: short-range attractions and long-range repulsions
can result in energetically favourable finite-size clusters.
Barhoum, Yethiraj, J. Phys. Chem. B 2010.



Colloids with Dipolar Interactions




Colloids with Dipolar Interactions

Point Dipolar Approximation
e Has inbuilt into it both repulsive and
attractive interactions.

e External electric field E;xt induces dipoles.

e Dipoles interact:
Udip(1) kT ~ —[0°E? /17 (3cos® 0 — 1)/2

e Dipolar spheres self-organize into chains.

e Chains interact.

Stacked chains: repulsive. Staggered chains: attractive
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Colloids in Electric Fields

Experimental
e Laser-scanning confocal microscopy.

e Brownian microspheres:
silica 0 = 0.8um or PNIPAM o = 1.45um at 20C

e AC electric fields: f> 100 kHz, oscillating too fast for double layer)
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Colloids in Electric Fields

Experimental
e Laser-scanning confocal microscopy

e Brownian (o = 0.8um) microspheres:

fluorescent-core—non-fluorescent-shell silica colloids in water-DMSO

o AC electric fields: £ > 100 kHz, oscillating too fast for double layer)

Fluorescent 3D Electric Field Sample
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Colloids in Electric Fields are Dipolar

Dipolar colloids form body centred tetragonal (BCT) crystals.

e BCT is the theoretically minimum energy structure:
R. Tao et al, Phys. Rev. Lett., 1994.

® Experiment: J.E. Martin et al, Phys. Rev. E, 1998;
U. Dassanayake et al, J. Chem. Phys., 2000.




Microstructure at Lower Packing

Experiment (Yethiraj & van Blaaderen, Nature 2003, Int. J. Mod. Phys. 2002)
e High Densities: Percolating particulate regions, non-percolating particle-poor regions.

e Intermediate densities: Particulate clusters, percolating particle-poor regions.

2D Monte Carlo simulation (Almudallal & Saika-Voivod, Phys. Rev. E, 2011).

e Represent chains as particles with “stacked” or “staggered” effective interactions
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e 3D: phase diagram at moderate to high densities Hynninen et al, PRE, 2005.



Coarsening of structures with time




Very Low Packing: The “Void Phase”

Unusual cellular structures at low densities (¢ < 4%)

e Colloidal dipolar:
A. Agarwal, A. Yethiraj, Phys. Rev. Lett., 2009.




A Low-Density Network-forming Phase
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Mechanism:

o [s likely an equilibrium structure: t,ps = 5000 * Tgrownian

e Void phase (percolating non-crystalline particle networks)
only exists at low densities.

e The lengthscale increases with sample thickness.




“Re-entrant” Percolation of Clusters

Experiment
e High Densities: Percolating particulate regions, non-percolating particle-poor regions.

e Intermediate densities: Particulate clusters, percolating particle-poor regions.

e At very low densities: “re-entrant” percolation of particulate regions, surrounding voids

(particle-poor regions): not seen in 2D simulation.

?
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Mechanism for the void phase

Competing Interaction Forces

e A sensitive balance between intermediate-range attractive forces
and shorter and longer range repulsions.

e Chain-chain undulations can produce fluctuation-induced attrac-
tions (Halsey & Toor, PRL 1990).

.......o.mm
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e Beyond a lengthscale ¢ > L tan(54°), repulsions dominate again.



Conclusion

Clusters in Dipolar Colloids

e Along the field direction, there are well-formed chains
(a 1D crystal, albeit subject to strong fluctuations).

e At large packings: single-crystal or poly-crystalline BCT'.

e At lower packings: crystalline cluster islands that do not
merge to form one big blob.

e At very low packing: an unusual percolating cluster (“void”)
phase

e Void phase characterized by disordered microstructure in the
plane perpendicular to the field.

As-yet unanswered question
What gives rise to the percolating networks at ultra-low densities?




Ultrasoft and Dipolar Colloids

Amorphous State in Microgel colloids

e Interactions Yukawa-like for a, > o, much softer for a, < o.
e How does the introducing anisotropy affect phase behaviour?

e Graded dielectric spheres: what is the nature of the electro-
magnetic interactions? Can we make better electrorheologi-

cal fluids?



Field-packing fraction phase diagram
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Field-driven transitions

Amorphous to crystalline: gbeﬂf = (.89

Gog = 0.85, E = 0.23 V/pum.



Field-packing fraction phase diagram
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Field-driven transitions

Amorphous to amorphous: ¢Cﬁ = 2.0

e Field response at surprisingly low field strengths.

e Arrested phase separation at the highest packings: no sign
of anisotropy!!

e Theoretical input welcome - probably should include the ef-
fects of mobile ions.



Conclusions

Dipolar colloids: percolating particle clusters at ultralow packing
e A 2D model captures physics at moderate and high densities.

e Intermediate-range attractions: dielectrophoresis ?
e Unanswered: where does the void lengthscale come from?
Agarwal & Yethiraj, Phys. Rev. Lett. (2009).

Ultrasoft, dipolar colloids: new phases at ultrahigh packing
e Structure formation at low fields: mobile ions must be important
e Amorphous to crystal phase transition
e Amorphous to amorphous transition.

Mohanty, Yethiraj & Schurtenberger, Phys. Rev. Lett. (2009).

Equilibrium Clusters in Proteins
e Clusters exist in equilibrium.

e Long-time dynamics is a weighted average of monomer and
aggregate properties. Barhoum & Yethiraj, J. Phys. Chem. B (2010).
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Colloids in Electric Fields ARE Dipolar

Can quantify this by measuring equations of state
In zero field:
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N. Li, H. Newman, M. Valera, I. Saika-Voivod, AY, Soft Matter, 2009.




Possible Origin of the Void Phase

An intermediate-range attractive force ?

e Dielectrophoretic particle segregation with patterned electrodes.
e The stable configuration is the region between the electrodes.
e The centre of the electrode is locally stable close to the bottom.

e With unpatterned electrodes, the particle-chains are the non-uniformity! S

NEGATIVE DEP: PARTICLE SHOULD GO HERE.



Patterning in 3D

e The location AND shape of clusters can be controlled.
e The size of the clusters can be controlled with frequency and
(low!) field strength.
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