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Two Experimental Tests of the Halperin-Lubensky-Ma Effect
at the Nematic–Smectic-A Phase Transition
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We have conducted two quantitative tests of predictions based on the Halperin-Lubensky-Ma (HLM)
theory of fluctuation-induced first-order phase transitions. First, we explore the effect of an external
magnetic field on the nematic–smectic-A transition in a liquid crystal. Second, we examine the de-
pendence of the first-order discontinuity as a function of mixture concentration in pure 8CB and three
8CB-10CB mixtures. We find the first quantitative evidence for deviations from the HLM theory.

PACS numbers: 64.70.Md, 61.30.Gd, 64.60.Fr
One of the most important advances made in our under-
standing of continuous phase transitions has been the modi-
fication of critical exponents, due to thermal fluctuations,
from the values predicted by mean-field theory [1]. But
thermal fluctuations have another effect, one that is less
well understood theoretically and studied only to a lim-
ited extent experimentally: when two order parameters (or
an order parameter and a gauge field) are simultaneously
present and interact with each other, the fluctuations of
one may drive the phase transition of the other first order.
In high-energy physics, for example, an analogous situ-
ation occurs in the Higgs mechanism [1]. In condensed-
matter physics, over two decades ago, Halperin, Lubensky,
and Ma (HLM) [2] predicted that this could occur in two
settings: the normal-superconducting phase transition in
type-1 superconductors and the nematic–smectic-A (NA)
transition in liquid crystals. At the NA transition [3–6], the
first fluctuating field is the nematic order parameter Qij �
S

°
3ninj 2 dij

¢
�2, while the other order parameter is the

two-component smectic-A order parameter c . In principle,
a complete theory must account for thermal fluctuations
in the nematic order parameter magnitude S, the nematic
director n̂, and the smectic-A order parameter c . The
de Gennes–McMillan mechanism [3] takes into account S
fluctuations but is mean field in n̂ and c . The HLM theory,
in addition, considers n̂ fluctuations but is mean field in
c . Deviations from the de Gennes–McMillan mechanism
have been quantitatively established by Anisimov et al. [7]
and Cladis et al. [8]. Although their conclusions are con-
sistent with the HLM mechanism, the experiments are at
their resolution limits and the full implications of the HLM
theory remain to be tested.

In this paper, we conduct the first two quantitative tests
of the HLM theory, both leading to significant discrepan-
cies from HLM. (i) Mukhopadhyay et al. [9] have made
a detailed prediction for the external-field dependence of
the HLM effect; we look for this field effect experimen-
tally in the cyanobiphenyl liquid crystal 8CB, as well as
in mixtures of 8CB and 10CB. (ii) The first-order discon-
tinuity implied by the HLM theory (which can be char-
acterized by the number t0 � �TNA 2 T���T�, where TNA
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is the transition temperature and T� is the spinodal point)
should also be sensitive to the mixture concentration x in
the 8CB-10CB system. Here, we make a quantitative study
of t0 vs x.

In order to achieve the resolution required for these mea-
surements, we designed a high-resolution real-space opti-
cal technique (“intensity fluctuation microscopy”) which is
at least an order of magnitude more sensitive than previous
techniques. The experimental setup is briefly described
next (see Refs. [10,11] for more details).

The liquid crystal is sandwiched between two glass
cubes, both treated for unidirectional planar anchoring.
The spacing between the cubes (typically d � 30 mm) is
adjusted interferometrically, and thickness gradients across
the entire cell are controlled to be &0.5 mm. The cubes are
placed in a gradient hot stage specifically designed for this
experiment to fit an in-house transverse-bore electromag-
net. The top and bottom of the sample cell are indepen-
dently temperature controlled at temperatures that straddle
the NA transition temperature.

We use a crossed-polarized digital charge-coupled de-
vice (CCD) microscopy setup to measure intensity fluctua-
tions as a finely resolved function of temperature. These
intensity fluctuations are caused by director fluctuations
which are a soft mode in the nematic phase but are sup-
pressed in the smectic-A phase. Subtracting two succes-
sive, uncorrelated “instantaneous” images (a 1.8 mm 3

1.4 mm area of the sample being imaged onto a 1317 3

1024 pixel, 12-bit digital CCD camera) gives us a differ-
ence image

D�x, y� � I1�x, y� 2 I2�x, y� , (1)

which reflects static intensity fluctuations. The histogram
of the intensity differences in the nematic and smectic-A
phases is well fit by a Gaussian probability distribution.
The primary contribution to the noise is photoelectronic
shot noise, which also has a Gaussian probability distri-
bution. The normalized variance z has the shot-noise
variance subtracted and is normalized with respect to the
transmitted light intensity:
© 2000 The American Physical Society
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z �
ẑ 2 ẑSN

��I� 2 Ioffset�2
, (2)

where ẑ is the measured raw variance, ẑSN is the shot-noise
variance calibrated in a blank field, � � refers to a spatial
average over pixels, �I� is the average intensity over both
images and all pixels, and Ioffset is a built-in intensity offset
in the CCD camera.

The variance z decreases as the NA transition tempera-
ture, TNA, is approached from above. In the smectic-A
phase, it is much smaller; in fact, z is not measurably
higher than the zero (shot-noise) level.

Since the applied temperature gradient straddles the NA
transition, the resulting difference image contains a hot
nematic part and a cooler smectic-A part separated by a flat
boundary. We divide our image into strips parallel to the
NA boundary, which is typically flat over the field of view.
By calibration, we translate the spatial dependence of z

into a temperature dependence. Each image that contains
an NA interface is self-calibrating in that over small times,
the gradient remains constant while the overall temperature
fluctuates slowly. The rms fluctuations in temperature over
long times (�1 h) was roughly 0.15 mK and was less than
0.05 mK over the duration of a measurement.

The experimental technique described above was first
used to study the critical behavior close to TNA. Pure 8CB
is a material that exhibits a NA transition that is indistin-
guishable from second order when studied by traditional
high-resolution calorimetry. Dynamical measurements by
Cladis et al. [8] have suggested that this transition is first
order. We confirm here (see also [10]) that this transition
is unambiguously first order.

The fluctuation-vs-temperature profile for 8CB is plot-
ted in Fig. 1 (black data curve). There are three distinct
sections to the graph:

1. Smectic: Here, z � 3.1 6 3.0 3 1026, and the
smectic fluctuation level is flat and indistinguishable from
the shot-noise background.

2. Nematic: The data here fit a power law of the form

w0 1 w1�T 2 w2�w3 (3)

with w0 � 3.1 6 3.0 3 1026, w1 � 1.43 6 0.04 3 1025,
w2 � 5.0 6 0.5 mK, and w3 � 0.50 6 0.05. The fit
(shown in Fig. 1) was done over the largest temperature
range that still kept the residuals (top curve in Fig. 1)
flat. w0 was held to the smectic level, while w3 is the
exponent of the power law. w2, the divergence point of
the power law, is identified with the spinodal temperature
T�. However, it is a phantom divergence point, as the
actual phase transition is located at the interface, i.e., at
T 2 TNA � 0 mK [12].

3. Interface: Ideally, the interface on Fig. 1 would be a
vertical line. However, a temperature gradient normal to
the sample plane smears out the interface. Varying tem-
perature moves the position of the interface in the field of
view, but the magnitude of the smearing is stable to within
the statistical errors in the data. In practice, we fit the en-
FIG. 1. Pure 8CB, d � 30 mm, 0.59 6 0.02 K�cm. Here,
t0 �

5.060.5 mK

307 K
� 1.6 6 0.1 3 1025. Results are shown with

and without an external applied field.

tire data to a convolution of the power-law form in Eq. (3)
and a linear temperature gradient. This fit differs from the
simple power-law fit (also shown) only in the interfacial
region. The position of the interface is unambiguously de-
termined by the fit and does not coincide with the zero
point. The top curve in Fig. 1 shows the residuals for such
a fit.

We tested for the effect of sample thickness d on the
measurements. We find no systematic dependence on
sample thickness for d . 7.5 mm. For smaller d, we find
a marked increase in t0, which we ascribe to the effect of a
small residual rotation (�0.2±) between the anchoring di-
rection of the top and bottom plates. The twist created by
this rotation is strongest for small d. The implications of
this will be examined in a longer article [13].

Having established the experimental technique, we first
study the critical effects of suppressing director fluctua-
tions with an external magnetic field applied along the easy
axis of the nematic. Magnetic-field effects in the nematic
phase have been studied in the last two decades [14,15].
Scale fields to change Landau parameters at the NA tran-
sition are large; the mean-field effects of such large fields
have been studied by Lelidis and Durand [16]. Recently,
Mukhopadhyay et al. [9] have shown that based on the
HLM mechanism, one expects modest fields to suppress
the director fluctuations that drive a mean-field second-
order transition first order. They predict a nonanalytic de-
pendence of t0 on the field H and a critical field, Hc, above
which the transition is second order. In particular, they
predict
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Hc � H0t
1�2
0 , (4)

where H0 is a scale field that depends on known material
parameters. For 8CB, H0 � 3500 T and from Fig. 1, t0 �
1.6 3 1025: this implies a critical field of Hc � 10 T.

The magnetic field effect at the transition was probed
with a field that could be varied from 0 to 1.5 T. Contrary
to initial expectations, no suppression of the fluctuations
was seen within 50 mK of the transition point. Two data
curves are shown in Fig. 1. The data curves (black repre-
senting zero field and grey representing measurements at
a field of 1.2 T) practically fall on top of each other. Like-
wise, we see no shift in t0.

What do the magnetic field studies on a 0 1.5 T field
tell us about the critical field of �10 T predicted via the
HLM scenario? A weaker effect implies a larger critical
field.

To establish a lower bound for Hc, we look at the small-
jHj limit of the HLM prediction,

t0�H��t0 � 1 2 mH�Hc , (5)

where m � �2.17 6 0.01� is the slope of the linear sup-
pression predicted in Ref. [9]. In our case, our confidence
level for t0 is roughly 10%; i.e., the largest suppression of
t0 that we would not observe is t0�H��t0 � 0.9. This puts
a lower bound on the value of Hc. The maximum field
used is H � Hmax � 1.5 T. Thus, for 8CB, we find

Hc $
mH

1 2 t0�H��t0

�
�2.17 6 0.01�1.5 T

0.1

� 33 T . (6)

Thus, the lower bound for the critical field in our measure-
ments is 3 times the predicted value.

We also measured the effect of a magnetic field in two
mixtures, 0.18 and 0.41 mole fraction 10CB in 8CB. In
neither of these samples do we observe a suppression of
fluctuations close to TNA.

One might worry about the validity of a null result. We
do, however, see the expected noncritical suppression of
the fluctuations. We find that this depression falls off
quadratically with increasing field:

z � z0 2 gHH2. (7)

This noncritical reduction in the field effect on approach-
ing TNA reflects quite clearly the fact that the (twist and
bend) elastic constants are getting stiffer as one approaches
TNA. In fact, since the magnetic coherence length is
jH � � K

j �
1
2

1
H , one reasonably expects that the field depen-

dence is always a function of jH ; i.e., the coefficient must
obey gH ~

1
K , where K is a diverging elastic constant. Fit-

ting to the value of n̄ � 0.5 that is consistent with other
experiments and with our earlier fit in zero field, we find
that the data clearly agree with this (see also [13]).

Our second experimental test of the HLM effect was the
dependence of t0 on the concentration x of 10CB in 8CB,
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between x � 0 and x � 0.44. This dependence has been
studied previously by adiabatic calorimetry (Marynissen
et al. [17]). Anisimov et al. [7] determined the Landau
tricritical point (the LTP is the tricritical point predicted by
the de Gennes–McMillan theory) to be at x� � 0.41. The
resolution in the adiabatic calorimetry is, however, limited
to x . 0.3 [18]. To test the HLM theory unambiguously,
we extended the range of mixture concentration to x � 0
(pure 8CB). The nonzero latent heat for x , x� � 0.41
implies that their data are inconsistent with the de Gennes–
McMillan theory but consistent with the HLM form, which
contains a small negative cubic term (with a constant cubic
coefficient B) that keeps the latent heat nonzero. In HLM,
the effective mean-field Landau free energy is

f �
1
2

Ajcj2 2
1
3

Bjcj3 1
1
4

Cjcj4 1
1
6

Ejcj6.

(8)

In Ref. [7], the condition for coexistence ( f � 0 and
dF�dc � 0) was used to calculate the entropy change
DS � L�T , in terms of the three Landau parameters A,
B, and C. Close to the transition, A � at, where t is the
reduced temperature and a is a constant. The variation
of the quartic coefficient near the LTP is modeled by
C � C0�x 2 x��. To make connection with our measure-
ments of t0, we calculate t0 � ANA�a, where ANA, the
quadratic coefficient at the transition, is a function of B,
C, and E.

The fit parameters from the analysis of Anisimov
et al. [7] are

b � 23�8�aC0�E� � 0.993 ,

DS��R � 0.0261 .
(9)

While the entropy change per mole DS�R depends only
on B, aC0, and E, the discontinuity t0 depends on all
four parameters separately: here, we use the two Anisimov
parameters and fit C0 and E.

Each data point in Fig. 2(a) is obtained from the
power-law fit described earlier. The exponent of the
power law is fixed at n̄ � 0.5. The error bars on a free
fit are �0.1. In Fig. 2(a) we plot the data for a fitted
exponent of n̄ � 0.5 and the HLM fit. Also shown,
for perspective, are HLM fits for t0 data with exponents
n̄ � 0.4 and n̄ � 0.6. The values of C0 in the three fits
are 20.74 6 0.03, 20.79 6 0.03, and 20.88 6 0.03,
respectively. (The best-fit value of E � 0.97 6 0.03
for n̄ � 0.5 is used for all three fits.) In Fig. 2(b), we
compare the latent-heat data of Marynissen et al. [17]
with that calculated from our t0 data (using the Anisimov
parameters). The discontinuity gets larger as we approach
the Landau tricritical point. In particular, we find that
the data near the LTP agree with the HLM prediction for
reasonable values of the quartic coefficient C0. However,
for lower concentrations of 10CB in 8CB, there is a clear
deviation from the HLM prediction, which underestimates
the latent heat in this region of the phase diagram [19].
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FIG. 2. (a) Fit of t0 data to the Anisimov parameters, with C0
and E as fit parameters. Top and bottom dashed curves show fits
to t0 for n̄ � 0.6 and n̄ � 0.4, respectively. (The data points
for these exponent values are not shown.) (b) Comparison of
latent heat data (Ref. [16]) to t0 data (this work). Open circles:
data taken from Ref. [16]; filled circles: t0 data converted to
equivalent latent heat.

Two main results arise out of this study and both con-
strain theories in the weakly type-1 region of the NA tran-
sition. The first is the absence of a magnetic field effect on
the critical behavior in pure 8CB and in mixtures. It was
predicted [9] that an external field would suppress nematic
director fluctuations and drive the transition back to second
order. Experimentally, we see a noncritical suppression of
the fluctuations but observe no change in the critical behav-
ior. In particular, the strength of the first-order transition,
measured by the dimensionless number t0, is unchanged.
We thereby establish a lower bound of 30 T on the critical
magnetic field, 3 times higher than the predicted value. We
conclude that the neglect of smectic fluctuations by HLM
is not valid in this region of the phase diagram.

Second, the variation of t0 in mixtures has yielded the
surprising result that t0 on the weakly first-order side of
the LTP is larger than the HLM predicted value, and not
smaller as one might naively expect of a crossover to
second-order XY behavior. This might be related to the
observed local maximum in critical exponents seen at the
3DXY to tricritical crossover [4]. This result puts a strong
constraint on any theory of the tricritical point.

Both results in this work provide, for the first time,
quantitative evidence for deviation from the implications of
both the de Gennes–McMillan theory and the HLM theory.
Our data show not only that the discontinuity is larger
than that predicted by HLM theory but also that the field
dependence is much weaker than predicted. These results
provide a testing ground for any future theory that goes
beyond HLM; the logical next step would be to account
for the effect of smectic fluctuations. Future experimental
work will focus on the effect of larger fields.
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