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Abstract

My doctoral studies deals with model systems in soft matter. In these model systems, we

address questions that are on the interface between physics and biology. The primary focus of

the studies is to explore the dynamics and structural changes of aggregations of biologically rel-

evant multi-component polymer, protein, peptide, and micellar systems using nuclear magnetic

resonance (NMR) based techniques. Diffusometry, relaxometry, and deuterium NMR techniques

were chosen since they complement one another in understanding the dynamics and structure in

the process of macromolecular self-assembly. Moreover, identifying the size of nanoparticle clus-

ters in these model systems is a challenging problem and there is no technique that gives complete

answers. Therefore, my doctoral work is a systematic attempt to use NMR as a tool to make

quantitative statements about the nature of macromolecular clustering.

During my PhD, we used a model polymer-surfactant solution in order to identify surfac-

tant concentration regimes relevant to understanding the behavior of biomolecules in a `̀ crowded

environment´́ consisting of multiple species of macromolecules. Such crowded environments

are a characteristic of intracellular plasma. We studied a system composed of nonionic poly-

mer poly(ethylene glycol) (PEO) and an anionic sodium dodecyl sulfate (SDS) at different SDS

concentrations. Using NMR diffusometry, we measured the self-diffusion coefficients of the poly-

mer (PEO) and surfactant (SDS) components simultaneously as a function of SDS concentration.

Also, we obtained NMR relaxation rates for PEO and the chemical shifts as a function of SDS

concentration. Using a simple model to interpret our experimental results, we developed a precise
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method to identify the onset of aggregation of SDS on PEO chains (critical aggregation concen-

tration CAC=3.5 mM) and a crossover concentration (C2 = 60 mM) which is associated with a

sharp change in the relaxation behavior, as well as an increase in free surfactant concentration.

Moreover, in the context of a simple model, we identified the SDS concentration (Cm = 145 mM)

beyond which the diffusion of the aggregates was strongly hindered by the presence of other struc-

tures such as free micelles.

Another source of hindered diffusion, apart from macromolecular crowding, is diffusion in the

presence of geometrical constraints. In the case of cylindrical or wormlike micelles, the constraint

is to diffuse within the cylinder. Aggregates in a multi-component wormlike micelle are difficult

to study via scattering techniques because they would require contrast matching. Therefore, We

studied a system composed of a zwitterionic surfactant N-tetradecyl-N, N-dimethyl-3-ammonio-1-

propanesulfonate (TDPS) and an anionic surfactant SDS in brine. NMR diffusometry indicates that

the self-diffusion coefficients of surfactant is consistent with restricted diffusion within a reptating

micelle. Using a simple model to interpret our diffusometry results, we estimated the average

end-to-end micellar distance to be ≈ 1 µm. Using NMR relaxometry, we obtained the wormlike

micelle overlap concentration (a characteristic concentration Cthreshold = 4.5 mM). Deuterium NMR

spectra indicate that the internal structure of the wormlike micellar system includes domains with

different orientation orders with slow exchange between domains. Our experimental results (NMR

diffusometry and rheometry) revealed that the wormlike micelles exhibit remarkable polymer-like

scalings with a crossover from Zimm-like (diffusion) to Rouse-like (rheology) regimes.

During the latter part of my PhD, we explored protein solutions. We were motivated by the fact

that scattering techniques in concentrated lysozyme protein solutions show conflicting reports over

the existence of an equilibrium cluster phase. It is recognized that protein aggregation is essen-

tial in understanding the biophysics of proteins. Also, it must be noted that protein aggregations

and misfoldings, which are implicated as a root cause of some diseases that are thus sometimes

called `̀ conformational diseases´́ are technically challenging to quantify. To address this problem,
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we worked on diffusion of lysozyme proteins in concentrated lysozyme solutions. Lysozyme is a

common mammalian protein, which is found in human amylases. Using NMR diffusometry, we

obtained the self-diffusion coefficients of lysozyme in concentrated lysozyme solutions. Diffusom-

etry and relaxometry showed that both the observed diffusion coefficient and relaxation rates are a

weighted average of monomer and aggregate fractions. Therefore, our studies gave a strong evi-

dence for both lysozyme monomers and thermodynamically stable lysozyme clusters in the protein

solution with a rapid exchange between monomer and aggregate on the NMR time scale.

Finally, we addressed a practical problem of relevance to biochemists and biophysicists. Study-

ing the dynamics of macromolecules and aggregates in multicomponent systems composed of pep-

tide or protein and surfactants is challenging. Many peptides and proteins are synthesized in tiny

quantities. We used NMR diffusometry and relaxometry to explore systems composed of peptides

that are very long compared to the surfactant, dissolved with an anionic surfactant in an aqueous

solution. We compared the results to those for shorter dipeptides whose size is comparable to the

surfactant. Diffusometry shows that the longer peptide behaves as if there is no free fraction of

peptide molecules in the solution. Based on that, we extracted reliable physical quantities such

as the true hydrodynamic radius of long peptide-surfactant aggregate as a function of surfactant

concentration. On the other hand, the smaller dipeptides are partitioned between the bound and

free state such that the fraction of the bound peptide varies with surfactant concentration.
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Chapter 1

Introduction

Macromolecules, such as proteins, and amphiphilic molecules, such as lipids, represent the

main components of biological membranes in the living cell. The biological membrane separates

the internal components of a biological cell from the outside environment and it acts as a selec-

tively permeable barrier that controls the traffic of the molecules in and out of the biological cell.1

Biological molecules such as proteins also represent important components in the `̀ crowded envi-

ronment´́ of the biological cell where their concentration can reach 300-400 g/l.2, 3

Macromolecules such as proteins and amphiphilic molecules show a tendency to form ag-

gregates, with an average size based on the interactions among different species of the macro-

molecules. As an example, systems of charged surfactants or amphiphilics form spherical,4, 5 cylin-

drical,4, 5 and wormlike micellar aggregates,6–12 a behavior that is attributed to the balance between

the hydrophobic interaction and electrostatic repulsion.4 These micellar systems find applications

not only in biology, but also in technological applications such as heat-transfer fluids, oil-field

drilling and drain openers.13 Moreover, systems composed of polymer-surfactant molecules that

form molecular aggregates and complexes have implementations in cosmetic and pharmaceutical

applications.14–16 On the other hand, many studies have been accomplished in the field of protein

cluster formation (e.g. lysozyme cluster formation).17–25 Protein aggregates are thought to play a
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significant role in so called `̀ conformational diseases´́ .26–28 These protein clusters are technically

hard to quantify. It has been shown that the balance between a short-range attraction and long-

range repulsion is responsible for the formation of mesoscopic clusters17, 18, 20, 22, 24, 25 with finite

size. However, conflicting reports over the existence of an equilibrium protein aggregate phase

have emerged.17–19

The goal of this thesis is to investigate biologically relevant soft matter systems such as polymer-

surfactant,29 micellar, and protein systems30 at different conditions of the system environment (i.e.

dilute, semidilute, and concentrated molecular environment that partially mimics the intracellular

environment) using nuclear magnetic resonance (NMR), where we provide quantitative answers

for some important open questions: When do crowding effects become significantly important?

What is the partitioning of different molecular species (i.e. monomers, aggregates, or micelles)

in multi-component aggregates? What is the average size of the molecular aggregates? We ad-

dress these questions by creating systems that partially mimic the intracellular `̀ crowded environ-

ment´́ at which the dynamics and structure of macromolecular components are influenced. The

Stokes-Einstein-Sutherland equation,31, 32 D = KBT
6πηRH

relates a measured diffusion coefficient D with

the solvent viscosity η and a physical quantity knows as the hydrodynamic radius RH where KB is

the Boltzmann constant and T is the absolute temperature. This relation is strictly only valid at in-

finite dilution. For realistic, dense systems, one needs to work hard to obtain meaningful physical

parameters from measured diffusion coefficients.

Scattering techniques such as dynamic light scattering21, 33, 34 and neutron spin echo20 can be

used to analyze molecular motions and to extract molecular diffusion coefficients. However, there

are unique aspects to NMR that can be both a complication and be used to one’s advantage,

such as combinations of chemical shift measurements, relaxation measurements (relaxometry),

and diffusion measurements (diffusometry). As an example, chemical shift measurements (the

one-dimensional spectrum) provide information about the chemical and electronic environment of

detected nuclei (section 2.1.1). Relaxometry can be used to determine the relaxation mechanism
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responsible for the relaxation process of the sample magnetization (section 2.1.2). Diffusometry is

used to study the dynamics of molecules with spectral resolution in the chemical shift dimension

(section 2.1.5.3).

Chapter 2 explains the basic concepts in NMR spectrometry. We present the density matrix

formalism (density operator formalism) which is mainly used to describe the evolution of the mag-

netization during the pulse sequence. We discuss the two main relaxation processes (longitudinal

and transverse relaxation processes) and the mechanism behind these relaxation processes. We

then present the two-step relaxation mechanism, which is responsible for the relaxation process in

micellar systems. Discussed next are two techniques (inversion recovery and spin echo technique)

which are used to measure the longitudinal and transverse relaxation times of the molecules. We

outline the main pulse sequences (pulsed-field gradient (PFG) spin echo and pulsed field gradient

stimulated echo (PFG-STE)) which are used to measure the molecular self-diffusion coefficient.

Finally, we discuss basic concepts in rheology including flow curves, oscillatory shear, and stress

relaxation as well as a description of rheometer experimental details.

Chapter 3 includes an overview of the building blocks of self-assembly in polymers, surfac-

tants, micelles, and proteins. We begin with general definitions for polymers, surfactants, and

proteins. We then present the physical parameters which are used to characterize the average size

of each of these building blocks (i.e. radius of gyration and hydrodynamic radius). In addition,

we explain the self assembly of amphiphilic molecules to the micellar phase (i.e. spherical or

cylindrical micelles).

In chapter 4, we elucidate the nature of polymer-surfactant aggregates in a model system com-

posed of anionic surfactant sodium dodecyl sulfate (SDS) and nonionic polymer polyethylene ox-

ide (PEO) in aqueous solution. We present the diffusion measurements, the relaxation measure-

ments, and the chemical shift measurements of the PEO-SDS system in an aqueous solution over

a wide range of SDS concentration. We introduce a self-consistent model that takes into account

the fact that the surfactants are found in monomeric, aggregate, and micellar form. We use the
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experimental data and the model to obtain the variation of the free monomer concentration and the

free micellar concentration over the entire range of SDS concentration.

In chapter 5, we explore the dynamics and the structure of a micellar system composed of

a zwitterionic surfactant N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (TDPS) and

anionic surfactant SDS in brine solution. We present complementary measurements diffusometry,

relaxometry, deuterium NMR, and rheometry to explore the microstructure of this system. Also,

we merge our experimental data with a restricted diffusion model and polymer theoretical models

to obtain the average size of micelles and to show that these systems have properties very dependent

on the length scale.

In chapter 6, we investigate evidence for the presence of an equilibrium phase composed of

lysozyme monomers and aggregates in concentrated protein solutions. Therefore, we introduce

previous work done on the lysozyme system in an aqueous solution, which includes formation

of lysozyme aggregates, crystallization, and formation of equilibrium clusters. In addition, we

present our diffusion and relaxation measurements for the lysozyme system. In all the work done,

we obtain weight-averaged diffusion coefficients which must then be coupled with a reasonable

model (for example monomer and aggregate states).

In chapter 7, we study the nature of peptide-micelle complexes in a 19-residue antimicrobial

peptide (Gad2)-anionic surfactant (SDS), smaller dipeptides (Ala-Gly and Tyr-leu)-anionic surfac-

tant (SDS) system, and anionic surfactant (SDS) system in an aqueous solution. We present the

diffusion measurements and the relaxation measurements for the above mentioned systems over a

range of SDS concentration. Using NMR-diffusometry we identify the onset of surfactant crowd-

ing on a peptide molecule beyond which hydrodynamic corrections to the diffusion coefficient

are extremely important. Based on that, we extract the true hydrodynamic radius of Gad2-SDS

aggregate over a range of SDS concentration below the SDS concentration at which crowding ef-

fects become important. For smaller dipeptides (Ala-Gly and Tyr-Leu)-SDS systems, diffusometry

shows that dipeptides (Ala-Gly and Tyr-leu) do not affect significantly the aggregate nature of SDS
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micelles. In addition, we compare the dynamics of a buffered SDS system with an unbuffered

SDS/D2O system. Diffusometry shows that the presence of a buffer in such an anionic surfactant

system promotes the formation of SDS micelles.
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Chapter 2

Experimental Techniques

Nuclear magnetic resonance (NMR) based techniques are used to study the dynamics and the struc-

ture of the macromolecules in multi-component polymer-surfactant (chapter 4), micellar (chap-

ter 5), protein (chapter 6), and peptide-surfactant (chapter 7) solutions. Complementary techniques,

including chemical shift measurement, NMR relaxometry, and NMR diffusometry are utilized to

extract quantitative information about the chemical environment of the detected nuclei, and the

dynamics and structure of macromolecular self-assemblies in the above mentioned systems. In

one of the studies (chapter 5), we have used rheology as well as NMR-based techniques in order

to construct a comprehensive picture of the microscopic structure in a mixed-surfactant wormlike

micellar system.

2.1 Nuclear magnetic Resonance (NMR)

Nuclear Magnetic Resonance (NMR) is the study of the magnetic interaction between an oscillat-

ing magnetic field with atomic nuclei inside a sample that is exposed to a strong external uniform

magnetic field. All atomic nuclei contain protons and neutrons which possess spin angular mo-

mentum (I) with 2I+1 degenerate sublevels. In a magnetic field
−→
Bo, degeneracy is broken such that
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each energy state of 2I+1 sublevels will possess slightly different energy E = −
−→
µ .
−→
Bo = −γ~m`Bo

where γ is the nuclear gyromagnetic ratio, −→µ = ~γ
−→
I is the magnetic dipole moment, and m` is

the magnetic dipole moment quantum number of the energy state in each sublevel. Atomic nuclei

with an even number of protons and an even number of neutrons are classified as non-detectable

nuclei because the ground state nuclear spin I=0 (examples are 12C and 16O). Detectable nuclei

can be further classified into nuclei with even mass number but an odd number of protons and an

odd number of neutrons (where the ground state nuclear spin I is an integer) such as 2H and nuclei

with an odd mass number (where the ground state nuclear spin I is a half integer) such as 1H, 15N,

13C.1, 2

The experiments in the thesis focus on `̀ proton NMR´́ , i.e. with samples containing 1H nuclei

(with spin 1/2) as the primary detected nuclei. Many of our experiments are also conducted with

deuterated solvent (i.e. containing 2H nuclei with spin 1), and some experiments are carried out

with samples containing 2H labeled nuclei.

A typical NMR sample containing water has on the order of 1023 spin-1/2 nuclei, and the

nuclear spin orientation (magnetic dipole moment) is either parallel (`̀ spin up´́ state) or anti-

parallel (`̀ spin down´́ state) with respect to the direction of applied magnetic field. This magnetic

field is by convention chosen to be along the z-axis (
−→
Bo = Bok̂). However, the alignment of

the nuclear spins with respect to the direction of the magnetic field is perturbed by the thermal

motion of the molecules which are responsible for the random orientations of the nuclear spins

inside the sample. Thus, in the presence of an external applied magnetic field, the magnetic dipole

moment of a nuclear spin might align in such a way as to possess three different components:

a longitudinal component along the z-axis and two transverse components in the xy-plane. The

transverse components for all nuclear spins over the entire sample cancel out whereas there is a

slight net orientation of longitudinal components parallel to the applied magnetic field. This is

responsible for a small net bulk magnetization. Under these circumstances, the population ratio of
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nuclear spins in the spin up and the spin down states is given by the Boltzmann distribution:1

nβ,eq

nα,eq
= exp

(
−∆E
KBT

)
(2.1)

where nα,eq and nβ,eq are the equilibrium populations in the spin up state (α) and spin down state

(β) respectively, ∆E is the energy difference between both states, KB is the Boltzmann constant,

and T is the absolute temperature. In addition, the z-component of the sample magnetization is

proportional to the difference in populations between the spin up and spin down state:1

Mz ∝ (nα − nβ). (2.2)

At equilibrium, the net magnetization of the sample is along the direction of ~Bo (the z-axis). How-

ever, if the magnetization is flipped away from the z-axis, the sample magnetization will experi-

ence a torque from the magnetic field
−→
Bo which drives the magnetization vector to precess about

the direction of the magnetic field at the Larmor frequency, ω0 = −γBo. Our NMR experiments

have been carried out using a NMR spectrometer that operates with a magnetic field Bo = 14 T.

Therefore, the Larmor frequency of 1H nucleus is ≈ 600 MHz while the Larmor frequency of the

2H nucleus is ≈ 91 × 106 Hz. The frequency of the radio waves is in the range ≈ 0.3 MHz to

≈ 300 GHz; thus magnetic resonance experiments such as electron spin resonance and NMR are

possible with electromagnetic fields oscillating at radio frequency.

2.1.1 One Dimensional NMR Spectroscopy

One of the simplest magnetic resonance experiments is one in which the sample magnetization

experiences a short radio-frequency (RF) pulse in the transverse direction of the sample magneti-

zation with a frequency close to the Larmor frequency. This RF pulse tilts the magnetization away

from the z-axis. After turning off the RF-pulse, the precessional motion of the sample magnetiza-

tion about
−→
Bo creates an oscillatory electric current in a radio-frequency tuned receiver coil. This
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current is digitized and recorded as a `̀ free induction decay´́ (FID) signal in the time domain. This

signal has two (x and y) components. One can alternatively and equivalently write the signal as a

complex time domain signal. Using the Fourier transform, the FID is transformed to a frequency

domain signal that has a real and an imaginary component. The real component of the frequency

domain signal represents the one dimensional 1D NMR spectrum. It includes peaks of one type of

nucleus at different frequency positions based on the chemical and electronic environment of the

detected nucleus.1, 2

2.1.1.1 Chemical Shift and 1D Spectrum

The external magnetic field
−→
Bo in an NMR spectrometer interacts indirectly with detectable sam-

ple nuclei through the electron clouds around the nuclei. The magnetic field
−→
Bo induces electronic

currents in the chemical environment around the nuclei. These electronic currents create an in-

duced magnetic field that is called secondary magnetic field at the nuclear spin sites, which affects

slightly the value of the nuclear Larmor frequency ω0. Thus, nuclei of the same isotope in different

chemical environments can have slightly different values of Larmor frequency. Nuclei which are

bonded or close to electronegative chemical groups or electronegative elements are more exposed

to the NMR external magnetic field Bo. Thus, these are referred to as deshielded nuclei. Nuclei

which are not bonded to any electronegative chemical groups or electronegative elements are less

exposed to the NMR external magnetic field. Thus, these are referred to as shielded nuclei.1, 2

Since the value of a nuclear Larmor frequency ω0 depends on the value of the operating mag-

netic field strength Bo of the NMR spectrometer, then for different NMR spectrometers which

operate at different field strengths, the same nuclei at the same chemical environment have differ-

ent values of Larmor frequency and so different peak positions on the frequency scale. In order to

compare the peak positions in the 1D spectra between NMR spectrometers which operate at dif-

ferent fields, a chemical shift scale is defined as a magnetic field independent scale. On this scale,

the peak position is reported by measuring the peak’s frequency νi relative to a reference peak
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frequency νref of a known compound. Tetramethylsilane (TMS), with chemical formula (CH3)4Si,

is the most common standard reference compound for proton NMR. TMS is typically chosen as a

reference in organic solvents because it is chemically inert and has a single peak NMR spectrum.

Thus, the peak position in the chemical shift scale is defined by the following equation1, 2

δ(ppm) =
νi − νref

νspectrometer
x106 (2.3)

where νspectrometer is the NMR spectrometer frequency and the position of the standard reference

compound is defined to be at 0 ppm on the chemical shift scale.

In an NMR 1D spectrum, the more shielded nuclei have lower chemical shift values than the

less shielded nuclei. Thus, on the chemical shift scale when the chemical shift value of a peak

increases (more leftwards by convention), this indicates that the chemical environment of the de-

tected nucleus is changing such that the nucleus is being less shielded.

Figure 2.1 shows the 1D NMR spectrum of protons in a polymer-surfactant solution that is

discussed and presented in chapter 4. The spectrum includes six peak regions which have different

chemical shift values. The one with the lowest chemical shift value represents the peak of protons

in the CH3 chemical group (SDS4) which are the most shielded protons. The peak with the highest

chemical shift value represents protons on the OH chemical group which are less shielded since

they are bonded to an electronegative element O. All the peaks in the spectrum are broad peaks

that consist several peaks.

2.1.1.2 The Radio-Frequency Pulse and the Rotating Frame

The equilibrium sample magnetization is perturbed by applying a radio-frequency (RF) pulse that

generates an oscillating magnetic field. Assuming that the oscillating magnetic field
−−→
BRF(t) is along

the x-axis,2 we may write (following Levitt2)

−−→
BRF(t) = BRF cos(ωre f t + φp)î (2.4)
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Figure 2.1: One-dimensional 1H − NMR spectrum for a solution containing a polymer (polyethy-

lene oxide) and a surfactant (sodium dodecyl sulfate) in D2O solvent at a sample temperature

298 K. Inset: the chemical formula of the SDS molecule. A 1 ppm chemical shift corresponds to

a 600 Hz frequency shift.
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where BRF has a maximum radio frequency amplitude, ωre f is the frequency of the RF pulse,

and φp is the phase shift of the radio frequency pulse. As stated in section 2.1, as soon as the

RF pulse is turned off, the sample magnetization will experience a precessional motion about the

direction of the magnetic field Bo with a Larmor frequency ωo = −γBo. We therefore write
−−→
BRF(t)

as a linear combination of two counter-rotating (clockwise and counterclockwise) magnetic fields

components. One of the components is rotating in the same sense as the nuclear spin does and is

known as the resonant component
−−→
BRF

res(t) of the oscillating magnetic field
−−→
BRF(t) while the other

component is rotating in the opposite direction of the spin precession and is termed as non-resonant

component
−−−−−−→
BRF

non−res(t) of the oscillating magnetic field
−−→
BRF(t). We write2

−−→
BRF(t) =

BRF

2

[
cos(ωre f t + φp)î + sin(ωre f t + φp) ĵ

]
+

BRF

2

[
cos(ωre f t + φp)î − sin(ωre f t + φp) ĵ

]
=
−−→
BRF

res(t) +
−−−−−−→
BRF

non−res(t) (2.5)

where
−−→
BRF

res(t) = BRF
2 cos(ωre f t+φp)î+ BRF

2 sin(ωre f t+φp) ĵ and
−−−−−−→
BRF

non−res(t) = BRF
2 cos(ωre f t+φp)î− BRF

2

sin(ωre f t + φp) ĵ.

In the presence of a strong external static magnetic field Bo, the resonant component
−−→
BRF

res(t) has

the dominant direct effect on the orientation of the nuclear spin, while the effect of the non-resonant

component is negligible.2

In the presence of both Bo and
−−→
BRF(t) ≈

−−→
BRF

res(t), the spin Hamiltonian in the laboratory frame is

written as

Ĥ(t) = −−→µi.
[
−→
Bo +

−−→
BRF

res(t)
]

= ω0 Îz −
1
2
γBRF

(
cos(ωre f t + φp)Îx + sin(ωre f t + φp)Îy

)
(2.6)

where ~ is considered to be one and γ is the gyromagnetic ratio of the nuclear spin i. Îz, Îx, and Îy

are quantum mechanical operators which represent z, x, and y components of the nuclear angular

momentum. In the matrix representation, and including the unit matrix, they are2
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Îz =
1
2

 1 0

0 −1

 (2.7a)

Îx =
1
2

 0 1

1 0

 (2.7b)

Îy =
1
2

 0 −i

i 0

 (2.7c)

1̂ =

 1 0

0 1

 (2.7d)

We can see clearly from equation 2.6 that the spin Hamiltonian is a time dependent Hamiltonian.

In order to simplify the spin Hamiltonian expression, a mathematical trick is considered by assum-

ing that the xy-plane is rotating in the same the sense as the resonant component BRF
res of the RF

pulse (i.e. the same sense as the nuclear spin precession). In this reference frame, the resonant

component BRF
res of the RF pulse appears to be static and aligned along x-axis. This is the `̀ rotating

frame´́ in NMR. In the rotating frame, the wave function of the spin |̃ψ> is related to the wave

function |ψ> of the spin in the laboratory frame by a rotation operator,2

|̃ψ> = exp(iΦÎz|ψ>) =

 exp(iΦ/2) 0

0 exp(−iΦ/2)

 |ψ> = R̂z(−Φ)|ψ>. (2.8)

where Φ = ωre f t + φre f and ωre f is the frequency of the resonant component BRF
res of the RF pulse.

Using the time-dependent Schroedinger equation in the rotating frame2

d
dt

[|̃ψ>] =
d
dt

[R̂z(−Φ)|ψ>] = −i˜̂H |̃ψ> (2.9)

it can be shown that the relation between the spin Hamiltonian in the rotating frame ˜̂H and the

laboratory frame Ĥ is given as2
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˜̂H = R̂z(−Φ)ĤR̂z(Φ) − ωre f Îz. (2.10)

Combining both equation 2.6 and equation 2.10, we obtain the spin Hamiltonian in the rotation

frame as a time independent Hamiltonian2

˜̂H = Ω0 Îz −
γ BRF

2
(Îx cos(φp − φre f ) + Îy sin(φp − φre f )) (2.11)

where Ω0 = ω0−ωre f is called the relative Larmor frequency or the offset frequency andωnut=
∣∣∣1
2γ BRF

∣∣∣
=
∣∣∣ 1
2 BRFωo/Bo

∣∣∣ is called the nutation frequency. φre f is the phase of the rotating frame, which is

defined to simplify mathematical calculations. For nuclear spins with γ > 0, both the Larmor fre-

quency ω0 and ωre f (i.e; the frequency of reference frame) are negative, while for nuclear spins

with γ < 0, both the Larmor frequency ω0 and ωre f are positive. Therefore, φre f is considered by

convention to be either π for γ > 0 or 0 for γ < 0. Based on that, equation 2.11 is written as2

˜̂H = Ω0 Îz + ωnut(Îx cos(φp) + Îy sin(φp)). (2.12)

2.1.1.3 The Density Operator and Phase Coherence

Any sample includes a large number of nuclear spins which contribute to create both the longi-

tudinal magnetization Mz and transverse magnetization Mx and My. The wavefunction |ψ> of a

single spin-1/2 nucleus is given by a linear combination of the spin-up and spin-down eigenstates,

i.e. |ψ> = Cα|α > +Cβ|β >, where |α > and |β > are the spin up (| + 1/2 >) and the spin down

(| − 1/2 >) state.1

For a sample with spin-1/2 nuclei, the longitudinal z-component of the bulk magnetization and

the transverse xy magnetizations Mx and My are proportional to the sum of an average contribution

of each spin in the longitudinal magnetization Mz and transverse magnetization components Mx

and My
1

Mz =

N∑
i=1

γ < Iz >i= Nγ< Iz > =
1
2
γN

(
|Cα|

2 − |Cβ|
2
)

(2.13a)
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Mx =

N∑
i=1

γ < Ix >i= Nγ< Ix > =
1
2
γN

(
C?
αCβ + C?

βCα

)
(2.13b)

My =

N∑
i=1

γ < Iy >i= Nγ< Iy > =
1
2

iγN
(
CαC?

β −CβC?
α

)
(2.13c)

where < Iz >= <ψ|Iz|ψ>. Also, |Cα|
2 and |Cβ|

2 are the probabilities of finding a spin in the spin up

state |α > (i.e. | + 1/2 > state) and spin down state |β > (i.e. | − 1/2 > state) respectively. The

population of the α or β state is proportional to the sum of probabilities |Cα|
2 or |Cβ|

2 of each spin

respectively.

Since we are dealing with a huge number of nuclear spins, the density matrix formalism is used

to simplify the prediction process of the sample magnetization components during the NMR pulse

sequence. An operator called the density operator ρ̂ is introduced and can be represented in matrix

form1

ρ̂ = |ψ >< ψ| =

 ραα ραβ

ρβα ρββ

 =

 |Cα|
2 CαC?

β

CβC?
α |Cβ|

2

 (2.14)

Based on equation 2.14, we are able to write the sample magnetization components (e.g equations

2.13a, 2.13b and 2.13c) in terms of the density matrix elements1

Mz =
1
2
γN

(
ραα − ρββ

)
(2.15a)

Mx =
1
2
γN

(
ρβα + ραβ

)
(2.15b)

My =
1
2

iγN
(
ραβ − ρβα

)
(2.15c)

Also, the population of the nuclear spins in the spin up and spin down states are given in term

of the density matrix elements: nα = N ραα and nβ = N ρββ. However, we mentioned in
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section 2.1 that at the equilibrium, nα and nβ are given in terms of the Boltzmann distribution:

nα,eq = (1/2)N exp (−Eα/KBT ) and nβ,eq = (1/2)N exp
(
−Eβ/KBT

)
.1

We conclude from the mathematical representation of Mz , Mx, and My (i.e. equation 2.15a

to equation 2.15c) that a combination of the density operator diagonal elements is proportional to

the sample longitudinal magnetization. On the other hand, combinations of the density operator

off-diagonal elements are proportional to the sample transverse magnetization. More specifically,

the diagonal elements ραα and ρββ represent the `̀ population´́ of the |α > state and the |β > state

respectively, while the off-diagonal elements ρβα and ραβ are called `̀ coherences´́ .1, 2

Each element in the density matrix connects one state (|α > or |β >) with another. As noted

in section 2.1.3, where coherence order is defined, the coherence order of both ραα and ρββ are

zero, while the coherence orders of ρβα and ραβ are -1 and +1 respectively. At equilibrium, the

net magnetization of the sample is along the z-axis (Meq = Meq
z ), while there are no transverse

components Meq
x and Meq

y . Thus, at equilibrium, the amplitude of +1 and -1 coherence order

elements ρβα and ραβ are zero,1, 2

ρ̂eq =

 ρ
eq
αα 0

0 ρ
eq
ββ

 (2.16)

where ρeq
αα and ρeq

ββ represents the population of |α > and |β > states at equilibrium. They are given

as follows2

ρeq
αα =

exp (−Eα/KBT )

exp (−Eα/KBT ) + exp
(
−Eβ/KBT

) ≈ 1
2

(1 − Eα/KBT ) (2.17)

ρ
eq
ββ =

exp
(
−Eβ/KBT

)
exp (−Eα/KBT ) + exp

(
−Eβ/KBT

) ≈ 1
2

(
1 − Eβ/KBT

)
(2.18)

where Eα = −
γBo

2 and Eβ =
γBo

2 , so equation 2.16 can be modified

ρ̂eq =


1
2 (1 − Eα/KBT ) 0

0 1
2

(
1 − Eβ/KBT

)
 ≡ 1

2
1̂ +

γBo

2KBT
Îz (2.19)
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According to equations 2.13a, 2.13b, and 2.13c:

Meq
z =

(γ)2NBo

4KBT

Meq
x = Meq

y = 0 (2.20)

Equation 2.14 can be rewritten in order to use it in the rotating frame.1, 2 As we mentioned, in

the rotating frame the xy-plane rotates in the same sense as the resonant component of the RF-pulse

BRF
res and in the same sense as the nuclear spin precession. According to this approach, BRF

res appears

to be oriented along x-axis while the relation between the spin wave function ˜|ψ > in rotating frame

and the spin wave function |ψ > in laboratory frame is given by equation 2.9. Based on equation

2.9, we can write a general evolution expression of the density operator ˜̂ρ in the rotating frame1, 2

˜̂ρ2 = exp
(
−i˜̂Ht

)
|ψ >< ψ|1 exp

(
i˜̂Ht

)
= exp

(
−i˜̂Ht

)
ρ̂1 exp

(
i˜̂Ht

)
(2.21)

Equation 2.21 is used to detect the evolution of the sample magnetization components at any time

period during the NMR pulse sequence.

As an example, one can easily identify the evolution of the sample magnetization during the

pulse sequence for the basic pulse-acquire experiment. The sample magnetization at equilibrium is

represented by the density operator Îz which experiences a (π/2)x pulse. Equation 2.21 then gives˜̂ρ2 = exp
(
−i( π/2) Îx

)
Îz exp

(
i (π/2) Îx

)
= cos(π/2) Îz − sin(π/2) Îy = −Îy.

2.1.2 NMR Relaxation

Relaxation is the process by which the density operator (equation 2.14) returns to its equilibrium

value (equation 2.16) and the sample magnetization (given by equation 2.13a, 2.13b, 2.13c) recov-

ers its equilibrium value along the direction of the applied magnetic field in the absence of an RF

perturbation. In general, relaxation processes in NMR are classified into two types: longitudinal

relaxation and transverse relaxation processes.1, 2
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2.1.2.1 Longitudinal T1 Relaxation

Longitudinal relaxation is the process during which the longitudinal component of the sample mag-

netization re-establishes its maximum value along the direction of the applied magnetic field.1 A

nuclear spin inside the sample experiences both an external uniform magnetic field Bo and internal

oscillating local fields Bloc. One of the origins of these local fields is the magnetic fields which are

created and associated with magnetic dipole moments of nearby nuclear spins inside the sample.

Because of resonance, local fields that happen to be oscillating at close to the Larmor frequency

have a disproportionately large effect in rotating a magnetic moment to new directions just like

an applied resonance pulse.1 In addition, the direction and the magnitude of these local fields at

nuclear sites change continuously due to the thermal motion of molecules. According to the Boltz-

mann distribution in equation 2.1, the population of nuclear spins in the lower energy state is higher

than in the higher energy state. The local fields will either rotate a given spin towards or away from

the z-axis. However, the Boltzmann distribution (equation 2.1) ensures that the rotation towards

the z-axis are more frequent than the rotation away from the z-axis.1 Thus, the magnetization is

driven to equilibrium by thermal motions.

The above termed mechanism is often refer as `̀ non-secular´́ contribution (i.e. arising from

local fields oscillating at frequencies close to the Larmor frequency) to transverse relaxation; when

the longitudinal magnetization relaxes back to equilibrium, so does the transverse magnetization.

2.1.2.2 Transverse Magnetization and T2 Relaxation

In equilibrium, there is a net longitudinal magnetization, which is practically undetectable in com-

parison with the diamagnetic effect. NMR therefore typically involves (π2 )x or (π2 )y pulses which

rotate the nuclear spins into the xy-plane. In the presence of uniform external magnetic field Bo,

these spins precess in synchronization with the Larmor frequency and thus the macroscopic trans-

verse magnetization also undergoes precessional motion.1, 2
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Transverse relaxation is the process during which the transverse (x and y) components of the

sample magnetization (Mx and My in equation 2.13b and equation 2.13c) decay to zero.1 In

the presence of nearby nuclear spins, a nuclear spin will precess about the direction of the uni-

form magnetic field with a frequency which is proportional to the sum of both Bo and the net

z-component of the local field Bz,loc
1

ω = −γ(Bo + Bz,loc) (2.22)

where Bo >> Bz,loc but the amplitude of the local field and the z-component of the local field

Bz,loc vary at different nuclear spin locations in the sample. The nuclear spins will precess at

slightly different values of Larmor frequency. This causes a loss in synchronization, and results

in an irreversible decay in the macroscopic transverse magnetization. This mechanism is often

called `̀ secular´́ contribution to transverse relaxation that arises from the z-component of local

fields varying from one spin to spin. In NMR, the peak width is directly proportional to trans-

verse relaxation rate. Therefore, losing synchronization due to secular contribution caused a peak

broadening that is called homogeneous broadening. However, another broadening in a NMR peak

might be caused due to the existence of an inhomogeneous magnetic field. This peak broadening

is called inhomogeneous broadening.1

Both the longitudinal T1 relaxation time and the transverse T2 relaxation time are related to a

fundamental molecular rotational correlation time τc. In all cases T1(ms − s) > T2(ms − s) >>>

τc(ps − ns). We discuss the relationship of the relaxation times (or rates) to the molecular mecha-

nism in section 2.1.2.3.

2.1.2.3 Relaxation Mechanisms, the Correlation Function, and Spectral Density

There are three dominant relaxation mechanisms in spin-1/2 nuclei. They are:1, 2

• Dipole-dipole relaxation. This is attributed to the creation of local fields at nuclear spin sites
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due to the direct dipole-dipole interaction between the nuclear spins.

• Chemical shift anisotropy relaxation. This is attributed to the creation of local fields at

the nuclear spin sites due to the presence of a non-spherical distribution of electron clouds

around the nuclear spins. Thus, in the presence of the external static NMR magnetic field Bo,

an induced electrical current (in the electronic clouds) is created which itself creates local

fields at the nuclear spin sites (transverse and longitudinal local field components).

• Relaxation due to paramagnetic impurities. This is attributed to the creation of local fields at

the nuclear spin sites from the unpaired electrons in a dissolved impurity such as O2.

In all cases, the mechanism generates local fields which then fluctuate due to molecular mo-

tions. The rotational diffusional motions of molecules are in the frequency range between 107 and

1010 Hz, which spans the range of the typical Larmor frequency.1 This is an indication that molecu-

lar rotational diffusion is the most effective molecular motion in the relaxation process. In order to

identify and characterize the random molecular rotational diffusion quantitatively, a mathematical

function called the correlation function G(τ) is used to identify how rapidly the oscillating local

magnetic field is fluctuating with time:

G(τ) =
1
N

∑
Bloc,i(t)Bloc,i(t + τ) = Bloc(t)Bloc(t + τ) (2.23)

Equation 2.23 represents the ensemble average over all nuclear spins in the sample volume. For

rotational diffusion in a simple viscous solvent this correlation function exhibits a simple exponen-

tial decay G(τ) = B2
loc(t) exp (−|τ|/τc). τc is the correlation time of the molecular motion and can be

related to the solvent viscosity η,: τc = 4πη(RH)3/(3KBT ).3 The molecular rotational diffusion is

attributed to the collisions of a molecule with other nearby molecules in the solution such that with

the passage of time and after few collisions, the molecule shows a non-steady rotational motion

associated with a change in the orientation of the molecule.
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In order to be able to quantify the frequency of molecular rotational diffusion which dominates

the relaxation process, another function called the spectral density j(ω) is defined as the Fourier

transform of the correlation function G(τ) (equation 2.23)

j(ω) = 2
∞w

0

G(τ) exp(−iωτ) = B2
loc(t)

2τc

1 + (ωτc)2 . (2.24)

Based on equation 2.24, we define the normalized spectral density function at the Larmor

frequency,: J(ω0) = τc/(1 + (ωoτc)2). J(ωo) is maximum at τc = 1/ωo. Local fields are most

effective at causing relaxation if they are oscillating at frequency close to the Larmor frequency. A

maximum in the value of J(ω0) thus results in a maximum in the relaxation rate as well.

2.1.2.4 Direct Dipole-Dipole Coupling

For spin-1/2 nuclei, the dominant relaxation mechanism is dipole-dipole coupling.2 The nuclear

spin has a magnetic dipole moment which creates a local magnetic field that directly affects another

nearby nuclear spin. The dipole-dipole interaction UDD mainly depends on the distance r between

the two nuclear spins and the angle θ between the vector joining the two nuclear spins and the

external uniform magnetic field Bo
2

UDD ∝
(3 cos2 θ − 1)

r3 (2.25)

According to this relaxation mechanism the characteristic time T1 (or the associated relaxation rate

1/T1) associated with the relaxation process of the longitudinal magnetization is given by2

1
T1

=
3

10
b2(J(ωo) + 4J(2ωo)) (2.26)

while the characteristic time T2 (or the associated relaxation rate 1/T2) associated with the relax-

ation process of the transverse magnetization is given by:2

1
T2

=
3
20

b2(3J(0) + 5J(ωo) + 2J(2ωo)) (2.27)
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In equations 2.26 and 2.27, J(ωo) is the normalized spectral density defined in equation 2.24,

and b = (−µo~γ
2)/(4πr3). For proton NMR with r=5 Å and γ = 2.674x108 rad/s.T, the typical

value of b2 ≈ 2x104 s−2. One can get an estimate of correlation time that is independent of b2 by

calculating the ratio of T1/T2, which is independent of b2.

In our study, the relaxation measurements for T1 and T2 were performed for the polymer species

in a polymer (polyethylene oxide)-surfactant (sodium dodecyl sulfate) system (chapter 4), the sur-

factant species in a wormlike micellar system (chapter 5, lysozyme in lysozyme-buffer system

(chapter 6), and the peptide and surfactant species in an antimicrobial peptide-surfactant (sodium

dodecyl sulfate) system (chapter 7).

2.1.2.5 Two-Step Relaxation

We have mentioned in previous sections that the fluctuations in the local magnetic fields at the nu-

clear spin sites, which are created from direct dipole-dipole interactions, give rise to the dominant

relaxation mechanism in spin-1/2 nuclei systems.

In a solution which includes surfactant aggregates or polymer/surfactant complexes, the mech-

anism of relaxation is explained according to the two-step relaxation model.4–6 According to this

model, the fluctuations in the local magnetic fields at nuclear spin sites arise from vibrational

motions in a rapid motion regime on the 10−12 s time scale, of hydrocarbon chains and torsional

motion of molecules in the hydrophobic core of a micelle or aggregate, and a slow motion regime

in the 10−9s time scale arising from the tumbling motion of a micelle or aggregate.7 Based on this

model, the dependence of the spin-lattice relaxation rate 1/T1 on the normalized spectral density

J(ω) which is shown in equation 2.26, is modified to include the contribution of the normalized

spectral densities from both the fast motion regime Jfast(ω) and the slow motion regime Jslow(ω),

J(ω) = aJslow(ω) + (1 − a)Jfast(ω) (2.28)

where a and (1-a) are the fractions that quantify the relative contribution of slow and fast mo-
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tions respectively. In such circumstances, extracting a single rotational correlation time from the

relaxation measurements is not usually feasible.

2.1.3 Coherence Order and Phase Cycling

The coherence order is a number that identifies the new phase shift of an operator S that experiences

an evolution (rotation) by an angle Φ around the z-axis. Therefore, the coherence order is a math-

ematical tool that is used to describe what happens to an operator (particular state) that undergoes

a z-rotation through an angle Φ.1 Mathematically, the coherence order is defined by the symbol p,

while the z-rotation through angle Φ of an operator Ŝ is given as: Ŝp Φ Îz
−−−→ exp(−i p Φ) Ŝp.

As an example, the raising operator is a combination of two operators Îx and Îy, so Î+ = Îx + i Îy.

If the raising operator goes through a z-rotation by angle Φ, then as a result: Î+

Φ Îz
−−−→ exp(−i Φ) Î+.

This indicates that the operator acquires a phase of −Φ and has +1 coherence order. Similarly,

Î− has -1 coherence order, while Îz has zero coherence order. Also, this formalism is used in

section 2.1.5.2 to determine the evolution (equation 2.30) of the sample magnetization during the

spin echo pulse sequence (figure 2.8).1

Consider a particular state, an operator that experiences a change in the coherence order from

p1 to p2 due to the application of an RF-pulse that has ∆Φ phase shift. The phase shift acquired by

the coherence due to this process is −∆Φ×∆p where ∆p = p2− p1 is called the coherence pathway

(CPW). Therefore, in order to select a particular pathway in an NMR experiment, the phase shift

of the receiver coil must be tuned to match the phase shift acquired by the coherence pathway.1

As an example of this, if we assume that the phase shift of an RF-pulse changes in four steps

as 0 → (π/2) → 2 (π/2) → 3 (π/2) (in more geometric notation, this is written as x → y →

−x → −y). Then the evolution in the phase shift acquired by a coherence pathway ∆p due to an

application of the RF-pulse is given as: 0 → −(π/2) × ∆p → −2 (π/2) ∆p → −3 (π/2) ∆p.

Therefore, in order to select this pathway, the phase shift of the receiver coil Φr must be tuned
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to match the acquired phase shift values of the coherence during the evolution process. If the

evolution of the phase shift matches the receiver phase in each step, then the signals in each step

will co-add. In order to reject a particular pathway, one must have cancellation, for example,

between pairs of steps. This process is called phase cycling. The phase cycles are presented in the

captions for the different NMR techniques in section 2.1.5.

Figure 2.2: Coherence pathway of a) a one dimensional NMR b) an inversion recovery and c) a

spin echo pulse sequence.

Figure 2.2 shows the coherence pathway of a one dimensional NMR (often called the zg or

`̀ zero go´́ ), an inversion recovery, and a spin echo pulse sequence respectively. The phase cycle

(table 2.1) of a one dimensional pulse sequence of the coherence pathway ∆p=-1 is Φ=x,-x,-x,x,y,-
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y,-y,y, Φ(receiver)=x,-x,-x,x,y,-y,-y,y. This phase cycle rejects other coherence pathways such as

∆p=+2,-2, and 0.

Consider table 2.1 for an example of phase cycling that selects the ∆p=-1 coherence transfer

pathway. Comparison of column 4 (for ∆p=-1 pathway) with column 7 shows that each step co-

adds, while comparison of column 6 (for ∆p=-2 pathway) with column 7 shows that alternate steps

(e.g., 1 and 2) will have exactly opposite sign and give zero signal when added. The first 4 steps

of the 8-step phase cycle in table 2.1 are identical to the last 4 steps. The 8-step (instead of 4-step)

phase cycle is used to average over possible in-plane (x-y) asymmetries in the receiver hardware.

Table 2.1: Phase cycling that selects for the coherence pathway with ∆p=-1.

1 2 3 4 5 6 7

step ∆Φ −∆Φ × ∆p equiv(-∆Φ × ∆p) −∆Φ × ∆p equiv(-∆Φ × ∆p) Φreceiver

∆p = −1 ∆p = −1 ∆p = −2 ∆p = −2

1 0 0 0 0 0 0≡x

2 2π/2 2π/2 2π/2 4π/2 0 2π/2 ≡-x

3 2π/2 2π/2 2π/2 4π/2 0 2π/2 ≡-x

4 0 0 0 0 0 0≡x

5 π/2 π/2 π/2 2π/2 2π/2 π/2 ≡y

6 3π/2 3π/2 3π/2 6π/2 2π/2 3π/2 ≡-y

7 3π/2 3π/2 3π/2 6π/2 2π/2 3π/2 ≡-y

8 π/2 π/2 π/2 2π/2 2π/2 π/2 ≡y

2.1.4 NMR Instrumentation

In this section, a brief outline of NMR instrumentation is provided. The NMR spectrometer con-

sists of several elements.1, 2, 8 A few important elements are discussed below.
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1. A primary component in NMR is the superconducting magnet. The superconducting mag-

net consists of a solenoid of wire (i.e. coil) made of a material that is superconducting (e.g

a niobium and tin alloy) at liquid helium temperature so that a current flows without any

resistance. This cable of wire is shielded by a cylindrical tank of liquid helium at a tem-

perature 4 K which itself is shielded by another cylindrical tank of liquid nitrogen at 77 K.

The cylindrical tank of liquid nitrogen is also surrounded by an evacuated cylindrical tank

to reduce heat transfer and heat exchange. Other coils called shimming coils are located at

the bottom of the magnet and they are used to produce a homogeneous magnetic field at the

sample location.

2. The probe is the interface between the NMR spectrometer and the sample. It is used to pro-

duce radio-frequency excitations within the sample and to receive the sample signal as well.

So the probe includes two main electronic parts of the NMR spectrometer: the transmitter

circuit and the receiver circuit. Also the probe holds a coil (figure 2.3) wrapped close to the

sample to enhance the sensitivity of the receiving and excitation process, which is connected

to a tuning and matching capacitors. In the tuning process, we change the capacitance of

the tuning capacitor which causes a change in the resonance frequency of the tuning circuit

(i.e. coil-tuning capacitor circuit) to match synthesizer frequency. The matching capacitor

allows you to match the impedance of the resonant circuit to the impedance of the trans-

mission line that it is attached to. In addition, the probe includes field gradient coils that

are used to create an inhomogeneous magnetic field (field gradient) in order to measure the

diffusion coefficient values of different molecular species in a sample. The field gradients

can be along one axis as in the diffusion probe (Diff 30, 1-axis gradient) or along three axes

as in the Micro-5 imaging (3-axis gradient) probe.

3. The transmitter circuit (figure 2.4) is mainly used to produce the radio-frequency (RF) pulse.

The main part of this circuit is the synthesizer which is used to produce low power level
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Figure 2.3: Schematic diagram of the receiver coil, the tunning capacitor, and the matching capac-

itor.

(few mW) RF-pulses. In order to control the time of the pulse, the synthesizer is connected

to a gate, attenuator and high-power amplifier, all of which are computer controlled. The

attenuator is used to reduce the power level to create soft RF pulses and the high-power

amplifier is used to to increase the power level for the RF pulse to create hard pulses.

Figure 2.4: Schematic diagram of the transmitter circuit.

In addition, the transmitter circuit can change the orientation of the RF-pulse in the xy-

plane by changing the phase shift of the magnetic field BRF associated with the RF-pulse.

In the laboratory frame, we know from equation 2.5, the RF pulse is given in terms of the
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resonance component of the RF-pulse
−−→
BRF ≈

−−−→
BRF

Res = BRF
2

(
cos(ωRFt + φp)î + sin(ωRFt + φp) ĵ

)
.

Having φp = 0, in the rotating frame
−−→
BRF acts as a stationary magnetic field which is oriented

along the x-axis (i.e. at t = 0,
−−→
BRF ≈

BRF
2 î) since the xy-plane rotates at the same frequency as

the frequency of RF-pulse. Changing the phase shift of the RF-pulse in the laboratory frame

from zero to π/2,
−−→
BRF acts as a stationary magnetic field which is oriented along the y-axis

in the rotating frame (i.e. at t = 0,
−−→
BRF ≈

BRF
2 ĵ).

4. The receiver coil is used to detect small amplitude sample magnetization (i.e. the NMR

signal) which is amplified using a high performance pre-amplifier (HPPR). The HPPR is

connected to the bottom of the probe by a short cable and it is located close to the bottom of

the probe to minimize any attenuation or loss in the signal due to the transmission through

the cable. The receiver and the transmitter circuits are connected to a diode called a duplexer.

It is used to switch off and on the receiver and the transmitter circuits.

5. A variable temperature unit is used to increase, decrease, and control the temperature of the

sample.

6. The `̀ locking ´́ system is responsible for preserving the stability of the magnetic field dur-

ing the experiment. For example, a typical experiment in this work will involve detectable

spin-1/2 protons in a deuterated solvent (so it includes many 2H nuclei as well). The ratio of

proton to deuterium Larmor frequencies is given by γH

γ2H ≈ 6.5. The locking system detects

the signal of the deuterium nuclei in deuterated solvent. If the Larmor frequency of deu-

terium signal changes, (e.g. due to a drift in the Bo) a special current carrying coil at the base

of the magnet creates a current to adjust the value of the external magnetic field Bo. Since

one should average over many scans in NMR, it is the best that all scans to be carried out at

the same Larmor frequency.

7. The quadrature receiver (figure 2.5) is used to detect the x and y-components of the trans-
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verse magnetization. The x and y-components of the transverse magnetization are propor-

tional to the x and y-components of the time domain NMR signal that is presented in a

complex form: S (t) = S x + i S y. In order to detect both components of the time domain sig-

nal separately, the NMR signal with frequency ω0 is manipulated in a mixer by multiplying

it with the signal from the receiver reference with a frequency ωref. The receiver reference

signal is split into two different paths, at two separate mixers, that have π/2 difference in the

phase shift. The output signals (manipulated NMR signals) from the mixers are a combina-

tion of two signals at frequencies ω0 + ωref and ω0 − ωref. These output signals pass through

low-pass filters which retains the low-frequency (ω0 − ωref) components that represent the

x and y-components of the NMR signal. Despite the fact that both the x and y-components

of the transverse magnetization are detected, p=-1 is the only observable coherence after the

above mentioned manipulating process for the signal. The low-frequency components of the

NMR signal can be received by the analogue-to-digital converter (ADC) that converts the

analogue NMR signal to a digital signal which can be stored in the computer.

Figure 2.5: Schematic diagram of the quadrature receiver circuit.

In my work, one dimensional spectra, relaxation measurements, and diffusion measurements

were obtained on a Bruker Avance II spectrometer with either a diffusion probe (Diff30, 1-axis
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gradient) with maximum field gradient (1800 G/cm), a Micro-5 imaging (3-axis gradient) with

maximum field gradient (200 G/cm), or a high resolution (TXI) probe with maximum field gradient

(50 G/cm). In pulsed-field gradient NMR experiments (section 2.1.5.3), it is necessary to create

pulsed gradients in the static magnetic field. For this 14 T spectrometer, the proton 1H resonance

frequency ≈ 600 MHz and the deuterium 2H resonance frequency ≈ 92 MHz. Note that the gradient

strengths in the Diff30 probe and the Micro-5 imaging probe are much higher than those in a

standard liquid probes such as Bruker high resolution (TXI) probe.

2.1.5 NMR Techniques

Three main techniques have been used to measure three physical quantities: the longitudinal re-

laxation time T1, the transverse relaxation time T2, and diffusion coefficient D of different species

in the solution.

2.1.5.1 Inversion Recovery Technique

This technique is used to measure the longitudinal relaxation time T1 associated with different

chemical groups inside a sample. The pulse sequence, figure 2.6, includes two successive pulses,

(π)x and (π2 )x pulses with a delay time τ between both pulses.9

The first (π)x inverts the magnetization of the sample, which is initially at equilibrium, from

the +z-axis to the -z-axis. As soon as (π)x is turned off, the magnetization vector starts to relax

back to its previous orientation along the z-axis during the delay time. No signal can be detected

by the NMR device because there is no available magnetization component in the xy-plane. Then,

the sample is exposed to a (π2 )x pulse which is responsible for creating a transverse magnetization

in the xy-plane which can be detected by the receiver coil and recorded as a peak with specific

intensity and polarity.

The pulse sequence is repeated at different values of delay time τ. The intensity of the signal
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Figure 2.6: Inversion recovery pulse sequence. The phase cycle is: Φ(1)= x, -x, x, -x, x, -x, x, -x;

Φ(2)= x, x, -x, -x, y, y, -y, -y; Φ(receiver)= x, x, -x, -x, y, y, -y, -y. Φ(1) and Φ(2) are the phase

shifts of the first and second pulses in the pulse sequence respectively.

measured is proportional to the magnitude of the sample longitudinal magnetization Mz(τ) in the

time τ after the (π)x pulse,9

Mz(τ) = Mo

(
1 − 2 exp

(
−τ

T1

))
(2.29)

where Mo is the magnitude of sample magnetization at equilibrium and T1 is the longitudinal

relaxation time. Based on equation 2.29, turning on the (π/2)x pulse immediately after turning off

the (π)x pulse (i.e. τ = 0) would give magnetization amplitude with a negative polarity −Mo that is

detected by the NMR receiver coil. On the other hand, turning on the (π/2)x pulse at large value of

τ (i.e. τ = ∞) after turning off the (π)x would give magnetization amplitude with a positive polarity

+Mo.

Figure 2.7a shows the variation in the intensity (i.e. the longitudinal magnetization Mz(τ)) of

the PEO peak as a function of delay time τ, while figure 2.7b shows the variation in the inten-

sity (i.e. the transverse magnetization My(τ)) of the PEO peak as a function of delay time for

PEO(0.5% w/v)/SDS(20 mM)/D2O. According to equation 2.29, the longitudinal relaxation time

T1 is defined as the value of delay time at which the longitudinal sample magnetization recovers to
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Figure 2.7: (a) The variation in the intensity (i.e. the longitudinal magnetization Mz(τ)) of the PEO

peak versus a delay time τ and (b) the variation in the intensity (i.e. the transverse magnetization

My(τ)) of the PEO peak versus a delay time for PEO(0.5% w/v) /SDS(20 mM)/D2O sample at

T=298 K

.

37



≈ 0.26 of its equilibrium magnetization value Mo.

2.1.5.2 Spin Echo Technique

The spin echo is very useful. It is used to measure the transverse relaxation time T2.9 A modified

spin echo is also used to measure translational diffusion (section 2.1.5.3). The pulse sequence

(figure 2.8) includes two successive pulses, (π2 )x and (π)x pulse with a delay time τ between these

two pulses and same period of delay time between (π)x and the signal acquisition.

Figure 2.8: Spin echo pulse sequence. The phase cycle is: Φ(1)= x, x, -x, -x, y, y, -y, -y; Φ(2)= y,

-y, y, -y, x, -x, x, -x; Φ(receiver)= x, x, -x, -x, y, y, -y, -y. Φ(1) and Φ(2) are the phase shifts of the

first and second pulses in the pulse sequence respectively.

The evolution of the sample magnetization (neglecting relaxation and assuming no field inho-

mogeneity) during the spin echo pulse sequence (e.g figure 2.8) is given as follows:1

Îz
(π/2)Îx
−−−−→ −Îy

ΩτÎz
−−−→ − cos(Ωτ)Îy + sin(Ωτ)Îx

(π)Îy
−−−→ − cos(Ωτ)Îy − sin(Ωτ)Îx

ΩτÎz
−−−→ −Îy (2.30)

As shown in equation 2.30, the first (π2 )x pulse disturbs the equilibrium magnetization and

creates a transverse magnetization along the y-axis. After turning off the (π2 )x pulse and during the

first delay time τ between (π2 )x and (π)x pulses, the nuclear spins start precessing slightly at different
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frequencies (equation 2.22) such that some nuclear spins precess faster than the Larmor frequency

while some others precess slower than the Larmor frequency (i.e. with values of Ω greater and less

than zero in the rotating frame reference).

In discussing transverse relaxation, we introduced the idea that the transverse magnetization

decays to zero due to loss in synchronization (secular contribution) of precessional motions of

nuclei due to local field variations (caused by molecular motions). Such a decay in transverse

magnetization is irreversible. However in the presence of non-random local field variations (such

as a stray field gradient or an applied field gradient) the loss in transverse magnetization is at least

partially reversible. The next (π)x inverts the orientation of individual nuclear spins to the opposite

side in the xy plane. At the end of a second evolution period time τ, the dephasing in the transverse

component of the sample magnetization due to the existence of inhomogeneous magnetic field is

exactly reversed and results in a `̀ spin echo´́ .

The pulse sequence is repeated at different values of delay time τ in order to detect the time

dependence of peaks intensities which is proportional to sample transverse magnetization My(τ):9

My(τ) = My(0) exp
(
−2τ
T2

)
(2.31)

where My(0) is the magnitude of the transverse magnetization right after turning off (π2 )x pulse.

According to equation 2.31, the transverse relaxation time T2 is defined as the value of delay

time at which the transverse component of sample magnetization decays to ≈ 0.37 of its maximum

value My(0).

In our experiments, separate experiments were carried out at different τ values. In this `̀ quasi-

two dimensional´́ experiment, the second dimension is τ. T2 can also be measured in a single

experiment with multiple π pulses and an acquire after each π pulse, this is known as the Carr-

Purcell-Meiboom-Gill (CPMG) pulse sequence.
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2.1.5.3 Pulsed-Field Gradient (PFG) Spin Echo

Translational self diffusion of a molecule in a liquid is a random walk in a sequence of steps or

hops of a molecule in the absence of concentration gradient. These molecular steps are attributed

to the random thermal collisions with other molecules in the liquid such that over a sequence of

molecular steps the net force impacting the molecule is zero due to symmetry. Yet at each time step

collisions on an individual molecule are asymmetric.10 This drives the molecule to move randomly

under the influence of fluctuating forces.

There are two widely used techniques that employ pulsed magnetic field gradients. Magnetic

resonance imaging (MRI) has been utilized vastly as a nondestructive and direct technique to study

the structure of materials in industrial and medical fields, and diffusometry has been used as an

effective tool to investigate the dynamics and analyze the diffusion of water molecules in porous

materials. Diffusometry represents an indirect technique that is used to explore the effect of the

walls of a restricted geometry (pores) on the flow and dynamics of water molecules. This provides

quantitative information about the pore-size.11

Pulsed-field gradient (PFG) nuclear magnetic resonance is one of the techniques used to mea-

sure the translational diffusion coefficients of different molecular species inside a liquid. The

sample is exposed to both strong uniform magnetic field Bo along the z-direction and a pulsed

field gradient gz = dBo/dz along the direction of the uniform magnetic field which modifies the

precession frequency ωi of a nuclear spin12

ωi = γBo + γ~g.~r = γBo + γgzzi(t) (2.32)

where zi(t) is the position of a nuclear spin i at time t and gz = dBo/dz.

As in the spin-echo pulse sequence, a (π2 )x pulse rotates the sample magnetization from the z-

axis to the xy-plane.12 At the end of the first delay time period, the nuclear spin possesses a phase

shift (φi(τ))1 due to the application of a field gradient pulse of magnitude g and duration δ at time

t1. At the end of the first delay time period, a (π)y pulse is applied which inverts the orientation
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Figure 2.9: Hahn spin echo pulse sequence. The hashed pulses are radio-frequency electromag-

netic pulses. The solid black pulses are magnetic field gradient pulses. The phase cycling is: Φ(1)=

x, x, -x, -x, y, y, -y, -y; Φ(2)= x, y, x, y, -y, -x, -y, -x; Φ(receiver)= x, -x, -x, x, y, -y, -y, y. Φ(1) and

Φ(2) are the phase shifts of the first and second RF-pulses in the pulse sequence, respectively.

of individual nuclear spins to the opposite side of xy plane (i.e. rephasing the dispersion of the

individual nuclear spins which is attributed to nonhomogeneity in the applied uniform magnetic

field Bo). During the second delay time period at time t1 + ∆ another field gradient pulse with the

same duration and magnitude is applied. Assuming that a nuclear spin moves from one position to

a new position along the z-axis during the time period ∆, then at the end of the PFG sequence the

nuclear spin posses a total phase shift φi(2τ)12

φi(2τ) =

γBoτ + γg
t1+δw

t1

zi(t)dt

 −
γBoτ + γg

t1+∆+δw

t1+∆

zi(t′)dt′


= γg


t1+δw

t1

zi(t)dt −
t1+∆+δw

t1+∆

zi(t′)dt′
 (2.33)

The first and the second integral terms in equation 2.33 represent the phase shift of the nuclear

spin (φi(τ))1 and (φi(τ))2 at the end of the first delay time and at the end of the second delay time

periods, respectively. In the absence of nuclear spin diffusion (i.e. when the net displacement of
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nuclear spin along the direction of field gradient pulse is equal to zero) the total phase shift φi(2τ)

is equal to zero.

The sample contains a large number of nuclear spins which have different starting and finishing

positions and so they possess different values of phase shifts. The resulting signal attenuation at

the end of the pulse sequence is S (2τ):12

S (2τ) = S (2τ)g=0


∞w

−∞

P(φ, 2τ) exp(iφ)dφ

 (2.34)

where S (2τ)g=0 is the signal intensity in the absence of field gradient pulses, and P(φ, 2τ) is the

phase distribution function, which is a Gaussian function with respect to φ because the molecular

self-diffusion is a random varying quantity,

P(φ, 2τ) =
1

2π
〈
(φ(2τ))2〉 exp

(
−(φ(2τ))2

2
〈
(φ(2τ))2〉) (2.35)

Therefore, equation 2.34 can be written in terms of P(φ, 2τ)

S (2τ) = S (2τ)g=0 exp

−
〈
(φ(2τ))2

〉
2

 (2.36)

In order to be able to derive the signal attenuation function S (2τ) in equation 2.36, we need to

evaluate
〈
(φ(2τ))2

〉
. Let us assume (following Callaghan13) a one dimensional displacement Z of

a nuclear spin during the time period of a field gradient includes consecutive steps. The average

displacement between any two successive steps is λ and the average time is τs. Based on that, the

average displacement of a nuclear spin after n hops is given as

Z(t) = Z(nτs) =

n∑
i=1

λai (2.37)

where ai = +1 or -1 indicates the diffusion of a nuclear spin along or in the opposite direction of

the field gradient respectively. Using equation 2.37, we evaluate the one-dimensional mean square

displacement 〈
(Z(t))2

〉
=

〈
(Z(nτs)2)

〉
= nλ2 = 2Dt (2.38)
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where D is the self-diffusion of a nuclear spin.

Using equation 2.38, one can show that the mean-square value of the accumulative phase shift〈
(φ(2τ))2

〉
in the pulsed-field gradient spin echo is given as follows

〈
(φ(2τ))2

〉
= γ2g2λ

2

τs
δ2

(
∆ −

δ

3

)
= 2γ2g2Dδ2

(
∆ −

δ

3

)
(2.39)

By substituting equation 2.39 into equation 2.36, we evaluate the attenuation in the signal intensity

S (2τ) = S (2τ)g=0 exp
(
−γ2g2Dδ2(∆ −

δ

3
)
)

= S (0) exp
(
−2τ
T2

)
exp

(
−γ2g2Dδ2(∆ −

δ

3
)
)

(2.40)

where S (0) is the intensity of the signal in the absence of attenuation due to transverse relaxation

and due to diffusion of nuclear spins.

2.1.5.4 Pulsed Field Gradient Stimulated Echo (PFG-STE)

This pulse sequence is preferable to measure the diffusion coefficients of molecules which have

long longitudinal relaxation time T1 compared to their transverse relaxation time T2 ;T1 >> T2.14

The pulse sequence (figure 2.10) includes three successive (π2 )x pulses, delay time τ1 between

the first two (π2 )x pulses and same period of delay between the third (π2 )x pulse and the signal

acquisition, delay time τ2 between the second and third (π2 )x pulses and two field gradient pulses

each with duration δ and magnitude g inserted separately in the first and last τ1 periods.14

The signal is subjected to attenuation due to diffusion, T2 relaxation during τ1 periods and T1

relaxation during τ2 period:14

S (g) =
S (0)

2
exp

(
−2τ1

T2

)
exp

(
−τ2

T1

)
exp

(
−γ2g2Dδ2(∆ −

δ

3
)
)

(2.41)

The main advantages of using PFG-STE are summarized as follows:14

1. The longer part of diffusion time ∆ is included in τ2 period during which the magnetization

is subjected to the T1 relaxation with longitudinal relaxation time T1 which is commonly
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Figure 2.10: Pulsed field gradient stimulated echo pulse sequence. The phase cycle is: Φ(1)= x, x,

x, x, -x, -x, -x, -x, y, y, y, y, -y, -y, -y, -y; Φ(2)= y, -y, x, -x; Φ(3)= y, -y, x, -x; Φ(receiver)= x, x, -x,

-x, -x, -x, x, x, -y, -y, y, y, y, y, -y, -y. Φ(1), Φ(2), and Φ(3) are the phase shifts of the first, second,

and third RF-pulses in the pulse sequence respectively.

longer than T2 for macromolecules in solution. So there is more opportunity to increase the

value of ∆ in order to measure more accurately the diffusion coefficient of macromolecules.

2. The attenuation due to T2 relaxation in PFG-STE is smaller than the attenuation due to

T2 relaxation in Hahn-spin echo PFG since the period during which the magnetization is

subjected to T2 relaxation in PFG-STE is smaller than that in Hahn-spin echo PFG.

3. We are able to increase τ1 periods in order to minimize the effects of eddy currents which

are associated with the field gradient pulses.

2.2 Rheology

Rheology is a branch of science which is directed at investigating the mechanical response of mat-

ter to an external stress or strain. Matter is classified based on its mechanical response into simple

liquids, simple solids, and complex fluids. While simple fluids exhibits viscous flow as a me-
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chanical response to an applied stress and simple solids shows elastic instantaneous deformation,

complex fluids have been found to exhibit remarkable viscoelastic behavior that combines both

viscous and elastic response intermediate between simple liquids and simple solids.15

Viscoelastic behavior is seen in many materials such as polymer solutions, gels, micellar solu-

tions, and colloidal suspensions used in cosmetics, detergents, inks, lubricants, paints, food, and

pharmaceuticals. Moreover, complex fluids include biomaterials such as blood as well as personal

care products used in daily life such as shampoo and toothpaste.

Silly putty is a good example of a complex fluid.10 It exhibits viscoelastic behavior at different

time scales. If silly putty experiences a stress on a slow time scale, it flows in a similar way as

simple liquids, while if it experiences a stress on a short time scale, by rolling it up into a ball and

drop it on the ground, it behaves like a simple elastic solid. In rheology, the scaling parameter that

separates the liquid-like behavior from the solid-like behavior of viscoelastic materials, is called

the Deborah number De. It is the ratio of the material relaxation time τ, that separates the liquid-

like behavior from the solid-like behavior, to the time T of the applied stress or strain, De = τ/T.

Therefore, high Deborah number indicates solid-like behavior while low Deborah number indicates

liquid-like behavior.15

2.2.1 Rheometer

A rheometer is a laboratory device which is used to study the mechanical response of fluids to a

stress or strain.16 Our rheological measurements have been carried out on an Anton Paar Physica

MCR 301 rheometer, where the cone-plate measuring system (figure 2.11) has been used to extract

the stress relaxation measurements, flow curves, and oscillatory shear curves (i.e. dynamic curves).

The cone-plate geometry used in this Thesis is of R = 50 mm diameter and θ = 0.5◦ cone angle.

The main advantage of using cone-plate geometry is that we only need to use a small sample

amount in order to run our experiments. Also, the shear rate is homogeneous and it remains
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constant throughout the sample.16

For this kind of rheometer, the cone is rotating with respect to a stationary plate. In a stress

driven experiment, applying a torque M generates an angular displacement Φ that can be measured

where γ̇ = dΦ
dtθ , while in a strain driven experiment applying an angular displacement Φ generates

a torque M that can be measured where σ = 3M
2πR3 . The rotational motion of the cone is resisted by

a `̀ torsion bar´́ which represents an elastic piece of metal that stores more mechanical energy as it

is twisted. Therefore, the degree of torsion is an indicator for the shear stress, while the rotational

speed of the cone and its dimension (i.e. the gap width) is an indicator for the shear rate γ̇.17

Figure 2.11: Cone-and-plate measuring system

2.2.2 Flow Curves

The viscous flow of simple liquids is characterized by the viscosity η while the elastic response of

simple solids is characterized by the shear modulus G which reflects the energy stored.10, 18 These

two parameters can be measured in a complex fluid by either applying steady or oscillatory stress

or strain using the rheometer. Applying a stress on a simple liquid will produce a time-dependent

strain which is equivalent to a constant value of strain rate in Newtonian liquids. Therefore, in
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Newtonian liquids, the shear stress σ is linearly proportional to the strain rate γ̇

σ = ηγ̇ (2.42)

such that the liquid viscosity represents the proportionality constant. On the other hand, simple

solids response to a constant applied stress σ by producing a shear strain γ which is linearly pro-

portional to the applied stress

σ = Gγ, (2.43)

in the case of Hookean solids, such that the shear modulus G represents the linearity constant.

The viscosity of complex fluids is not constant but it is a shear rate-dependent parameter. As

an example, the viscosity of paint or yogurt decreases as the shear rate increases.10, 18 Complex

fluids that exhibit this behavior are called shear thinning materials. On the other hand, the vis-

cosity of whipped cream increases as the shear rate increases. This is knows as shear thickening.

While some complex fluids undergo irreversible deformations under an applied shear stress (large

stresses) which is known as plastic behavior, other complex fluids called Bingham fluids require

a threshold yield stress in order to flow and exhibit linear shear stress/shear strain relationship.

Examples of Bingham fluids are toothpaste, mayonnaise, and mustard.

2.2.3 Oscillatory Shear

Mechanical models are used in order to simplify our understanding of complex fluids viscoelastic

behavior.18 In these models, the viscous behavior is represented by a dashpot that includes a

piston inside a cylinder filled with a liquid. A force F on the dashpot causes the piston to move

with a speed V=dXpist/dt that is proportional to the applied force (F=ηV). η is the liquid viscosity

inside the cylinder and Xpist is the piston displacement. This equation is quite similar to that

of a Newtonian liquid where the shear stress σ is linearly proportional to the shear strain rate γ̇

(equation 2.42).
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On the other hand, the elastic behavior of a complex fluid is represented by spring which has a

spring constant G.18 An applied force F causes a displacement Xsp in the spring that is proportional

to F (Xsp=F/G). This equation is analogous to the equation for Hookean solids where the shear

stress is linearly proportional to the shear strain γ (equation 2.43).

Figure 2.12: A spring and a dashpot connected in series. Maxwell model.

The Maxwell model is a mechanical model that includes a spring and dashpot connected in

series (figure 2.12). If a displacement is imposed on the top end of the system in figure 2.12, this

causes stretching of the spring.18 The piston in the dashpot will be pulled out slowly since the

viscous liquid in the cylinder resists the movement. Therefore, the total displacement X of this

model is a combination of the displacement in the spring Xsp and the displacement in the piston

Xpist. Based on that,

dX
dt

=
dXsp

dt
+

dXpist

dt
=

Ḟ
G

+
F
η
. (2.44)

Equation 2.44 can be written in terms of shear strain rate γ̇ , shear stress σ, and shear stress rate σ̇

γ̇ =
σ̇

G
+
σ

η
. (2.45)

In practice, the mechanical response of viscoelastic fluids to an oscillatory shear strain γ =

γo sin(ωt) can be explored using a rheometer, where γo is the amplitude of the shear strain. If this

is substituted in equation 2.45, a first order linear differential equation is obtained. Based on that,
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the resulting shear stress

σ = γo

(
G
′

sin(ωt) + G
′′

cos(ωt)
)

(2.46)

includes two components, in phase and out of phase with respect to the applied oscillatory strain.

Here G
′

and G
′′

are called the storage and loss modulus respectively

G
′

= Go
(ωτ)2

1 + (ωτ)2 (2.47a)

G
′′

= Go
ωτ

1 + (ωτ)2 (2.47b)

The storage modulus G
′

reflects the deformation energy stored in a test sample under an applied

stress. As soon as the applied stress is removed, the stored energy is used to reform the structure

of the sample partially or completely. On the other hand, the loss modulus G
′′

reflects the defor-

mation energy dissipated to change the structure (flowing of a test sample) of a test sample under

the applied stress. A Maxwellian viscoelastic material will thus behave more solid-like at high

frequencies (G
′

>> G
′′

at high ω) and more liquid-like at low frequencies (G
′′

>> G
′

at low ω).

By eliminatingωτ from the expressions of the moduli in both equation 2.47a and equation 2.47b,

the loss modulus G
′′

can be presented and expressed in terms of the storage modulus G
′

(
G
′′

Go

)2

+

(
G
′

Go
−

1
2

)2

=

(
1
2

)2

. (2.48)

Equation 2.48 is valid for complex fluids which exhibit a single value of relaxation time. These

fluids are called Maxwellian fluids. Based on equation 2.48, we can see that for Maxwellian

fluids the functional behavior of G
′′

/Go versus G
′

/Go (the so called Cole-Cole diagram) exhibits a

semicircle of radius (1/2). This Cole-Cole diagram can be used to extract parameters such as the

shear modulus (Go) for a Maxwellian fluid.
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2.2.4 Stress Relaxation

The stress relaxation measurement is another practical test that can be used to analyze the time-

dependent behavior of different materials.16, 19 The tested material experiences a shear strain γ that

is held constant for a period of time (a step-strain). The mechanical response of the material is then

detected by measuring the shear stress σ(t) over the same period of time:

σ(t) = G(t)γ. (2.49)

Different materials exhibit different stress relaxation behavior. As an example, the Hookean

solid shows time-independent behavior for the stress relaxation (shows no stress relaxation), the

Newtonian liquid shows a quick relaxation that is too short to observe in rheology as soon as the

shear strain held constant, and viscoelastic fluids exhibit relaxation over the entire time period in

ms-s time scales of the applied strain (figure 2.13).
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Figure 2.13: (a) An applied shear strain γ (b) the shear stress σ versus time in the time duration t1

to t2 for Hookean solid, viscoelastic fluid, and Newtonian liquid.

The stress relaxation function of viscoelastic fluids might be either an exponential decay with

a single relaxation time

σ = σo exp(−t/τ) (2.50)

50



or a function with several relaxation times

σ =

N∑
k=1

σk exp(−t/τk). (2.51)

The wormlike micellar system that has been studied in details in chapter 5 is an example of a

viscoelastic fluid that exhibits a stress relaxation function with more than one relaxation time.
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Chapter 3

An Overview of Self-Assembly: Polymers,

Surfactants, and Proteins

Soft matter physics is a branch of science which represents a class of materials that are neither

simple liquids nor crystalline solids. These materials can be easily deformed under thermal fluctu-

ations at room temperature. Soft materials are very common in our daily life and they have wide

applications.1, 2 Materials composed of polymers and surfactants have applications which include

laxatives, lubricants, skin creams, cosmetics, and detergents. Proteins represent an essential com-

ponent of the biological cell. Small-molecule liquid crystals, too, fall under the category of soft

materials. However, the systems we are discussing in this chapter are macromolecular systems

such as polymers, micelles, and proteins.

3.1 Polymers

A polymer is a giant molecule or macromolecule composed of many repeat units which are bonded

to each other via covalent bonds. Each single structural unit is called a monomer. Based on the type

of repeat unit or monomer, a polymer is classified as homopolymer or copolymer. A homopolymer
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is constructed from only one type of monomer while a copolymer’s structure includes two different

types of monomers or more.2

Polymer molecules are characterized using various physical and chemical parameters. Some

physical parameters are the degree of polymerisation, the number averaged molecular weight,

the weight average molecular weight, and the polydispersity.2 The degree of polymerisation is

the number of structural repeat units or monomers in a polymer chain. Unlike atoms, or small-

molecule synthesis, polymer synthesis never yields molecules with identical degree of polymer-

ization. The number average molecular weight Mn =
∑

NiMi/
∑

Ni, the weight average molecular

weight Mw =
∑

NiM2
i /

∑
NiMi and the polydispersity index PDI = Mw/Mn are used to charac-

terize a polymer solution or a polymer melt that consists of the same type of molecules but with

different chain lengths, where Ni is the number of polymer chains (molecules) of molecular weight

Mi.2

In addition, as a chemical parameter, the functionality of a monomer controls the number of

its chemical bonds with other monomers. If the functionality of each monomer in a polymer chain

is two then the polymer is considered to be a linear polymer (i.e. single chain polymer) while if

the functionality of each monomer is more than two then the polymer is classified as a branched

polymer.

3.1.1 The Hydrodynamic Radius and Brownian Motion

A common feature of all classes of molecules described in this chapter is that, in solution, they are

Brownian objects. The hydrodynamic radius RH is a parameter accessible to a variety of experi-

mental techniques. Some techniques used are nuclear magnetic resonance (NMR),3 dynamic light

scattering (DLS),4 and small angle X-ray (SAXS), and neutron scattering.5, 6 The hydrodynamic

radius is used to characterize the size of any molecule or aggregate: polymer, protein, or micelle. It

is broadly defined as a radius of a sphere which diffuses in the same way as the suspended diffusive
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molecule in a bulk solution.

Consider a suspended solute molecule in a bulk solution. This molecule is exposed to random

collisions with solvent molecules due to thermal energy. This creates a force which is fluctuating

as a function of time, which forces the suspended molecule to move randomly with the passage

of time. This random motion is called Brownian motion. Since the molecule moves randomly

between the time steps then the mean displacement of the molecule is zero (i.e. 〈R(t)〉 = 0), while

the mean-squared displacement is2, 7 〈
R2(t)

〉
= 6Dt. (3.1)

Einstein8 and Sutherland9 independently found that the diffusion coefficient can be related to

the Stokes drag of the suspended particle, D = (KBT)/ξS tokes. For an isolated sphere ξS tokes =

6πηRH and

D =
KBT

6πηRH
(3.2)

where D is the diffusion coefficient of the suspended molecule and η is the viscosity of the so-

lution. Equation 3.2 is known as Stokes-Einstein-Sutherland relation. We see from equation 3.2

that the hydrodynamic radius RH is inversely proportional to the diffusion coefficient D of the sus-

pended molecule. So we are able to estimate the size of a suspended particle in a solution by

measuring the diffusion coefficient of the molecule itself. A key challenge in a real solution is that

Stokes-Einstein-Sutherland equation is only truly valid at infinite dilution. Therefore, extracting

the hydrodynamic radii in solutions that are not in the dilute limit is not always straight forward.

3.1.2 Obstruction Effects and Hydrodynamic Corrections

In the dilute regime, the interactions between suspended particles are negligible. The only avail-

able interaction is the interaction between suspended particles and the small size solvent molecules

which cause a motion of a suspended molecule in a random walk path. At higher concentrations,
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the situation is more complicated. In these systems, the suspended macromolecules are in a regime

where there are significant interactions between macromolecules. These interactions hinder the

random walk motion of macromolecules inside the bulk solution. So in addition to the interac-

tion between macromolecules and solvent particles in the solution, the hydrodynamic interaction,

which is an indirect interaction, takes place at least between the nearby macromolecules, where

simply, the motion of a suspended macromolecule creates a solvent flow field which can affect the

random walk path of other macromolecules in the solution. In addition, the existence of charged

suspended macromolecules creates an excess hindrance to the random walk motion due to the ex-

istence of electrostatic interactions. The strength of this hindrance decreases with increasing the

ionic strength of the solution between charged macromolecules.10

The diffusion of a macromolecule on a time scale at which the hydrodynamic interaction dom-

inates over direct interactions (Coulomb, van der Waals, etc.) is defined as a short-time self dif-

fusion11 Ds. In the long time limit, the macromolecule diffuses over a distance lager than the

interparticle distance. In addition to the direct interactions between macromolecules, direct colli-

sions take place between nearby macromolecules.11 In this long-time limit, the macromolecular

diffusion is defined as long-time self diffusion DL.

A few theories have been established which consider the reduction in the self-diffusion of

macromolecules due to either obstruction effect or direct interparticle interactions. One model, due

to Han and Herzfeld,12 finds that the reduction in the self-diffusion (equation 3.3) of a biological

macromolecule (i.e. protein molecule) due to the effect of crowding takes the form

D = Do exp
(
−

2
3

(
3

Φ

1 − Φ
+

9
2

Φ2

(1 − Φ)2 +
9
4

Φ3

(1 − Φ)3

))
, (3.3)

where Do is the self-diffusion of a macromolecule in the dilute limit and Φ is the macromolecule

volume fraction. This model treats the self-diffusion of a globular protein molecule as a hard sphere

diffusing among other spherocylinder proteins with different sizes and with an isotropic distribu-
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tion. The formation of protein aggregates in the solution causes a reduction in the hindrance of

a globular protein by other protein molecules. Moreover, anisotropic alignment of spherocylinder

proteins cause an extra reduction in the hindrance.

Two other models, due to Medina-Noyola et al.11 (equation 3.4) and Tokuyama and Oppen-

heim13 (equation 3.5), have been derived to deal with a reduction in the self-diffusion DL of the

colloidal particles as hard spheres in the long-time diffusion limit. Medina-Noyola model deals

with the self-diffusion in the long time limit in a system of charged hard sphere particles. Both

direct interactions (van der Waals and Coulomb interactions) and hydrodynamic interactions are

included. Medina-Noyola et al. found an expression of the form

DL = Do
(1 − Φ)3

[1 + (3/2)Φ + 2Φ2 + 3Φ3]
, (3.4)

, Tokuyama and Oppenheim show that in the long-time limit the hydrodynamic interactions dom-

inate the dynamics of uncharged hard-sphere particles more than the direct interactions (van der

Waals), and find an expression of the form

DL ≈ Do

(
1 − 9Φ

32

)
1 + H(Φ) +

(Φ/0.57)
(1−Φ/0.57)2

(3.5)

where H(Φ) =
(2A2)
1−A −

B
(1+2B) −

AB(2+B)
(1+B)(1−A+B) , A =

√
9Φ/8, and B = 11Φ/16.

Figure 3.1 shows the variation of the scaled diffusion coefficient as a function of molecular

volume fraction in three different models. The self-diffusion coefficient is scaled by the theoretical

value at zero volume fraction.14, 15 Based on these models, figure 3.1 shows that the reduction in the

self-diffusion in a system composed of a globular protein (black line) is smaller than the reduction

in systems composed of charged (line) or uncharged colloids (red line). Also, as can be seen from

figure 3.1, the models differ significantly from each other even in the limit of low volume fraction

Φ.
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Figure 3.1: The long-time self-diffusion coefficients obtained in the works of Han and Herzfeld

black (solid) (globular protein), Tokuyama and Oppenheim blue (dotted) (charged colloids), and

Medina-Noyola red (dashed) (uncharged colloids) line .

3.1.3 Radius of Gyration

The size of either a linear or branched polymer can be characterized by a useful quantity called the

radius of gyration Rg. The squared radius of gyration is defined by the equation

R2
g =

1
N

N∑
i=1

(
−→
Ri −
−−→
Rcm)2 =

1
N2

N∑
i=1

N∑
j=i

(
−→
Ri −
−→
R j)2 (3.6)

where
−−→
Rcm =

∑N
j=1 M j

−→
R j∑N

j=1 M j
= 1

N

∑N
j=1
−→
R j is the polymer’s center of mass vector for a specific polymer

conformation and
−→
Ri and

−→
R j are the position vectors of the i-th and j-th monomers, respectively,

for a specific polymer conformation. A polymer chain in melt or solution changes conformation

rapidly in time. The quantity that is accessible experimentally is the ensemble average of the square

radius of gyration over all possible configurations:
〈
R2

g

〉
.
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3.1.4 Persistence Length

Many models have been used in order to estimate physical volume occupied by a polymer chain.

One of the simplest is the freely rotating chain model, which assumes that a polymer chain consists

of n backbone monomers which are connected to each other with bond vectors (−→r1,−→r2,−→r3,...,−→ri ,...).

All bond vectors have the same length `with different orientations such that the angles between any

two nearby bond vectors is the same (i.e. θ) (figure 3.2). The mean-square-end-to-end distance7〈
R2

〉
=

〈
−→
Rn.
−→
Rn

〉
=

∑n
i=1

∑n
j=1

〈
−→ri .
−→r j

〉
, where −→ri and −→r j are two bond vectors which are separated by

j − i other bond vectors.

Figure 3.2: A schematic representation of a polymer chain in the freely rotating chain model.

Simply, −→r j has two components: one that is perpendicular and one that is parallel to the nearby

bond vector −−→r j−1. The average of the normal component of −→r j is zero since this component can

rotate freely in any direction perpendicular to −−→r j−1, i.e., there is an equal probability of finding the

component oriented along any direction perpendicular to −−→r j−1. This assumption is an essential part

of a freely rotating chain model. The other component, which is along −−→r j−1, is equal to ` cos θ. The

correlation between bond vectors −→ri and −→r j is
〈
−→ri .
−→r j

〉
= `2(cos θ)( j−i). For large ( j − i), (cos θ)( j−i)

becomes very small. Indeed, the correlation can be written in an exponential form:

〈
−→ri .
−→r j

〉
= `2 exp

(
−

( j − i)`
`p

)
(3.7)

where `p is the persistence length.
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3.1.5 Freely Jointed Chain Model, Equivalent Freely Jointed chain model,

and Kuhn Length

The freely jointed chain model assumes that a polymer chain is composed of n segments (i.e.

monomers) each with length ` such that each segment rotates freely, independently, and it is un-

correlated to any other segment’s orientation. Based on this model, each segment (monomer) in

a polymer chain with n monomers has n random possible steps which are not correlated to each

other.2, 7 According to this model, the mean-square end-to-end distance is simply given as2, 7

〈
R2

〉
=

n∑
i=1

n∑
j=1

〈
−→ri .
−→r j

〉
= `2

n∑
i=1

n∑
j=1

〈
cos θi j

〉
= n`2 (3.8)

where
〈
cos θi j

〉
measures the angular correlation between i-th and j-th segment and is zero for i , j.

Equation 3.8 can be written in a more general form (not assuming uncorrelated bond angles):〈
R2

〉
= `2

n∑
i=1

n∑
j=1

〈
cos θi j

〉
= `2

n∑
i=1

Ci = nCn`
2 (3.9)

where: Ci =
∑n

j=1

〈
cos θi j

〉
and Cn = 1

n

∑n
i=1 Ci. The quantity Cn is called Flory’s characteristic

ratio. For a long polymer chain (i.e. n→ ∞),
〈
R2

〉
= n`2C∞.

Another simple model is the equivalent freely jointed chain model. This model is based on

the freely jointed chain model and it assumes that the polymer chain includes N (where N < n)

subsegments called Kuhn monomers which are not correlated to each other. Each subsegment has

a length b, called the Kuhn length, where b > `. Each Kuhn monomer includes several monomers

in it. Based on this, the Kuhn length b of a long polymer chain can be written in terms of mean

square end-to-end distance
〈
R2

〉
equation 3.9 and the end-to-end distance Rmax of the equivalent

freely polymer chain:

〈
R2

〉
= Nb2 = bRmax = C∞n`2. (3.10)

As an example, let us consider a linear chain, non-ionic polymer polyethylene oxide, one of

the components in our study of polymer-surfactant aggregates (Chapter 4). The PEO chain in the
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study has ≈ 450 monomers (each of length ≈ 0.44 nm). The Kuhn length16 b ≈ 1.8 nm and the

Flory characteristic ratio7 C∞ = 6.7.

3.1.6 Polymer Solutions and Models of Polymer Dynamics

Polymer solutions are classified into either dilute, semidilute, or concentrated solutions depending

on the volume fraction of the polymer molecules in the solution. In the dilute regime, the average

distance between polymer chains is larger than the average size of a polymer chain. So a polymer

chain diffuses freely without any obstructions from other polymer chains. In the semidilute regime,

the pervaded volume of a polymer chain includes both solvent molecules and other polymer chains

which form entangled network. In this regime the polymer exhibits strongly viscoelastic behavior,

it is therefore very interesting to be considered in some detail.7

In the semidilute regime, there is a characteristic length below which a monomer in a polymer

chain is completely surrounded by solvent molecules and some monomers from the same polymer

chain. This characteristic length is called the correlation length ζ. Beyond this length the monomer

is surrounded not only by solvent and monomers from the same polymer chain, but also monomers

from other nearby chains. A `̀ blob´́ of diameter ζ contains a number g of Kuhn monomers in it. A

schematic diagram is shown in figure 3.3. The correlation length ζ scales as

ζ ≈ bgν (3.11)

where b is the Kuhn monomer length and ν is a scaling exponent that has a value of 1/2 for a

random walk and 0.588 for a self-avoiding walk.2, 7 At length scales which are much smaller than

the correlation length, a thermal blob of characteristic length ζT can be defined. We can think of a

polymer chain as a coil which includes a number of thermal blobs. At length scales smaller than the

thermal blob, the cumulative interactions (i.e. the hydrodynamic interactions and excluded volume

interactions) between the polymer section and the solvent molecules is less than the thermal energy.
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Therefore, when coarse-grained at this length scale, the polymer chain exhibits a random walk.

Figure 3.3: Schematic diagram of a polymer chain. The plot shows the end-to-end distance R, the

blob correlation length ζ, and the correlation length ζT of the thermal blob.

For length scales larger than the thermal blob but smaller than the correlation length (i.e. ζT <

length scale < ζ), the net interactions between the polymer section and the solvent molecules

dominates and becomes larger than the thermal energy. At this length scale, the excluded volume

effect becomes important and the polymer chain section exhibits a self-avoiding walk. On length

scales larger than the correlation length ζ, at which the overlap between the polymer chains is seen,

the polymer chain exhibits a random walk again with the excluded volume interactions screened

due to overlapping between chains.

The overlap volume fraction Φ? separating the dilute regime from the semi-dilute regime is

defined as7

Φ? ≈ b3 N
R3 (3.12)

where R = bNν is the root mean square end to end distance of a polymer chain with N Kuhn

monomers and Kuhn length b and V ≈ R3 is the volume of the solution spanned by a polymer

chain (known as the pervaded volume). Equation 3.12 shows that the overlap concentration Φ?

measures the volume fraction of a polymer chain inside the pervaded volume (V).

Based on the schematic diagram7 of a polymer chain in figure 3.3, we may write the end-to-end
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distance R in terms of the number of thermal blobs (N/gT) and the thermal blob size (ζT )

R ≈ ζT

(
N
gT

)ν
(3.13)

where gT is the number of Kuhn monomers in the thermal blob.

However, we mentioned that on length scales smaller than the thermal blob size ζT the polymer

segment exhibits a random walk with ζT = b g0.5
T . On the other hand, on length scales on the order

of magnitude of the thermal blob size or bigger than the thermal blob size ζT , the excluded volume

interaction takes place. This entropic interaction is in the order of magnitude of the thermal energy

KBTv
g2

T

ζ3
T

≈ KBT (3.14)

where v is the volume occupied by the Kuhn monomer.

Combining equation 3.14 with the fact that ζT = b g0.5
T , we may write the thermal blob size ζT

and the number of Kuhn monomer gT in terms of the Kuhn length b and the volume occupied by

the Kuhn monomer v

gT ≈
b6

v2 , ζT ≈
b4

v
. (3.15)

By combining both equation 3.15 and equation 3.13, we may write the end to end distance in

terms of the volume occupied by the Kuhn monomer v, the length of the Kuhn monomer b, and the

number of Kuhn monomers

R ≈ b
( v
b3

)2ν−1
Nν. (3.16)

By substituting equation 3.16 in equation 3.12, the overlap volume fraction can be presented as

follow

Φ? ≈

(
b3

v

)6ν−3

N1−3ν ∝ N1−3ν. (3.17)
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For ν = 0.5 or ν = 0.588, Φ? is a decreasing function of N. As the chain length grows the overlap

volume fraction Φ? decreases.

The volume fraction of monomers inside the correlation blob with length ζ, known as the

correlation volume fraction, it is written using equation 3.11 in a similar way as Φ? (equation 3.12

and equation 3.17):7

Φ ≈ b3 g
ζ3 ≈

(
b3

v

)6ν−3

g1−3ν. (3.18)

Similar to the end to end distance R of a polymer chain (equation 3.16), the correlation blob end

to end distance ζ can be written as7

ζ ≈ b
( v
b3

)(2ν−1)
gν. (3.19)

Combining both equation 3.19 and equation 3.18, we can write the number of Kuhn monomers g

and the correlation blob end to end distance in terms of the correlation volume fraction Φ:

g ≈
(
b3

v

)3(2ν−1)/(3ν−1)

Φ−1/(3ν−1), (3.20)

ζ ≈ b
(
b3

v

)(2ν−1)/(3ν−1)

Φ−ν/(3ν−1). (3.21)

We will use both equation 3.20 and equation 3.21 in two polymer models (the Rouse and Zimm

models) in order to extract information about the dynamics and the average size of a polymer chain

in th e dilute and semidilute regimes, respectively. A brief review of Rouse and Zimm models is

provided next.7

Rouse derived a molecular model in polymer dynamics7, 17 assuming that a polymer chain con-

sists of N Kuhn monomers where the only available interactions between monomers are through

the Kuhn segments. The hydrodynamic interactions between monomers in a polymer chain and

between monomers and solvent molecules are screened. Therefore, the Rouse model is valid in the
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semi-dilute regime and concentrated regime of a polymer solution on length scales larger than the

blob correlation length ζ. In these regimes, a polymer chain exhibits a random walk.

Each monomer in a polymer chain experiences friction with an associated friction coefficient ξ

such that the total friction experienced by the whole chain is ξR = Nξ. Using the Stokes-Einstein-

Sutherland equation DR = (KBT)/(Nξ), where DR represents the diffusion coefficient of the Rouse

chain, we may write7

τR = R2/DR = (R2Nξ)/(KBT ) (3.22)

where τR is called the Rouse time. Once again using the scaling relation, the Rouse time can be

written

τR =
ξb2

KBT
N1+2ν ≡ τ0N1+2ν. (3.23)

Here, τ0 = (ξb2)/(KBT) is the Kuhn monomer characteristic time. On a time scale smaller than

τ0, the Rouse polymer chain shows elastic behavior while on a time scale longer than the Rouse

time τR of the polymer chain, Rouse polymer chain is diffusive and shows viscous behavior. In the

intermediate time scale (i.e. τ0 < t < τR), the polymer chain exhibits viscoelastic behavior.7

The Zimm model7, 18 considers the hydrodynamic interactions between monomers on the poly-

mer chain and between monomers and solvent molecules in the pervaded volume. This is valid for

length scales smaller than the blob correlation length. The Zimm model is valid for a dilute poly-

mer solution where only monomers from the same chain interact with each other through strong

hydrodynamic interactions. In this regime, a polymer chain exhibits a self-avoiding walk.

In the Zimm model, a polymer chain diffuses as one unit and drags with it solvent molecules

which are highly affected by the hydrodynamic interactions associated with monomers in the chain.

The total friction ξZ experienced by a chain is on the order of ηsR where ηs is the solvent viscosity

and R is the end to end distance of a polymer chain. Based on the Stokes-Einstein-Sutherland
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equation, the Zimm chain diffuses a distance of the order of the chain size R during the Zimm time

scale τZ and we can write

τZ ≈
R2

DZ
≈

ηs

KBT
R3. (3.24)

Back to the Rouse model, the Rouse time can be written in terms the characteristic time

(τζ = (ηs/KBT) ζ3) of the blob τR = τζ
(
N/g

)1+2ν where ν = 0.5 since in the Rouse model a

polymer chain exhibits a random walk. On length scales smaller than the blob correlation length

ζ, we are in the regime where the Zimm model is valid. Therefore, using equation 3.21, the char-

acteristic time of the blob is7

τζ ≈ (ζ)3 ηs

KBT
≈

ηs

KBT
b3

(
b3

v

)3(2ν−1)/(3ν−1)

Φ−(3ν)/(3ν−1). (3.25)

Using both equation 3.25 and equation 3.20, the Rouse time τR can be written in terms of Kuhn

monomer length b, number of Kuhn monomers N, and the volume fraction of polymer solution Φ

τR ≈
ηsb3

KBT
N2Φ(2−3ν)/(3ν−1). (3.26)

In addition, using equation 3.19 and equation 3.20, the polymer chain end to end distance R in

the semi-dilute regime is given as:7

R ≈ ζ
(

N
g

) 1
2

≈ bN1/2Φ−(2ν−1)/(6ν−2). (3.27)

Using equation 3.22, equation 3.27, and equation 3.26, the diffusion coefficient D of a polymer

chain in semi-dilute regime can be written in term of the polymer volume fraction

D ≈
KBT
ηsbN

Φ−(1−ν)/(3ν−1) ≡ DZ
(
Φ/Φ?)−(1−ν)/(3ν−1) (3.28)

where the total polymer volume fraction and the correlation volume fraction must be the same for

densely packed correlation volumes. The total polymer volume fraction Φ and the overlap volume
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fraction Φ? are related to the polymer mass concentration C and to the overlap concentration C?

respectively7

Φ =
C
ρ

= C
vmonNAv

MMon
(3.29a)

Φ? =
C?

ρ
=

Nvmon

V
(3.29b)

where the polymer mass concentration is the ratio of the mass of the polymer dissolved in a solution

and the total volume of a solution, NAv is Avogadro’s number, vmon is the volume occupied by a

single chemical monomer, V is the pervaded volume of a polymer chain, and ρ is the polymer

density or the ratio of the monomer molar mass (Mmon) and monomer molar volume (vmonNAv).

Equation 3.28 allows a comparison between the dynamics of a polymer chain in the Rouse

model and Zimm model. Both models predict a power law scaling as a function of the volume

fraction. In the Zimm model, a polymer chain exhibits a self-avoiding walk with ν = 0.588. This

predicts an exponent (1 − ν)/(3ν − 1) = 0.54 in equation 3.28. On the other hand, in the Rouse

model, a polymer chain exhibits a random walk with ν = 0.5. This would predict an exponent

(1 − ν)/(3ν − 1) = 1 in equation 3.28.

Equation 3.28 is used in chapter 5 to extract information about the dynamics in the semidilute

regime of a `̀ living polymer´́ wormlike micellar solution.

3.2 Surfactants and Micelles

Surfactants or amphiphiles belong to a category of molecules that have two attached chemical

groups with completely different tendencies to form bonds with water molecules. Typically one of

the chemical groups is hydrophobic and is non-soluble in water, while the other chemical group

is a hydrophilic head-group which is soluble in water and has the ability to form hydrogen bonds
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with water molecules.2 Often the hydrophobic group is a hydrocarbon-rich chain (such as an alkyl

chain) and it is called the hydrophobic `̀ tail´́ .

According to the chemical properties of both hydrophobic and hydrophilic sections, simple

surfactants (amphiphiles) can be classified into four categories.2 First, these are anionic surfactants

which have single hydrocarbon chain bonded to anionic head-group. One example is sodium

dodecyl sulphate (SDS) which dissociates in an aqueous medium into the C12H25 − (SO4)−1 ion

and Na+ ion, and sodium stearate where the surfactant ion is C18H37 − (COO)−1. These kind of

surfactants are commonly used in detergent products. SDS self-assembles into almost spherical

as well as rodlike micelles. A system composed of anionic surfactant SDS and non-ionic polymer

polyethylene oxide PEO is studied extensively in chapter 4 using NMR.

The second category of surfactants are cationic surfactants. A cationic surfactant has a sin-

gle hydrocarbon chain bonded to a cationic head-group. One example is hexadecyltrimethyl-

ammonium bromide (CTAB) which consists of C16H33 − N+1(CH3)3 ion and a Br− ion. CTAB

has a tendency to form elongated cylindrical micelles.

The third category of surfactants are non-ionic surfactant. These have single hydrocarbon

chains bonded to a non-ionic head-group such as C12H25 − (OCH2CH2)5. Also surfactants which

includes two hydrocarbon chains bonded to a non-ionic head-group such as pluronic P105. Pluronic

P105 includes two hydrocarbon chains (OCH2C2H5)58 attached to (OCH2CH2)37 head group, where

these kind of surfactants are used in cosmetics and some pharmaceuticals.

The fourth category of surfactant are zwitterionic surfactants. The surfactant ion has zero net

charge such as tetradecyl dimethyl ammonium propane sulfonate (TDPS) C19H41NO3S. It has re-

cently been shown to form long cylindrical micelles. The structure and dynamics of an elongated

cylindrical micellar system composed of zwitterionic surfactant TDPS and anionic surfactant SDS

in brine is studied in studied in chapter 5. Complementary techniques are used, including diffusom-

etry, relaxometry, deuterium NMR, and rheometry to extract information about the microscopic

structure of this system.
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3.3 Micellar Aggregates and Cluster Phases

An amphiphilic molecule includes a hydrophobic chain and a hydrophilic head-group. Its hy-

drophilic groups energetically prefer maximal exposure to water molecules while its hydrophobic

groups prefer other hydrophobic groups.

Figure 3.4: Micellar Shapes: a) Spherical micelle and b) Cylindrical micelle

The presence of an amphiphilic molecule in aqueous solution breaks the nearby hydrogen-

bond network between water molecules because this molecule has a hydrophobic component that

is not able to form hydrogen bonds with the nearby water molecules. It forces the nearby water

molecules to rearrange themselves into configurations that maximize the hydrogen bonds. The

number of configurations will be less than the number of available arrangements in the absence of

an amphiphilic molecule. As a result, the number of available configurations of water molecules

in the presence of an amphiphilic molecule decreases, which causes a decrease in the entropy

and so an increase in the free energy. This imposes amphiphiles to form finite size aggregates.

The simplest of these aggregates are micelles. A micelle is a fluid-like object which is suspended

in an aqueous solution. Micelles can be spherical (figure 3.4a) or cylindrical (figure 3.4b).2 More

generally, surfactants `̀ micro-phase-separate´́ in solution with a large number of possible aggregate

structures. The amphiphilic nature of the surfactant molecule is crucial to micro-phase-separate.

The balance between molecular shape and size as well as different interactions (electrostatic
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repulsion and hydrophobic interactions) plays a crucial role in specifying the preferred micellar

shape and the geometry of the amphiphilic aggregates. The geometry of a micellar amphiphilic

aggregate defines by the surfactant packing parameter p = v/(`cao), where ao is the optimum

head-group area of an amphiphilic molecule, `c is the chain length of the hydrocarbon chain, and

v is the hydrocarbon chain volume. Consider a spherical micelle of radius r composed of M

molecules each with volume v. The total micellar volume V = 4πr3/3 = Mv and the surface area

A = 4πr2 = Mao with r = 3v/ao. The condition for the formation of a spherical micelle is satisfied

when the radius r of the micelle is less than the critical chain `c, v/(`cao) ≤ 1/3. On the other hand,

increasing the ionic strength of the solution causes an increase in the screening of the electrostatic

repulsion interaction between the ionic head groups which reduces the optimum head-group area

ao. As a result, the surfactant packing parameter v/(`cao) increases and then the spherical micelles

transform to cylindrical micelles when (1/3) < p ≤ (1/2).19

The tendency of molecules to form equilibrium aggregates has not been observed only in sur-

factant solutions. It has been shown that protein and colloid systems form equilibrium mesoscopic

aggregates that have finite size.20 However, inspite of the large number of studies that have been

accomplished in the field of `̀ equilibrium clusters ´́ in the last few years, important questions have

not fully answered. What are the exact potentials responsible for the formation of the clusters?

What is the origin of these potentials? Finally, what are the factors that impact the cluster size?20

Therefore, the formation of what are called `̀ equilibrium clusters´́ in colloidal systems and

macromolecular systems have been investigated extensively. Despite the fact that recent studies

investigate cluster formation in different systems, we will explain in more detail the studies that

explore cluster formation in systems that are more relevant to our research field.

Recently, NMR-based studies constituting chapter 6 of this thesis have revealed strong evi-

dence for the formation of a coexistent phase that consists of lysozyme clusters and monomers.21

Cardinaux et al.22 also find that the fraction of lysozyme monomers in the cluster phase increases

by increasing the lysozyme volume fraction. Computer simulation studies23 also find the existence
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of protein clusters inside the lipid biomembrane. These protein assemblies are formed due to the

balance between short-range attraction and long-range attraction. Within the lipid membrane there

are hundreds of different types of protein. Each type of protein molecule has an affinity to form

clusters of the same type. In charged colloid systems,24 computer simulation showed an evolution

of the cluster shape and size from small finite size clusters at low volume fraction to one large

cluster that spans all the colloids in the system.

Another example is a theoretical study by Groenewold et al.25 They showed in particular that

head-tail anisotropic interactions (such as those that result in micelles and other micro-phases) are

not necessary in order to form stable, finite-size clusters in equilibrium. The stability of this cluster

phase is attributed to the balance between the long-range repulsion and short-range interactions.

This conclusion was confirmed experimentally by Stradner et al.,26 but questioned by experimental

work by Shukla et al.27 Our experiments in chapter 6 are designed to resolve these questions.

Stradner et al.26 reported the formation of finite size clusters in a colloidal system. The equilib-

rium cluster formation in this system was driven by the combination of long-range electrostatic re-

pulsion due to the charge on the colloids and short-range attraction due to non-adsorbed polymers.

Similar aggregates were detected experimentally in solutions of globular protein lysozyme.22, 26, 28

The hypothesis of two combined potentials was supported by computer simulation studies in

colloidal29 and protein22, 30, 31 systems. Moreover, extensive studies including scattering tech-

niques,27, 32–35 nuclear magnetic resonance,14, 33, 36, 37 and computer simulation studies31, 38 have been

accomplished in the field of irreversible, non-equilibrium cluster formation for lysozyme solutions.

3.3.1 Spherical Micelles

In order to make our understanding of micelle formation quantitative, let us consider a solution

which contains solute molecules with volume fraction φ such that at equilibrium φ =
∑∞

N=1 XN ,

where XN is the volume fraction of solute molecules in aggregates which includes N molecules. At
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equilibrium, the chemical potential µN of a molecule in an aggregate which includes N molecules

is2, 39

µN = µo
N +

KBT
N

log
XN

N
(3.30)

where µo
N is the free energy per molecule in an isolated aggregate of N molecules. Rewriting

equation 3.30, the volume fraction XN is given2, 39

XN = N exp
(

N(µN − µ
o
N)

KBT

)
= N

[
X1 exp

(µo
1 − µ

o
N)

KBT

]N

(3.31)

where X1 is the volume fraction of individual solute molecules in the bulk solution (i.e. aggregates

of size one or monomers). So according to equation 3.31, if the free energy µo
1 per molecule or

monomer in monomeric state is equal to the free energy µo
N per molecule in an N-molecules aggre-

gate, then XN = N [X1]N . Since X1 is always less than one so XN << 1. Under this condition most

of molecules are in a monomeric state. According to equation 3.31, the main condition to form

aggregates of N monomers is µo
N < µ

o
1 for some value of N (e.g. having a minimum value of µo

N as

a function of N). At this point, for any amphiphile added to the solution, the volume fraction X1

of the amphiphilic in the monomeric state stays approximately constant, while the volume fraction

XN of the amphiphilic in the aggregate state starts increasing gradually (figure 3.5). Interestingly,

this picture, while sketched in text books has not been directly demonstrated in experiments. Such

a direct demonstration is presented in chapter 4.

As described above, the formation of a spherical micelle is based on the fact that the radius

r of the micelle is less than the critical chain length `c. Also, the micelle must include a number

of surfactant molecules N = M at which the free energy per molecule in isolated N-molecule

aggregates µo
N = µo

M is minimum. If the number of surfactant molecules N is smaller than the

optimum M, this causes an increase in the area per head-group which exposes the hydrophobic

chains more to the water in bulk solution which cause an increase the free energy. On the other

hand, if the number of molecules N is larger than the optimum number M, this causes an increase
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Figure 3.5: The volume fraction of amphiphile molecules in monomeric state X1 (black line)

and micellar state XM (red dashed line) as a function of total volume fraction of amphiphile. The

critical micellar concentration (CMC) is both the plateau value of X1 curve (on the y-axis) and the

volume fraction value (on the x-axis) where XM becomes non-zero.
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in the electrostatic repulsion between the head-groups since they are highly packed on the surface

of the micelle which force some head-groups to enter the core of the micelle which causes an

increase in the free energy.

By rewriting equation 3.31 in terms of the volume fraction XM of amphiphile molecules in op-

timum spherical aggregates, we get the relation between the volume fraction X1 of free amphiphile

molecules in the bulk solution and the volume fraction of amphiphile molecules in the optimum

spherical aggregates:2

XM = M

 X1

exp
(
−∆µ

KBT

)
M

= M
[
X1

φc

]M

(3.32)

where ∆µ = µo
1 − µ

o
M and φc = exp

(
−∆µ

KBT

)
is the total volume fraction of amphiphiles above which

optimum size micelles start forming inside the solution. φc is the characteristic value for the

critical micellar concentration CMC. The total volume fraction φ =
∑∞

N=1 XN of amphiphiles is

either equal to X1 if φ < φc (i.e. no micelles below φc) or it is equal to φc + XM if φ > φc.

Thus, φc also represents the maximum volume fraction of free amphiphiles in the bulk solution.

According to equation 3.32, if the concentration X1 is small, X1 < φc then the volume fraction XM

of the spherical micelles is approximately zero. When X1 approaches φc then XM starts to increase

gradually (figure 3.5).

3.3.2 Cylindrical Micelles and Wormlike Micelles

We have mentioned in section 3.3 that the balance between the electrostatic repulsion interaction

and hydrophobic interaction between surfactant molecules in a micelle plays a role in specifying a

shape of amphiphilic aggregates.

Ionic amphiphiles represents a category of surfactant molecules which have an ionic head

group; an example is sodium dodecyl sulfate (SDS) which is used in household soaps. It has

an anionic SO−4 head group and releases Na+ ion into solution. These molecules form spherical

micelles with p ≤ 1/3 at the critical micelle concentration CMC. As the total concentration of

76



molecules increases above the CMC value, the concentration of sodium ions increases in the so-

lution (i.e. an increase in the ionic strength of the solution). This causes a transformation from a

spherical to a cylindrical micellar state.19

Cylindrical micelles behave like charged rigid rods. Adding salt or increasing the surfactant

concentration cause an increase in the concentration of counterions in the solution. This causes a

decrease in the electrostatic repulsions among charges on a micellar backbone.40 This is associated

with an increase in the energy required to create two hemispherical end-caps (known as the scission

energy) of a micelle.41 As a result, this might promote the growth of a micellar chain either

by association of monomers at the chain ends or by recombining with other neaby chain ends.42

Longer micelles can behave like flexible polymer chains with a length larger than the persistence

length (see section 3.1.4). This kind of micellar structure is called a wormlike micelle. Therefore,

a new category of surfactant self-assembly emerges.

A typical wormlike micelle is an elongated semi-flexible aggregate with a persistence length on

the order of 400 Å, a total length up to a few micrometers and a diameter of a few nanometers.40, 43

The micellar aggregate behaves as a rigid rod at length scales shorter than its persistence length,

while at length scales much longer than the persistence length, it behaves like a polymer chain (i.e.

it can be modeled as a three dimensional random walk). However, if the scission energy is small

enough, then the micellar chain can break and recombine.40, 41 So, while a polymer solution in-

cludes polymer molecules that have same lengths, a wormlike micellar solution contains dynamic

aggregates of chains with different contour lengths.40, 41 It is sometimes called a living polymer for

this reason. In the concentration regime above the overlap volume fraction Φ? (equation 3.12), a

network of entangled wormlike micelles formed inside a micellar solution. Dynamics of a worm-

like micelle is thought to be similar to polymer dynamics, exhibiting curvilinear motion along a

tube-like contour that is defined by the locus of its entanglements with other nearby wormlike

micellar chains. This motion is called reptation.43

We mentioned in section 2.2.4 that the Cole-Cole diagram (i.e. G
′′

/Go versus G
′

/Go) of a
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Maxwellian fluid exhibits a semicircle of radius (1/2). Also, Maxwellian fluids show a mono-

exponential stress relaxation function with a single relaxation time τ. In a wormlike micelle τ is

defined as:

τ =
√
τbτR (3.33)

where τb is the time required for a micellar chain to break into two segments and τR is time required

for the micellar chain to leave its tube-like contour.40, 41 Also, the breaking and recombination time

τb is given in term of the average length of the micellar chain L

τb =
1

kbL
(3.34)

where kb is the rate constant for the breakage.40, 41

At the low frequencies window of dynamic measurements (section 2.2.3), the wormlike mi-

cellar chains response to an applied stress by reptating out of their original tube-like contours.

During the reptating process, each micellar chain in a wormlike micelle breaks and recombines

many times. This is due to the fact that at low frequencies τb << τR. Based on that, no mem-

ory for the initial length and the position of a chain in the tube-like contour.41 Therefore, the

stress relaxation function is mono-exponential (equation 2.50). However, at high frequencies these

wormlike micellar systems show a deviation from the Maxwellian model. In this regime, the

breaking and recombination process is not the dominant relaxation mechanism. This is attributed

to the existence of additional faster relaxation mechanisms such as Rouse and breathing relaxation

mechanisms.40 The Rouse relaxation mechanism is attributed to stretches that are experienced by

micellar chains segments that are shorter than the entanglement length (i.e. the length of micellar

chain segment between two entanglement points), while the breathing relaxation mechanism is at-

tributed to the fluctuations in tube-like contours.40 The crossover from Maxwellian model regime

to Rouse regime takes place at a frequency value of the order of the inverse of the breaking and

recombination time τb of micellar chains.
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If the average length of micellar chains is not long enough, this causes an expected increase

in τb (i.e. equation 3.34). This causes an increase in the ratio τb/τR. Under this circumstance, a

wormlike micellar system shows deviation from Maxwellian behavior at low frequencies (Inset:

figure 5.5a). In addition, the stress relaxation function exhibits multi-exponential behavior. Chap-

ter 5 includes a thorough study for a wormlike micellar system that does not exhibit Maxwellian

behavior at low frequencies.

Because of their distinctive and remarkable rheological behavior, wormlike micellar solutions

have been a target of many theoretical and experimental research studies that are summarized in

the introduction of chapter 5. A wormlike micellar solution shows viscoelastic properties similar

to polymer solutions above the overlap concentrations, either in the regime at which the hydro-

dynamic interactions take place between the nearby micelles (i.e. the semidilute regime) or the

regime at which the micelles start occupying the pervaded volumes of other nearby wormlike mi-

celles (i.e. entanglement or concentrated regime). Moreover, wormlike micelles are used widely

in many industrial and commercial applications such as drag reduction in fluid flow (enhancing

smooth flow in pipes which provides fluids for heating and cooling purposes), detergents, and

cleaners.40, 44, 45 Therefore, complementary measurements are presented in chapter 5 that are in-

corporated to investigate the dynamics and the structure of a new wormlike micellar system. The

chosen system is composed of a mixed zwitterionic TDPS surfactant and anionic SDS surfactant

in brine solution. Zwitterionic surfactant aggregates are one step closer to the complexity of the

(often zwitterionic) protein-lipid complexes in biophysical systems.

3.3.3 Proteins

Proteins are organic macromolecules which consist of a sequence or a linear array (i.e. unbranched)

of chemical groups called amino acids which are covalently bonded to each other. These covalent

bonds are called peptide bonds. An amino acid (figure 3.6) represents the building block in a
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protein molecule. Its generic structure is composed of a carbon atom called the α carbon atom,

which is covalently bonded to a hydrogen atom, carboxyl group (COO−), amino group (NH+
3 ), and

side chain group (R group).46

Figure 3.6: A schematic representation of an amino acid.

The variation in the chemical properties of different amino acid groups is characterized by

the side chain group (R group) which can be nonpolar and hydrophobic, polar, or charged and

hydrophilic. Different chemical structures of side chain groups create twenty different amino acid

groups which are used to build proteins.

The structure of a protein is characterized through different levels: primary structure, secondary

structure, tertiary structure, and quaternary structure. The primary structure represents the back-

bone or the linear array of amino acids (or polypeptide) which build up the protein molecule. So

the number, the chemical composition of the side chain groups, and the sequential arrangement

of the amino acid building blocks characterize the primary structure and determine the chemical

properties of the protein molecule. The secondary structure represents the three dimensional shape

of a protein segment. This shape can be affected by hydrogen bonds between nearby parts. For

example, the hydrogen bond between N-H on the i-th amino acid and C=O chemical groups on

the (i+4)-th amino acid in the protein chains in the amino acids of a protein chain gives rise to the
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alpha-helical shape of a protein segment. Another category of secondary structure is the β-sheet.

The tertiary structure represents the three dimensional structure of the entire protein molecule,

the orientation, and the arrangement of the protein side groups.46 It includes the intramolecular in-

teractions between α−helix and β-sheets segments on the same protein molecule. The intramolec-

ular interactions in this structure category are non-covalent interactions such as ionic bonds, van

der Waals bonds, hydrogen bonds, and hydrophobic interactions. According to this, each protein

molecule has its unique three dimensional structure with a single well defined conformation of

amino acids as well as side group orientations.

The van der Waals interaction (equation 3.35) dominates in non-polar molecules.47 It is an

attractive interaction that is attributed to the combination of the interaction between instantaneous

electric dipole moments that results from electron cloud fluctuations in the molecule and the inter-

action between electric dipole moments in the molecules,

U(r) = −
3
4

(
1

4πεo

)2
α2

r6 ~ω, (3.35)

where εo, α and ~ω are the dielectric constant of free space, the polarizability, and the ionization

energy, respectively.

Another interaction which is dominant among non-polar molecules or non-polar segments of

molecules is called the hydrophobic interaction.47 This interaction was discussed in the introduc-

tion to section 3.3. The existence of non-polar side chains (hydrophobic amino acids residues)

in the protein molecule drives the non-polar side chains to associate in order to minimize contact

with water molecules in the aqueous environment.47 Therefore, the hydrophobic interaction plays

a crucial role to the stabilization of tertiary structure in proteins.

Lysozyme represents an example of a globular protein which contains both hydrophobic and

hydrophilic amino acid groups. The globular shape of lysozyme in an aqueous solution is attributed

to the tendency of amino acid units to arrange themselves in a special structure to minimize the
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contact between hydrophobic groups and water molecules, and maximize the contact between

hydrophilic segments and water molecules. The protein molecule has one configuration which

reduces its free energy to the minimum value, this configuration is called the protein native state.

In addition, proteins such as lysozyme have an ability to associate into aggregates (dimers,

trimers, or high-order aggregates) in an aqueous solution. Some studies have shown that the for-

mation of protein clusters or aggregates are attributed to the combination between a short-range

attraction and a long-range repulsion. The short-range attraction component has the 1/r6 distance

dependent van der Waals attraction.2, 39 The long range interaction is sometimes represented by a

screened Yukawa electrostatic repulsion,2, 30, 31, 48

UY(r) = A
e−κ(r−ro)

r
(3.36)

where ro is the average diameter of a protein molecule that is represented as a hard sphere-like

object, A =
(
(ze)2/(4πεrεo(1 + κro/2)2)

)
represents the overall strength of the interaction and κ−1 is

the Debye screening length,

κ
−1 =

(
εrεoKBT
2no(ze)2

)0.5

(3.37)

where ze is the charge of a protein molecule, εo and εr represent the permittivity of the vacuum and

the relative permittivity of the solvent respectively.

From equation 3.37 it is clear that both temperature and the concentration of dissolved ions in

solution play a crucial role in modifying the nature of the electrostatic interaction between protein

molecules. Therefore, both temperature and ionic concentration can be used to control aggregate

formation in a protein solution.26, 28 Many studies have revealed formation of protein aggregates

and crystals. The study of equilibrium protein aggregates is the subject of chapter 5.
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Chapter 4

An NMR Study of Macromolecular

Aggregation in a Model Polymer-Surfactant

Solution

Reprinted with permission from Suliman Barhoum and Anand Yethiraj. J. Chem. Phys. 132:024909/1-

9, 2010. Copyright 2010, American Institute of Physics. (Some sections have been modified to fit

this format).

4.1 Abstract

A model complex-forming nonionic polymer-anionic surfactant system in aqueous solution has

been studied at different surfactant concentrations. Using pulsed-field-gradient diffusion NMR

spectroscopy, we obtain the self-diffusion coefficients of poly(ethylene glycol) (PEO) and sodium

dodecyl sulfate (SDS) simultaneously and as a function of SDS concentration. In addition, we

obtain NMR relaxation rates and chemical shifts as a function of SDS concentration. Within the

context of a simple model, our experimental results yield the onset of aggregation of SDS on PEO
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chains (CAC=3.5 mM), a crossover concentration (C2=60 mM) which signals a sharp change in

relaxation behavior, as well as an increase in free surfactant concentration, and a critical concen-

tration (Cm=145 mM) which signals a distinct change in diffusion behavior and a crossover to a

solution containing free micelles. Cm also marks the concentration above which obstruction ef-

fects are definitely important. In addition, we obtain the concentration of SDS in monomeric form

and in the form of free micelles, as well as the average number of SDS molecules in a PEO-SDS

aggregate (NAggr). Taken together, our results suggest continuous changes in the aggregation phe-

nomenon over much of the concentration but with three distinct concentrations that signal changes

in the nature of the aggregates.1

4.2 Introduction

Multicomponent solutions consisting of polymers, surfactants, proteins, and other macro-

molecules are common to many biological systems as well as cosmetic and pharmaceutical prepa-

rations .2–4 The understanding of the nature of macromolecular aggregates and complexes is conse-

quently of great technological relevance. The poly (ethylene oxide) (PEO)-sodium dodecyl sulfate

(SDS) polymer-surfactant system in aqueous solution is a useful model system for the study of

macromolecular complex formation.

A quantitative study of complex formation in the PEO/SDS system is a starting point to study

more complex biological systems with crowded environments, e.g., cellular environments com-

posed of different kinds of macromolecules at high concentration.5–7 Diffusion processes in cells

are likely to be strongly influenced by macromolecular crowding effects .8, 9

In spite of the wealth of knowledge about the PEO-SDS system4, 10, 11(summarized in Sec. 4.3),

important questions have only partial answers. Are SDS conformations in the surfactant-polymer

aggregate quantitatively different from those in the SDS micelle? Where in the aggregation regime

do free micelles also form (and is there a distinct transition)? When do crowding effects become
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important? The partitioning of the SDS concentration between the monomeric state, the surfactant-

polymer aggregate, and free micelles as a function of the total SDS concentration remains unquan-

tified. In this study we use NMR spectroscopy to address these questions with high experimental

precision.

4.3 Background

The interaction between PEO and SDS molecules in aqueous solution has been studied by many

researchers .12–20 We summarize below briefly what is known via a variety of techniques 12, 13, 15–23

including NMR relaxometry12, 24, 25 and diffusometry.11, 13, 19, 20, 26

1. The critical micelle aggregation (CMC) is a critical concentration above which SDS mi-

celles begin to form in a pure surfactant solution.27, 28 SDS micelles have been shown in a

neutron scattering study to be best fit to an oblate ellipsoid shape ( or a disk-like shape) at

CSDS ≈ 39 mM, with half axes a = 12 Å and b = 20.3 Å.29

2. The critical concentration above which PEO-SDS aggregates begin to form13, 16, 19, 21, 26 is

called the critical aggregation concentration (CAC).

3. There is a second higher SDS concentration termed as C2 that signals a change in the nature

of the PEO-SDS aggregates. This has been identified either as the concentration where free

micelles coexist with PEO-SDS aggregates14–16 or the concentration that signals the satu-

ration in the number of SDS molecules NAggr that aggregate on a PEO molecule14, 30 (the

notation Cm has been employed for the former to distinguish it from C2).18 Pulsed gradient

spin echo NMR spectroscopy has been used11 to measure the self diffusion coefficient of

PEO molecules at different SDS concentrations: Progressive changes in the values of the

PEO diffusion coefficients with increasing concentrations were observed, attributed to the

aggregation of SDS molecules on PEO molecules, the saturation of the polymer molecules
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with surfactant, and the transition of SDS micelles from sphere to rod-like micelles, respec-

tively.25

4. Finally, a non-monotonic viscosity maximum has been observed at SDS concentration near

or above C2.24, 31 While small angle neutron scattering has provided strong evidence for the

SDS aggregating on the polymer in the form of micelle subunits,14 but the nature of the

surfactant-polymer interaction is not yet clear.

Table 4.1: Critical aggregation concentration values for PEO/SDS system12, 13, 17–20 using NMR,

conductivity measurements, and Isothermal Titration Calorimetry (ITC).

Experiment PEO Mw(g/mole) PEO Conc. %w/v T(oC) CAC (mM) C2(mM)

NMR12 300,000 ≈ 0.2 20 4.5 -

Conductivity17 20,000 0.2 25 4.5 -

ITC18 20,000 ≈ 0.1 25 ≈ 4.4 -

NMR13 20,000 ≈ 0.2 25 ≈ 5.7 15-25

NMR19 4000 0.2 25 3.3 -

NMR20 20,000 ≈ 0.2 25 4.6 -

Table 4.1 shows the values of critical aggregation concentration (CAC) for the PEO/SDS sys-

tem in aqueous solution that have been measured using different techniques. For the purpose of

comparison, we converted some CAC concentration values from mass percentage (weight percent)

to molar concentration (C) using:20 C =
ρD2O

Ms

wt%
100−wt% where ρD2O and Ms are the density of deu-

terium oxide in (g/L) and the molecular mass of surfactant, respectively. There is a spread of about

30% in both the CAC and C2 values reported.

NMR spectroscopy has been used as a powerful technique to study macromolecular dynam-

ics 32 in polymer-surfactant systems (and the PEO-SDS system in particular) since it can report on
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molecular motion inside aqueous solutions via the longitudinal relaxation time T1 and the trans-

verse relaxation time T2 .12, 33 In addition, pulsed-field-gradient diffusion NMR spectroscopy is

used to measure the molecular self-diffusion coefficient .34, 35 All of these physical quantities will

change due to the interaction between molecules, molecular aggregation, and micellization .36

A key feature of the current study is the simultaneous measurement of diffusion coefficient of

SDS, PEO, and DOH components, in addition to relaxation rates, in samples that span the entire

concentration range from below the CAC to just below the sphere-rod transition. The simultaneous

measurement of diffusion coefficients of all components allows us to pinpoint the different regimes

quantitatively, to establish regimes of absolute validity of a simple model, and to make a strong

quantitative statement in the same system about the CAC, the saturation concentration C2, and the

micellization concentration Cm.

4.4 Experimental

Poly(ethyleneoxide) (PEO) with 20,000 average molecular mass and sodium dodecyl sulfate

(SDS, > 99% purity) with 288.38 average molecular mass were purchased from Sigma-Aldrich

Canada and were used as received without purification. The PEO chain in the study has ≈ 450

monomers (each of length ≈ 0.44 nm). The Kuhn length `k ≈ 1.8 nm.37 Deuterium oxide D2O

with 99.9% isotopic purity was purchased from Cambridge Isotope Laboratories.

We prepared three different solutions: PEO(0.5%w/v)/D2O, SDS(455mM)/PEO(0.5%w /v)/D2O,

and SDS(794mM)/PEO(0.5%w/v)/D2O. Samples with SDS concentration below 455 mM were

prepared by mixing PEO(0.5%w/v)/D2O stock solution with SDS(455mM)/PEO(0.5%w /v)/D2O

stock solution, while we used SDS(794mM)/PEO(0.5% w/v)/D2O stock solution to prepare the

samples with SDS concentrations larger than 455 mM.

The one dimensional (1D) proton NMR spectrum has been observed for different species in all

samples at a resonance frequency of 600 MHz on a Bruker Avance II spectrometer.
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Figure 4.1: One-dimensional 1H − NMR spectrum for PEO(0.5% w/v)/SDS(455 mM)/D2O sam-

ple at a sample temperature 298 K. Inset: the chemical formula of SDS molecule.
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Figure 4.1 shows six well-separated peak related to this system. Peak 1 is the DOH peak created

due to the quick exchange of protons between D2O and H2O molecules in solution. Peaks 2 and

4-6 are associated with protons of sodium dodecyl sulfate (SDS) molecule SDS1, SDS2, SDS3,

and SDS4 as shown in figure 4.1. Peak 3 is associated with protons of the Poly(ethylene oxide)

molecule. The 1D spectrum of the SDS/D2O system similarly includes only five peak regions

because it is polymer free. All NMR experiments were performed at T = 298 K.

The self-diffusion measurements were carried out in a diffusion probe (Diff 30) and with max-

imum field gradient (1800 G/cm). Diffusion was measured with a pulsed field gradient stimulated-

echo sequence34 with (almost square) trapezoidal gradient pulses. The diffusion coefficient of a

molecule in aqueous solution is obtained from the attenuation of the signal according to the equa-

tion:34

ln
(
S(k)
S(0)

)
= −Dk (4.1)

where S(k) is the `̀ intensity´́ of the signal (the integration of the relevant peak region) in the pres-

ence of field gradient pulse, S(0) is the intensity of the signal in the absence of field gradient pulse,

k = (γδg)2(∆ − δ/3) is a generalized gradient strength parameter, γ = γH = 2.6571 × 108 T−1.s−1

is the gyromagnetic ratio of the 1H nucleus, δ = 2 ms is the duration of the field gradient pulse,

∆ = 100 ms is the time period between the two field gradient pulses, and g is the amplitude of the

field gradient pulse.

Figure 4.2 shows the signal attenuation and the self-diffusion coefficients for five peaks cor-

responding to Pk2, Pk4, Pk5, Pk6 (SDS1, SDS2, SDS3, SDS4) and Pk3 (PEO). It is clear from

figure 4.2 that the signal attenuation is mono-exponential for all peaks over the whole range of

SDS concentration. The values of the self-diffusion coefficients D for different molecules were

calculated from the slopes of the curves in figure 4.2. The gradient pulse duration was δ = 2 ms,

while the time period between the gradient pulses was ∆ = 100 ms. The gradient pulse strength g

was increased in a linear sequence of 16 steps up to 480 G/cm for PEO diffusion while for SDS
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diffusion g was increased in a linear sequence of 16 steps up to 350 G/cm.

The relaxation measurements were performed using a Bruker high resolution (TXI) probe. The

inversion recovery technique was used to measure T1, eight time delays were used to measure T1

for the PEO peak region, and the intensity data were fitted to the equation I(t) = Io(1 − 2 exp( −t
T1

)).38

A (π2 )x− t/2− (π)x− t/2−acquire spin echo experiment was used to measure T2, 16 values, at delay

times t, of the integrated intensity of the PEO peak were taken to measure T2 and the intensity data

were fitted to the equation I(t) = Io exp( −t
T2

).38

4.5 Results and Discussion

4.5.1 Chemical shift measurements

Chemical shift studies are a well-established method to characterize critical concentrations.30, 39

Figure 4.3a shows the variation in the chemical shift difference between the protons of SDS1

and SDS4 chemical groups for each SDS/D2O and PEO(0.5% w/v)/SDS/D2O sample over the

whole range of SDS concentration. The chemical shift difference is sensitive to the average local

environment of the SDS molecule. Assuming fast chemical exchange, the observed chemical shift

is a weighted average of the SDS in free and in micellar form. Below the CMC/CAC this results

(see Gao, Wasilyshen and Kwak,39 equation 1, and Cui et al28) in a reciprocal relationship between

the observed chemical shift and the total SDS concentration. In particular,

δObs = δfree, CSDS ≤ C∗

δObs =

(
C∗

CSDS

)
δfree +

(
1 −

C∗

CSDS

)
δ∗, CSDS > C∗ (4.2)

where: C∗ denotes CMC or CAC and δ∗ denotes δmicelle or δaggregate for SDS/D2O or PEO(0.5% w/v)/SDS

/D2O, respectively.

By linearly fitting the plot of the chemical shift difference against 1/CSDS using the piece-

wise function in Equation 4.2 (figure 4.3a, inset), we obtained the critical micelle concentration
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Figure 4.3: (a) Chemical shift difference (∆δ) between the protons of SDS1 and SDS4 for each

PEO(0.5% w/v)/SDS/D2O (opened squares) and SDS/D2O (solid circles) sample versus SDS

concentration. Inset: ∆δ versus reciprocals of SDS concentrations and (b) The difference in the

value of ∆δ between SDS/D2O samples (∆δ1) and PEO(0.5% w/v)/SDS/D2O samples (∆δ2) ver-

sus SDS concentration. The difference between PEO/SDS and pure SDS solutions is greatest

between ≈ 4 and 100 mM.
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[CMC=5.1(4) mM] and the critical aggregation concentration [CAC=3.5(1) mM].

The SDS1 group is more susceptible to the extra-micellar environment than SDS4 group. A

lower ∆δ (e.g., figure 4.3a) indicates better shielding of the SDS1 group. This indicates that for a

fixed CSDS, the SDS1 group is better shielded in the presence of PEO.

Figure 4.3b shows the variation in the difference in the value of ∆δ1 for SDS/D2O samples and

the corresponding ∆δ2 for PEO(0.5% w/v)/SDS/D2O samples. The difference (∆δ1 − ∆δ2) reports

on the effect of PEO on the local environment of SDS at any given concentration. This difference

is smallest at very low (< 3mM) and at very high (> 400mM) SDS concentration and largest at

10mM.

4.5.2 Self-diffusion measurements

We have prepared 20 samples each of SDS/D2O and SDS/PEO/D2O with constant PEO

concentration of 0.5% w/v at different SDS concentrations (CSDS).

Figure 4.4a shows the self-diffusion coefficient of SDS in a solution of SDS/D2O (no polymer).

For CSDS < 100mM we can fit the self-diffusion coefficient curve of SDS in SDS/D2O solution,

the model used is described in the discussion. From this fit the value of CMC agrees well with the

value obtained from the chemical shift measurements [e.g. figure 4.3a].

Figure 4.5a(a) shows the self-diffusion coefficient of SDS, PEO, and DOH in SDS(794mM)/PEO

(0.5%w/v)/D2O. The self-diffusion coefficient of SDS in SDS/PEO/D2O remains constant up to

about CSDS =3.5 mM. On the other hand, the self-diffusion coefficient curve of PEO begins to

exhibit a noticeable decrease only at a higher value of SDS concentration (≈ 10 mM). This behav-

ior is consistent with SDS molecules associating with PEO. The effect of this association should

affect the dynamics of the smaller SDS molecule more strongly than it affects much larger polymer

chains.20 Upon increasing the SDS concentration, the diffusion coefficient of both PEO and SDS

decreases sharply for CSDS < 100 mM. For CSDS > 100 mM, the SDS and PEO diffusion coeffi-
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cients show a slower functional dependence on SDS concentration, and both curves in this regime

have a remarkably similar shape (the ratio of observed SDS and PEO diffusion coefficients is not

constant above 100 mM, but the variation is much weaker).

4.5.3 Relaxation measurements

According to the two-step model for relaxation in surfactant systems,33, 40–42 both the proton

longitudinal relaxation rate R1 and the transverse relaxation rate R2 at different SDS concentrations

are sensitive to fast local motions (`̀ free state´́ ) as well as slower aggregate motions (`̀ aggregate

state´́ ). The difference ∆R = R2 − R1 reports42 on the slower (aggregate) motions.

Longitudinal T1 and transverse T2 relaxation measurements were made for the PEO peak at

different SDS concentration. Figure 4.6 shows the variation of proton longitudinal relaxation rates

R1 = 1/T1 (e.g., figure 4.6a), transverse relaxation rates R2 = 1/T2 (e.g., figure 4.6b), and the

difference ∆R = R2 − R1 (e.g., figure 4.6c) for PEO molecule at different SDS concentrations.

The relaxation rates measurements share a characteristic of a plateau above 60 mM, which

coincides roughly with what we observe from the diffusion measurements. It represents an onset

of the regime at which PEO chains saturate with SDS molecules. As has been noted before42

the interpretation of NMR relaxation data is somewhat more involved than that of NMR diffusion

data. We thus use the polymer relaxation rate measurements only as independent confirmation of

the diffusometry results.

4.5.4 Discussion

We begin by discussing the chemical shift results. Below the CAC and CMC respectively, the

chemical shift difference between the SDS4 and SDS1 group (representing difference in shielding

between the group least and most proximate to the SO−4 ion) is ≈ 3.2 ppm for both pure SDS and

the SDS/PEO system. At a given CSDS, the difference ∆δ1 − ∆δ2 represents the difference in the
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chemical environment due solely to the presence of the polymer. The difference is maximum at

about 10 mM and decreases continuously for large CSDS.

Next we discuss the diffusion results, beginning with the most dilute samples. From the SDS

diffusion at the lowest SDS concentration (e.g. figure 4.5a and figure 4.4a), we note no differ-

ence here due to the presence of PEO. We estimate the corresponding hydrodynamic radius RH/

radius of gyration RG using values of the SDS and PEO diffusion coefficients at the lowest SDS

concentration and the relevant forms of the Sutherland-Stokes-Einstein equation:20

RH =
KBT

6πηD
, RG =

RH

0.7
, (4.3)

where KB is Boltzmann’s constant, T is the absolute temperature, and η is the solvent viscosity

(ηD2O ≈ 1.1 mPa.s). For the SDS molecule this yields a hydrodynamic radius RH is ≈ 4.01(3) Å.

This is comparable to the hydrodynamic radius of 3.9 Å of an all-trans N = 12 carbon chain. The

hydrodynamic radius is defined as 1
RH

= 1
N2

∑N
i, j=1,i, j

〈
1
ri j

〉
, where rij is the distance between sites i

and j on the chain, e.g., see Yethiraj.43 We also obtain the radius of gyration of the PEO molecule

RG is ≈7.43(1) nm. This agrees with the calculated value in the previous studies.20

The concentration of free surfactants above the CMC in SDS/D2O solutions is expected to

be constant (CSDS
free = CMC), while below the CMC concentration of free surfactants equals the

total concentration of surfactants, CSDS
free = CSDS. The standard minimal model for pure surfactant

systems is thus

DSDS
Obs = DSDS

free , CSDS ≤ CMC,

DSDS
Obs =

(
CMC
CSDS

)
DSDS

free +

(
1 −

CMC
CSDS

)
DSDS

micelle, CSDS > CMC. (4.4)

We assume that DSDS
micelle is constant for small enough SDS concentrations. Fitting to the above

model we obtain a good fit for CSDS < 100mM (e.g., figure 4.4a), yielding the following param-

eters: DSDS
free = 4.7(1) × 10−10 m2/s, DSDS

micelle = 6.0(9) × 10−11 m2/s, and CMC = 5.2(2) mM. The

CMC thus obtained is consistent with the value obtained from the chemical shift results (e.g.,
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figure 4.3a).

For surfactant-polymer aggregates, the situation is more complicated because aggregate size is

expected to change a lot. Because the pulsed-field-gradient signal attenuation is mono-exponential,

we conclude that the exchange of SDS molecules between the SDS/PEO in aggregates and in free

solution must be very rapid on the NMR time scale. Thus, we postulate a minimal two species:

free SDS and SDS in an aggregate) model: that the observed self-diffusion coefficients for SDS is

a linear combination of the self-diffusion coefficient of the free molecules in bulk solution and that

of the bound molecules associated with the complexes,20, 26

DSDS
Obs = f DSDS

free + (1 − f) DSDS
Aggregate, (4.5)

where f is the fraction of free surfactant in the monomer state in the aqueous solution, DSDS
free and

DSDS
Aggregate are the self-diffusion coefficient of free SDS molecules (free `̀ monomers´́ in the bulk

solution) and the SDS species associated with the polymer, respectively. Since we know that there

is unlikely to be free PEO, we assume that DSDS
Aggregate in equation 4.5 is identical to the observed

PEO diffusion coefficient DPEO
Obs

DSDS
Obs = f DSDS

free + (1 − f) DPEO
Obs . (4.6)

In the intermediate (CSDS > 100 mM) regime, we note that the functional form of the SDS and

the PEO diffusion coefficients are remarkably similar (e.g., figure 4.5aa). However a close look at

the ratio DSDS
Obs /D

PEO
Obs (e.g, figure 4.5ab) shows a minimum just above 100 mM, and then a small

steady increase. Using equation 4.6 we calculate the SDS free fraction over the entire range of

SDS concentration. This is shown in figure 4.7.

We can see clearly from figure 4.7 that the fraction of free SDS in the bulk solution starts

decreasing rapidly at the critical aggregation concentration up to ≈ 100 mM where about 4% of free

SDS is available in the bulk solution. At the highest SDS concentration (where a transition to rod-

like micelles is thought to take place) the free SDS fraction is f ≈ 2%. In addition, the functional
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dependence of the free SDS fraction f on SDS concentration CSDS shows a linear behavior in the

regime where charged SDS/PEO aggregates are expected to form, log(f) = − log(CSDS) + 0.56(1).

Thus, f ∝ 1/CSDS in this concentration range. In figure 4.8, we therefore plot the concentration of

free SDS , Cf2 = f.CSDS. The concentration of free SDS molecules Cf2 in the 3.5-60 mM range is

almost constant. Fitting this range to a flat line represents an accurate way to estimate the value

of CAC, CAC = CSDS
free = 3.53(8) mM. This is the most precise method to determine the CAC that

we know of. This result is not consistent with surfactant-specific electrode data44 that suggest

that the free SDS concentration is not constant in this region. Interpretation of these latter results

above the CAC, however, involves an additional calibration procedure. The diffusometry results

for SDS/PEO solutions are very analogous to what is expected for pure SDS solutions, where the

SDS monomer concentration reaches a plateau value that is close to the CMC.27
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Samples at concentrations above the one at 64 mM exhibit a sharp increase in Cf2 (e.g., fig-
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ure 4.8). The sharp increase in Cf2 is clearly not physical. The minimal model for the pure SDS

system implies that the free SDS concentrations never exceeds the CMC. We may thus assume

that all the excess SDS in the PEO/SDS/D2O system is actually in the form of free micelles. If

we denote the total SDS concentration when the free SDS concentration reaches CMC as Cm, then

clearly the two-species model, which is valid below Cm, breaks down above Cm. Thus our minimal

three-species model is summarized as follows:

DSDS
Obs =

(
Cf3,monomer

CSDS

)
DSDS

free +

(
Cf3,aggregate

CSDS

)
DPEO

Obs , CSDS ≤ Cm

DSDS
Obs =

(
CMC
CSDS

)
DSDS

free +

(
Cf3,micelle

CSDS

)
DSDS

micelle +

(
Cf3,aggregate

CSDS

)
DPEO

Obs , CSDS > Cm, (4.7)

where Cf3,monomer is the concentration of free SDS molecules and Cf3,micelle is the concentration of

SDS molecules in the micelles, and

Cf3,aggregate[mM] = CSDS − Cf3,monomer, CSDS ≤ Cm

Cf3,aggregate[mM] = CSDS − (CMC + Cf3,micelle), CSDS > Cm. (4.8)

From the observed diffusion coefficients (DSDS
free , DSDS

Obs , and DPEO
Obs ) and having a reasonable es-

timate DSDS
micelle from the pure SDS solutions we can calculate Cf3,monomer below Cm and Cf3,micelle

above Cm. This is depicted in figure 4.9a. We can also estimate the radius of gyration of the

PEO − SDS aggregates using equation 4.3 (e.g., figure 4.9b). This is only valid when crowding

effects are negligible. This is clearly the case for CSDS < C2 ≈ 60 mM when the volume fraction

Φ in a system of pure spherical SDS micelles is ≈ 0.04 mM); C2 is the concentration where the

SDS monomer concentration starts to increase above the plateau CAC value (e.g., figure 4.9a), and

the polymer relaxation rate has reached a plateau value (e.g., figure 4.6). Figure 4.9b (inset) shows

the variation of the average number of SDS molecules NAggr =
Cf3,aggregate[mM]

0.25[mM] , where we have used

a PEO concentration of 5 mg/ml and Mw = 20, 000, for an SDS/PEO aggregate over the whole

range of SDS concentration.
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Fitting model to data yields Cm ≈ 145 mM. The logarithmic increase in Cf3,micelle above Cm is

consistent with the modest increase in the ratio of observed SDS to PEO diffusion coefficients.

Finally, the top curve in figure 4.5a shows the variation of the measured self-diffusion coef-

ficient of DOH molecule at different SDS concentrations. The DOH self-diffusion coefficient is

almost constant for CSDS < 100 mM where both PEO and SDS self-diffusion coefficients are de-

creasing. For CSDS > 100 mM there is a decrease in the DOH self-diffusion coefficient. This could

arise from DOH molecules that associate with the surface of charged SDS micelles or SDS-PEO

aggregates, as well as obstruction effects (in a system of pure spherical SDS micelles we estimate

the volume fraction to be Φ ≈ 0.07 at CSDS = 100 mM.

Figure 4.10 shows the variation of DOH relative diffusion coefficient y as a function of SDS

concentration, where y is defined by:

DDOH
Obs ≈ yDDOH

Bulk . (4.9)
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Figure 4.10: Relative DOH diffusion coefficient exhibits a noticeable decrease above ≈ 100mM
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We find in this study that there are two distinct concentrations above the CAC:

1. From diffusion measurements, we infer that when the SDS free concentration CSDS
free rises

above CAC, this indicates the onset of more crowded surfactant environment. We denote

this first concentration as C2. This coincides with the crossover concentration for relaxation

behavior (e.g., figure 4.6), C2 = 60 mM. This corresponds to NAggr ≈ 240.

2. The ratio of SDS to PEO diffusion coefficients exhibits a minimum at ≈ 100 mM. Applying

the minimal model (equation 4.7) to our diffusion results for PEO-SDS yields a critical

concentration Cm ≈ 145 mM, above which free micelles must exist. The increase in the ratio

of observed SDS and PEO diffusion coefficients above Cm is therefore simply attributable to

the proliferation of free micelles (which are smaller and more mobile than the the polymer-

surfactant aggregate).

The chemical shifts, diffusometry, and relaxometry results present a coherent picture. The SDS

monomer concentration saturates at the CAC value, while NAggr (number of SDS molecules aggre-

gated on the polymer) gradually increases. At C2, the increase in SDS monomer concentration is

sharp, however the aggregation number continues to increase. The relatively broad crossover as

seen by the polymer is thus consistent with a sharper crossover in the free SDS concentration.

4.6 Conclusion

The study of the molecular dynamics in the SDS/PEO system using the NMR technique gives

us an opportunity to make quantitative statements about macromolecular aggregates in a model

polymer-surfactant system. The ratio of SDS and PEO diffusion coefficients in PEO(0.5%w/v)/SDS/D2O

solution (e.g, figure 4.5a) revealed a sharp decrease below 100 mM followed by a slight increase for

CSDS > 100 mM. Moreover, for CSDS > 100 mM the DOH diffusion coefficient decreases, likely

112



indicating an increase in the fraction of water associated with the charged surfactant (e.g., fig-

ure 4.10), as well as an increase in obstruction effects.

Relaxation rate difference measurements report on slower aggregate motions. Proton NMR

relaxation rate measurements show a clear separation between two regimes of aggregate motions

with a crossover at a concentration C2 = 60 mM.

We assumed that the self-diffusion coefficient for SDS is a linear combination of the self-

diffusion coefficient of both free SDS molecules and the polymer-associated SDS molecules below

C2 while it includes a third species (free micelles) above Cm. Our analysis revealed that the con-

centration of free SDS molecules is almost constant (±3%) from 3.5 mM up to a concentration

C2 = 60 mM (e.g., figure 4.8). Self-consistently, this plateau concentration value coincides with

the CAC, giving us additional confidence in the model in this range. Indeed, the average free

SDS concentration in this range is a very accurate way to locate the CAC, we obtain a value of

3.53(8) mM.

Allowing for a third species (free micelles) when Cf3 > CMC, we find that Cf3,micelle increases

sharply at CSDS = Cm (e.g., figure 4.9a). The average number of SDS molecules for each PEO

molecule NAggr increases over the entire range of SDS concentration (e.g., figure 4.9b) i.e. it never

saturates.

We were able to calculate the concentration of free SDS molecules Cf3,monomer, the SDS con-

centration in the PEO − SDS aggregates Cf3,aggregate, and the concentration of SDS molecules in the

micelles Cf3,micelle over the entire range of SDS concentration. To summarize:

1. The concentration of free (monomeric) SDS Cf3,monomer is constant at CAC for a range of

total SDS concentrations below C2 = 60 mM (e.g., figure 4.8). We can make a strong state-

ment here, no free micelles exist below 60 mM. Above C2, the free monomer concentration

Cf3,monomer begins to increase. This indicates the onset of surfactant crowding environment

on the polymer chain. Since the monomer concentration is still below the CMC value for
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pure SDS solutions, micelles are still not expected.

2. Above Cm = 145 mM, free micelles form (e.g., figure 4.9a). Cf3,monomer stays at the CMC for

concentrations above Cm, while the concentration of SDS molecules in the micelles Cf3,micelle

increases from zero to over 100 mM.

3. In the range between CAC and C2, the chemical environment for the SDS molecules in

SDS − PEO solution (as seen from the chemical shift differences labeled in figure 4.3) is

maximally different from that at identical concentration in pure SDS solution. This indicates

that the SDS conformations in the micelle in pure SDS solution are different from those in

the SDS − PEO aggregate (e.g., figure 4.3); in particular, the SDS1 group (closest to the ionic

head group of the surfactant) is less well shielded than in SDS-PEO aggregates. Our NMR

results do not provide a more detailed geometric picture of the nature of the aggregates.

4. The PEO-SDS aggregate keeps increasing in size (e.g. figure 4.9b and inset). While Cf3,micelle

increases logarithmically, the number of SDS molecules attached to the aggregate increases

roughly linearly with SDS concentration. Our three-species model is likely an under-estimate

of the micellar concentration, as it assumes DSDS
micelle is a constant (which is an overestimate at

higher concentrations due to obstruction effects).

5. There is a clear unambiguous distinction (e.g. figure 4.9a) between C2 (the onset of surfac-

tant crowding on the polymer chain) and Cm (the onset of free micelles in solution). This is

seen qualitatively from relaxation and diffusion data and quantitatively from fits to a minimal

model to interpret the diffusion coefficients.

6. The validity of minimal models is unambiguous and clear below C2. Above Cm (φ ≈ 0.1),

all results (e.g., figure 4.3b, figure 4.4a, figure 4.9b,and figure 4.10) point to the importance

of crowding.
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Taken together, our results suggests continuous changes in the aggregation phenomenon over

the investigated concentration with three distinct concentrations that signal changes in the nature

of the aggregates.
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Chapter 5

Characterization of Dynamics and Internal

Structure of a Mixed-Surfactant Wormlike

Micellar System Using NMR and

Rheometry

Reproduced by permission of The Royal Society of Chemistry. Suliman Barhoum, Rolando

Castillo, and Anand Yethiraj. Soft Matter, 2012, 8, 2950-2957. (Some sections have been modified

to fit this format).

5.1 Abstract

We use complementary experiments - proton NMR diffusometry and relaxometry, deuterium NMR

lineshapes and rheometry - to construct a comprehensive picture of the microscopic structure of a

mixed-surfactant wormlike micellar system composed of a zwitterionic surfactant and an anionic

surfactant in brine. In this system, the time of micellar breaking and recombination τb is not small
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compared with the micellar reptation time τR, weakening the condition to obtain a stress relaxation

function with just one relaxation time at long times. From NMR relaxometry, we determined the

overlap concentration. Deuterium NMR spectral lineshapes indicate the presence of orientational

disordered domains with slow exchange between domains. NMR diffusometry and rheology probe

different timescales and yield complementary information indicating polymer-like behaviour at

the corresponding lengthscales. Via NMR, surfactant diffusion coefficients are seen to decrease

with increasing diffusion time, consistent with restricted diffusion within a reptating micelle. At

the same time, comparison of measurements with protonated and deuterated surfactant strongly

suggest that the short and long time diffusion coefficients measured correspond to intra-micellar

and micellar diffusion respectively. Fitting the diffusion results to a simple model, the average

end-to-end micellar distance was estimated to be in the 1 µm range and only weakly dependent

on concentration. The water diffusion measurements, on the other hand, imply a great degree

of water structuring at the micellar surface. We also found that the wormlike micelles obeyed

simple polymer-like scaling behaviors with a crossover from Zimm-like (diffusion) to Rouse-like

(rheology) exponents.

5.2 Introduction

Amphiphilic molecules in aqueous solution form aggregates with different structures such as bilay-

ers, vesicles, spherical, and cylindrical or wormlike micelles, depending on molecular geometry as

well as on the net charge and surfactant concentration.1 Wormlike micelles are interesting due to

the fact that they are elongated objects like polymers (which have interesting dynamics and hydro-

dynamic effects2–5); however they continuously break and recombine.6–10 This has technological

applications (from heat-transfer fluids to oil-field applications to drain-openers9) because unlike

normal polymers they can reform after breaking and can thus survive repeated shear.6

Much work has been carried out on the study of wormlike micelles via theory8, 11–13 and com-
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puter simulation14, 15 and there have been several reviews of the subject.6, 7, 10, 15, 16 Experimentally,

wormlike micellar systems can be composed of cationic, anionic, zwitterionic or non-ionic surfac-

tants.6, 8, 17–20 Mixtures of cationic and anionic surfactant,21 zwitterionic dimeric surfactant solu-

tions22 and cationic surfactants solutions20, 23 have also been investigated. Rheology has been used

to explore the phase and micellar structure in several systems. A common surfactant in worm-

like micelle literature is cetyl trimethylammonium bromide (CTAB)24–28 which forms cylindrical

wormlike surfactant micelles; systems forming reverse micelles have also been reported.29, 30

Small-angle neutron scattering and dynamic light scattering studies have reported on isotropic

to nematic phase transitions,24 transitions from vesicles to wormlike micelles,31 the concentration

dependence of the hydrodynamic correlation length,32 and the effect of adding salt on the micellar

growth.33 Scattering measurements have also characterized important lengths of the micellar net-

work34 and have been used to investigate local structure and flexibility.35, 36 Combinations of rhe-

ology and small angle neutron scattering (Rheo-SANS) have also been used to study concentration

dependences of shear thinning and alignment in a block copolymer wormlike micellar system.37

Pulsed-field-gradient nuclear magnetic resonance was used to identify sub-diffusive behavior

in a wormlike reverse micelle system.38 This technique has been employed in other (polymer and

protein) soft matter systems39–41 to provide information that is complementary to scattering meth-

ods, and is especially useful when the system contains large and/or multi-component aggregates.

This is because spectral separations of different chemical components is easy in NMR, challenging

in scattering, and practically impossible in rheology.

Recently, a multi-component system consisting of mixtures of two similar-sized surfactants,

one zwitterionic (N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate or TDPS) and the

other anionic (sodium dodecyl sulfate or SDS) in brine34, 42, 43 has been studied by rheology and

scattering techniques. The TDPS/SDS system was studied in a range of TDPS concentrations Cz

spanning both dilute and semidilute regime at different surfactant ratios R= [SDS]/[TDPS] and dif-

ferent temperatures.34, 42, 43 The average micelle contour length is found to be in the micron range
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and (for R = 0.55) to increase with Cz when the wormlike micelles are totally screened by salt

addition, while the “mesh size” reflecting intermicellar correlations was in the 50 - 100 nm regime

and insensitive to changes in Cz, the surfactant concentration ratio or temperature.34 An interest-

ing feature of this system is that while R = 0.55 mixtures could be fit to Maxwellian viscoelastic

behavior with a single relaxation time for the stress relaxation modulus G(t) at long times,43 those

for R = 0.43 − 0.45 show deviations from the Maxwellian model.43 Two timescales are relevant

in wormlike micellar systems. τb refers to the breaking/recombination timescale, while τR is the

reptation timescale. If the micellar chain breaks and recombines many times during the reptation

process (i.e.; τR >> τb), the tube-like contour segments exhibit a single relaxation rate.8

In previous work,39 we have shown that mixed-species (polymer-surfactant) aggregates are eas-

ier to study than single-species (surfactant) aggregates because the dynamics of each species can be

independently and simultaneously measured via complementary NMR experiments. This allows

models of aggregate structure to be sufficiently constrained. In this work, we use the TDPS-SDS

system (with R = 0.45) to obtain unprecedented detail about both the structure and dynamics in a

system where the linear rheology is not dominated by a single relaxation time at low frequencies.

In this work, we used NMR diffusometry and relaxation measurements as well as deuterium

NMR to explore the dynamics and the structure of the micellar aggregates. Relaxation in NMR

refers usually to two processes by which nuclear magnetization prepared in a non-equilibrium

state returns to the equilibrium distribution. Different physical processes are responsible for the

relaxation of the components of the nuclear spin magnetization vector
−→
M parallel and perpendicular

to the external magnetic field,
−→
B0 (which is conventionally oriented along the z axis). These two

principal relaxation processes are termed T1 and T2 relaxation, respectively. The longitudinal T1

and transverse relaxation T2 times can be measured directly using NMR, and can be used to report

on changes in the local environment.44

In the NMR diffusion experiment, the sample experiences both an external uniform magnetic

field from the magnet and a non-uniform spatially well-defined magnetic field (i.e.; pulsed field
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gradient). Therefore, the molecular diffusion is measured from the signal attenuation that arises

from the dephasing of nuclear spin coherence.45, 46 Deuterium NMR, on the other hand, is an

effective probe of orientational order of the hydrocarbon chains.47 Thus we are able to obtain inde-

pendent dynamical information on all components in a 3-component system via spectral separation

(via either a difference in chemical shift or spin label) of diffusion coefficients.

Utilizing these complementary NMR techniques on the TDPS-SDS system (with R = 0.45),

in tandem with rheology, we obtain unprecedented detail about both the structure and dynamics in

the case where the linear rheology of the system is not dominated by a single relaxation time at

low frequencies.

5.3 Experimental

5.3.1 Materials

N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (TDPS, Mw = 363.6, purity > 99%),

sodium dodecyl sulfate (SDS, Mw = 288.38, purity > 99%), and SDS-D25( Mw = 313.53, 98

atom % D) were purchased from Sigma-Aldrich Canada and were used as received. We prepared

stock solutions of TDPS/SDS/NaCl(0.5M)/D2O as well as TDPS/SDS − D25/NaCl(0.5M)/H2O

at Cz = 50 mM, as well as the brines NaCl(0.5M)/D2O and NaCl(0.5M)/H2O. Samples with

TDPS concentration and protonated/deuterated SDS below 50 mM (in the semidilute regime) were

prepared by diluting with brine made of D2O/ H2O respectively. The sample in the concentrated

regime Cz = 140 mM was prepared separately. The surfactant ratio in all samples was R =

[SDS]/[TDPS] = 0.45. Deuterium oxide D2O (for all protonated SDS samples) and deuterium-

depleted H2O (for deuterated SDS samples) were purchased from Cambridge Isotope Laboratories.

While surfactant mixtures were prepared by addition of constituents by mass, the volume fraction is

the relevant quantity when considering hydrodynamic corrections. We estimate a volume fraction
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Φ using

Φ =
VTDPS + VSDS

VTDPS + VSDS + VNaCl(0.5M)/H2O
(5.1)

where Vα = mα/ρα, Vα, mα and ρα are the volume, mass, and density of the α component in solu-

tion, with α indicating TDPS, SDS or NaCl(0.5M)/H2O. Note that this is an estimate of volume

fraction due to the assumption of volume additivity. Because of the densities (ρTDPS=ρSDS ≈ 1g/cm3,

and ρNaCl(0.5M)/H2O ≈ 1.02 g/cm3) our estimated volume fraction is essentially equivalent to the

mass fraction.

NMR spectra were collected on a Bruker Avance II spectrometer with a 1H resonance frequency

of 600.33 MHz and a 2H resonance frequency of 92.15 MHz. We can easily separate the water

peak at 4.7 ppm and the surfactant peaks spectrally in the NMR spectrum. However due to the

broad (super-Lorentzian) lineshapes we are unable to spectrally separate TDPS and SDS peaks (0

- 4 ppm). Thus we prepared some samples with deuterated SDS. We are then able to compare

surfactant dynamics of TDPS (proton NMR with deuterated SDS yields only the TDPS peaks)

with surfactant dynamics of TDPS-SDS peaks in protonated SDS samples.

Relaxation measurements were performed using a Micro-5 imaging (3-axis gradient) probe.

The inversion recovery technique was used to measure T1: sixteen time delays were used, and

the integrated intensities in the spectrum were fitted to the equation: I(t) = Io
(
1 − 2 exp(−t/T1)

)
.44

A (π/2)x-t/2-(π)x-t/2-acquire spin echo experiment was used to measure T2: 16 values, at de-

lay time t, of the integrated intensity were taken to measure T2 and were fitted to the equation:

I(t) = Io exp(−t/T2).44

Three-axis self-diffusion measurements were carried out in a Micro-5 imaging (3-axis gra-

dient) probe with a maximum gradient strength of 200 G/cm or a Diff30 diffusion probe with a

maximum field gradient 1800 G/cm employing a pulsed-field gradient stimulated-echo sequence46

with trapezoidal gradient pulses. In our experiments, the duration δ of field gradient pulse is 2 ms,

and the gradient g was varied in steps from 0% to ≈ 100%. For deuterated SDS samples, 2H
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NMR spectra were collected using a (π/2)x-t-(π/2)y-t-acquire quadrupole echo experiment with

256 scans was used, with t = 10 µs.

Spectrally resolved molecular diffusion coefficients along the field direction (Dz) and perpen-

dicular to the field direction (Dx and Dy) are obtained from the attenuation of the signal according

to the equation:45

D =
−1
k

ln
(
S(k)
S(0)

)
(5.2)

where S(k) is the integrated intensity of the signal in the presence of field gradient while S(0) is the

intensity of the signal in absence of field gradient, and k = (γδg)2(∆ − δ/3) is a generalized gradient

strength parameter. The diffusion time ∆ is the duration in the pulse sequence in which molecular

diffusion has an affect on the signal attenuation. The signal attenuation as a function of k associated

with TDPS-SDS peaks is a single exponential over the whole range of TDPS concentration. When

there is free bulk diffusion, the diffusion coefficient does not depend on diffusion time ∆.

5.3.2 Rheometry

Rheological measurements were carried out on an Anton Paar Physica MCR 301 rheometer. All

the rheometric measurements were done at T = 298 K using the cone-plate geometry of 50 mm

diameter and 0.5o cone angle. The stress relaxation experiments were performed with an applied

shear strain γ = 0.5. The flow curves experiments were carried out with shear strain rate γ̇ varying

from 0.001 to 150 1/s. In addition, the oscillatory shear experiments were performed with an

angular frequency ω varied in log-ramp from 50 rad/s to 0.01 rad/s.
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5.4 Results and Discussion

5.4.1 NMR Relaxation and the Overlap Concentration

Longitudinal T1 and transverse T2 relaxation measurements were carried out for TDPS/SDS/NaCl

(0.5M)/D2O samples at different TDPS concentration Cz. The proton longitudinal relaxation rate

R1 = 1/T1 (figure 5.1) can be fit to a mono-exponential decay, with a significant increase as one

crosses the overlap concentration (reported to be at 7 mM by Lopez-Diaz et al42). The monoexpo-

nential fit is phenomenological. The change in R1 indicates a change in the local environment for

the surfactant molecules which corresponds well with the wormlike micelle overlap concentration.

Based on the exponential fit, we extract a characteristic concentration of Cthreshold = (5.9 ± 0.6)

mM (i.e.; Cthreshold ≈ C?). The T2 relaxation time (not shown) shows no appreciable change as a

function of TDPS concentration Cz.

2.0

1.5

1.0

0.5

0.0

R
1 

(s
-1

)

12080400
Cz (mM)

       Fit: y0 + A exp(-C z/C*)
            y0 =1.75 ± 0.01

     A =-0.91 ± 0.05
            C* = (5.9 ± 0.6) mM

Figure 5.1: Proton longitudinal relaxation rate R1 = 1/T1 versus TDPS concentration Cz for

TDPS/SDS /NaCl(0.5M)/D2O samples at T=298K.
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5.4.2 Deuterium NMR and Orientational Structure

Measurements with deuterated SDS provide good opportunities to look at the orientational struc-

ture of the SDS (using deuterium NMR), and to separate the dynamics of the TDPS (using proton

diffusometry). We also use these samples to measure the variation of the water diffusion coefficient

with surfactant concentration.

Figure 5.2a shows 2H NMR spectra for Cz = 46 mM as a function of temperature. The appear-

ance of a single broad peak in the deuterium NMR spectrum implies a structure that is intermediate

between an isotropic liquid and an oriented liquid. It is likely an indication of the presence of a

liquid crystal mesophase in domains with wide orientational angular distribution where there is

a slow exchange between the domains.47 As we will describe below, this is consistent with the

interpretations of figure 5.3a where we see only a small anisotropy in the measured diffusion co-

efficient. This averages out the first-order quadrupole coupling.48 We may fit the deuterium NMR

lineshape to the absorption Lorentzian function

S(ω) =
(W/2)

(W/2)2 + (ω − ω0)2 (5.3)

where ω and ω0 are the frequency coordinate and the Larmor frequency of the deuterium (spin-1)

nuclei respectively. W is the deuterium peak width at half maximum of the absorption peak.

For deuterated SDS samples (TDPS/SDS − D25/NaCl(0.5M)/H2O) at two TDPS concentra-

tions (Cz = 10 and 46 mM), we can extract the deuterium peak width at half maximum (W) of the

absorption peak as a function of temperature between 298K and 323K. This peak width in shows

an exponential behavior as a function of reciprocal of temperature 1/T. By globally fitting both

data sets in figure 5.2b to one exponential function W = A exp(Ea/KBT), we estimate the activa-

tion energy to be Ea ≈ 21.8(1)KBT. The activation energy associated with narrowing of the spectral

lines likely is associated with either slow re-orientation in the local environment of a molecule, or

slow molecular exchange between environments with different local orientational order.

Water diffusion in aqueous surfactant solutions has been shown to be a weighted average of
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Figure 5.2: (a) The deuterium NMR lineshape is well fit to a Lorentzian function. The peak width

W for Cz = 46mM decreases with increasing temperature in the range from 298K to 323K (b) The

peak width W exhibits an Arrhenius temperature dependence: results for Cz = 10mM and 46mM

can both be fit with a single activation energy and (c) Relative H2O diffusion coefficient versus

total surfactant volume fraction Φ in TDPS/SDS − D25/NaCl(0.5M)/H2O samples at T=298K.
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two kinds of water, bulk water and surface associated water.49 The water molecule is a polar

molecule, and it associates with a surface of charged molecules or charged aggregates. It has

been shown to be a reasonable approximation to assume that the surface-associated water is essen-

tially stationary in comparison to the bulk water.39, 49 Thus, water diffusion coefficients obtained

as a function of surfactant packing fraction report directly on the fraction of surface-associated

water. Figure 5.2c shows the variation of the relative self-diffusion coefficient of H2O molecules

in TDPS/SDS − d25/NaCl(0.5M)/H2O over the range of total surfactant volume fraction Φ from

0.001 to 0.023.

The H2O diffusion coefficient values are scaled to the bulk diffusion coefficient (i.e.; Do = 2.23

×10−9 m2/s) of H2O molecule in 0.5 M brine, which we also measured. The decrease in H2O diffu-

sion coefficient with increasing surfactant volume fraction arises from H2O molecules associating

with the surface of charged cylindrical TDPS-SDS micelles in the aqueous solution. From simple

geometry for a cylindrical micelle, we related the observed diffusion coefficient to the thickness of

the water layer h (assumed to be static - this is valid since the surfactant diffusion coefficient is 3

orders of magnitude smaller than that of water) and the diameter of the bare cylindrical micelle d:

D
Do
≈ 1 −

(
1 + 4

(
h/d + (h/d)2

))
Φ. (5.4)

A single H2O monolayer has thickness 0.3nm. Fitting the observed diffusion coefficient in

figure 5.2c, we find that h/d = 0.182 ± 0.004. Allowing for the surface-associated water to diffuse

like the surfactant diffusion modifies this result slightly to h/d = 0.186 ± 0.004. Given a micellar

diameter of d ≈ 6nm,42 this implies a water layer thickness of ≈ 3 to 4 monolayers.

5.4.3 Three-axis diffusometry and micelle structure

The observed self-diffusion coefficient (figure 5.3a) measured along z, x, and y axes display a

very similar behaviour, and thus exhibit insignificant effects of ordering in the ≈ 14 T magnetic

field. Dz, Dx and Dy all decrease as a function of diffusion time ∆. If what we measure is only
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Figure 5.3: (a) TDPS-SDS self-diffusion coefficient (Dx,Dy,Dz) versus diffusion time ∆. Cz = 50

mM. (b) Relative z-self diffusion coefficient Dz
D[D2O] of TDPS/SDS/NaCl(0.5M)/D2O versus Dz

D[H2O]

of TDPS/SDS − D25/NaCl(0.5M)/H2O. If the values were equal they would be on the 45 degree

line and (c) Dz for non deuterated SDS samples versus that for deuterated SDS samples. Cz =

40mM, 46mM and 50mM at T = 298K.
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the self diffusion of the wormlike micelle, then we would not expect D to show a dependence on

∆. For ∆ ≥ 15 ms, the wormlike micelle is already in the long-time limit due to the fact that the

RMS displacement over the millisecond timescale is much larger than the average mesh size of the

TDPS/SDS/NaCl(0.5M) micellar solution ξ ≈ 75 nm.34

The observed decrease of D with ∆ suggests strongly that the observed diffusion coefficient

is a combination of micellar self-diffusion and surfactant self-diffusion inside the micelle. This is

confirmed by comparing surfactant diffusion coefficients for systems with non-deuterated and fully

deuterated SDS. This is akin to contrast matching experiments in neutron scattering. The surfactant

self diffusion coefficient Dz was measured for TDPS/SDS − D25/NaCl(0.5M)/H2O samples with

deuterated SDS at 3 TDPS concentrations (40 mM, 46 mM, and 50 mM). Here we measure the

TDPS self-diffusion coefficient, whereas in the protonated samples one measures an average value

of TDPS and SDS diffusion coefficients. If the two values are equal they would lie on the 45 degree

line. The values obtained for the relative diffusion coefficients in figure 5.3b are only closest to

the 45 degree line at the smallest values (corresponding to largest ∆). This is consistent with

the notion that the micellar diffusion coefficient should depend only on the micelle size and the

solvent viscosity. Therefore, assuming a Stokes-Einstein-like relation for the micelle in the solvent

D ∝ 1/η, the diffusion coefficient relative to the solvent diffusion coefficient should be the same

for both systems.

Figure 5.3c on the other hand shows the bare self diffusion coefficients Dz. Here we see that

the values for deuterated and non-deuterated samples are closest to the 45 degree line for small ∆

(i.e.; for large Dz). This is consistent with surfactant diffusion within the micelle - these values

should indeed be insensitive to solvent viscosity.

Three-axis diffusion measurements thus show that there is very insignificant anistropy in the

wormlike micelle conformations in the presence of a large magnetic field. Moreover, comparisons

of measurements in deuterated and non-deuterated surfactant show a clear trend: micellar diffusion

is dominant for large ∆, while intramicellar diffusion is dominant for small ∆.
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Figure 5.4: (a) Z-axis mean square displacement MSDz versus diffusion time ∆. Inset: root

mean square displacement (RMSDz) versus TDPS concentration Cz (b) Anisotropic micelle self-

diffusion coefficients ((Dm)z, (Dm)x, (Dm)y) extracted from the slopes of the mean-square displace-

ment MSD curves as a function of TDPS concentration (Cz) for TDPS/SDS/NaCl(0.5M)/D2O

samples at T = 298 K. The anisotropic micelle self-diffusion coefficients (Dm)z and (Dm)y curves

are offset along the y-axis. (c) The average z-end to end distance Lz of the TDPS-SDS micelle

versus TDPS concentration Cz, extracted from a fit of the signal attenuations using equation 5.5,

for TDPS/SDS/NaCl(0.5M)/D2O samples at T=298 K. The mean Lz is around 1.1 µm.
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5.4.4 Micellar and intramicellar diffusion

From the observed values of anisotropic self-diffusion coefficients (figure 5.3a) at different diffu-

sion times ∆, the mean-square displacement MSD values (MSDi = 2Di∆, i = x, y, z) are obtained

(figure 5.4a). The dependence is clearly linear; however the straight line does not pass through

the origin. Therefore, the diffusion is neither lateral diffusion50 nor it is single-file diffusion51 for

which the MSD should scale as the square root of the diffusion time. The slope in figure 5.4a repre-

sents a reasonable estimate for the micellar diffusion (figure 5.4b) at different TDPS concentration

Cz. The non-zero intercept on the other hand, is an indication of faster intra-micellar surfactant

diffusion at shorter times.

Figure 5.4b shows the variation of the anisotropic micelle diffusion coefficients (Dm)x, (Dm)y

and (Dm)z of the micelle as a function of TDPS concentration in the semidilute regime (i.e.;

10 mM ≤ Cz ≤ 50 mM) for (Dm)x, (Dm)y and in the 10 mM ≤ Cz ≤ 140 mM regime for (Dm)z of

TDPS-SDS/NaCl (0.5M)/D2O. The anisotropic diffusion curves Dz and Dy are offset along the

y-axis. The anisotropic self-diffusion coefficients exhibit a power law decrease with respect to Cz.

We globally fit the three datasets in figure 5.4b in the semidilute regime to a single power law

(Global fit in graph). Our experiments yield a power law D = DZ
(
C/C?)−d with the exponent d=

0.58±0.03. The Zimm model for polymer dynamics in a good solvent considers the hydrodynamic

interactions between the monomers on the polymer chain and between the monomers and the

solvent molecules in the pervaded volume. It would predict an exponent d = (1−ν)/(3ν−1) = 0.54

(using ν = 0.588 for a self-avoiding polymer).2 This exponent is shown for comparison (dashed

line labeled “Zimm model” in the graph). We calculate an experimental exponent ν = (1 + d)/(1 +

3d) = 0.58 ± 0.01. From the power law fit, we also obtain the average Zimm diffusion coefficient

DZ of the wormlike micelle of 8.3(1) × 10−12 m2/s.

For free diffusion, D is independent of ∆. For bounded diffusion, the apparent diffusion coef-

ficient is smaller than the true diffusion coefficient at long times when molecules start to feel the
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effects of the boundaries. The signal attenuation function S(q) which is related to the diffusion

coefficient D via equation 5.2 is modified due to the effect of boundaries. We utilize a simple

restricted diffusion model for surfactant diffusion in a one dimensional wormlike micelle.52 We

modify this to incorporate a diffusing micelle, resulting in the following signal attenuation equa-

tion:52

ln[S(q)] = −((2πq)2)Dm∆ + ln
[
2[1 − cos(2πqLz)]

(2πqLz)2 +

4(2πqLz)2
N∑

n=1

exp(−
n2π2Ds∆

Lz
2 ) ×

1 − (−1)n cos(2πqLz)
((2πqLz)2 − (nπ)2)2

 (5.5)

here Ds is the molecular bulk surfactant self-diffusion, Dm is the micellar self-diffusion, q = γδg/(2π)

and Lz is the average length of the one-dimensional channel.

As the diffusion time increases, a larger fraction of molecules feel the effects of confinement

with the diffusion coefficient not changing much for ∆ ' 300ms. The z-axis signal attenuation

curves for each diffusion time in figure 5.3a were fitted to equation 5.5. From this fit (signal

attenuation curves and fit not shown), we extract the average end to end distance Lz (figure 5.4c)

for the wormlike micelle. The infinite sum in equation 5.5 is approximated by an upper limit

N = 1000. Dm was obtained from the slopes of figure 5.4a for each TDPS concentration Cz (values

obtained for Dm are shown in figure 5.4b). Ds, the free diffusion of surfactant inside a micellar

environment, and Lz are fit parameters. A value of Ds = 13 × 10−12 m2/s provided a good fit for

all concentrations. Having the Zimm diffusion coefficient DZ, the average time τZ for a micellar

chain to diffuse a distance of order of its average end to end distance L can be calculated.2 Using

Lz = 1.1(1) µm and DZ = 8.3(1) × 10−12 m2/s, we get τZ ≈
L2

z
DZ
≈ 0.15 s.
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5.4.5 Rheology and Supramicellar Structure

Relaxation modulus experiments were performed for a range of TDPS concentrations in the semidi-

lute regime (10 mM ≤ Cz ≤ 50 mM). If the relaxation modulus exhibits a single exponential at

long times, then recombination and the scission process is rapid, i.e.; the micellar chain breaks

and recombines many times in a time scale τb << τR and the primary relaxation mechanism is

reptation.8

A stress relaxation dominated by a single exponential relaxation decay is generally consistent

with the wormlike character of the self-assembled structures in the solution. If τR >> τb, stress

relaxation follows a single exponential in wormlike solutions according to the Cates model. Lopez-

Diaz et al43 note that τb/τR is minimum at R = 0.55, which is precisely the R value where the

mixture perfectly fits the Maxwellian Cole-Cole semicircle. While R = 0.55 mixtures could be fit

to Maxwellian viscoelastic behavior with a single relaxation time for the stress relaxation modulus

G(t),43 those for R = 0.43 showed deviations from the Maxwellian model.43 For our (R = 0.45)

samples, all relaxation functions G(t) (not shown) are better fit to a bi-exponential than a single

exponential.

The elastic modulus Go (figure 5.5a) associated with the slower, dominant, relaxation mode is

extracted. Reduced viscoelastic spectra are extracted over the whole range of TDPS concentration

Cz. The inset in figure 5.5a is an example of Cole-Cole diagram for Cz = 50mM. The upturn in

G′′ at higher frequencies is an expected outcome of Rouse-like behavior.53 This elastic modulus

(figure 5.5a) scales as Cz
b where the exponent b is given8 by 3ν/(3ν − 1) = 3.0 ± 0.1, implying

ν = 0.50 ± 0.01. In addition, the zero-shear-strain viscosity (figure 5.5b) also scales8 as Cz
s with

s=1/(3ν − 1) = 2.4 ± 0.1, or ν = 0.47 ± 0.01. Both of these scaling behaviors are in the semidilute

regime, and consistent with (ν = 1/2) Rouse-like behavior.
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Figure 5.5: (a) The elastic modulus Go versus TDPS concentration Cz. Inset: Cole-Cole diagram

for Cz = 50mM non-deuterated SDS sample (b) Zero-shear strain viscosity η versus TDPS con-

centration Cz (on a logarithmic scale) for TDPS/SDS/NaCl(0.5M)/D2O samples. Power law fits

in the semi-dilute regime are consistent with the exponent expected for Rouse-like behavior - see

text.
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5.4.6 Two Polymer-like Scalings

In this work, we observed two distinct polymer-like scalings in micellar dynamics in the semi-

dilute regime. Diffusometry in the semi-dilute regime is consistent with a scaling exponent ν =

0.58 ± 0.01 (consistent with the value of 0.588 for Zimm-like behavior in a good solvent). On

the other hand, rheological measurements are consistent with a random-walk scaling exponent of

ν = 0.5.

These results have a simple interpretation. In the semidilute regime of mixed-surfactants

TDPS/SDS, NMR diffusometry provides access to dynamics at shorter lengthscales and times

(where hydrodynamic interactions are not screened) and can be described by Zimm dynamics in a

good solvent.2, 4 On the other hand, the rheological measurements provide access to dynamics at

larger scales at which the hydrodynamic interactions are screened, and Rouse dynamics results. In

spite of the fact that, in order to remain in the semi-dilute regime, the range of the fit is small, the

two exponents are distinct (about 8σ apart) and are consistent with classic polymer-like scalings

in different hydrodynamic regimes.

5.5 Conclusion

In this work, we carried out several complementary NMR experiments, as well as rheology, and

these results yield a comprehensive picture of microscopic structure in a wormlike micellar system.

From NMR longitudinal relaxation T1 measurements (figure 5.1), we estimate the TDPS charac-

teristic overlap concentration C? ≈ (5.9 ± 0.6) mM. This compares reasonably with the value of

≈ 6 − 7mM determined using diffusive wave spectroscopy.42 In addition, the temperature depen-

dent 2H NMR spectra (figure 5.2a) show a single broad deuterium peak that implies orientational

disordered domains with slow exchange between domains. The narrowing of this peak is consis-

tent with the temperature dependence of an isotropic liquid crystal mesophase with slow molecular
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exchange between environments with different orientational order.47

By measuring the self-diffusion coefficient of the water H2O molecule in deuterated SDS sam-

ples, we were able to obtain the functional dependence of the relative self diffusion coefficient of

the water molecules H2O with respect to the total surfactant volume fraction (figure 5.2c). Often

one can assume a single monolayer of surface associated water.49 In this system however there is

the equivalent of 3 to 4 layers of surface-associated water. A pronounced change in water structure

has been reported before in neutron diffraction studies of water in high-salt conditions.54

Diffusion time dependence on diffusion coefficients (figure 5.3a), linearity of the mean square

displacement MSD versus time (but with non-zero offset) (figure 5.4a) and the contrast-matched

diffusion experiments all point to a model that includes two ingredients: surfactant restricted dif-

fusion in a cylindrical micelle, and micellar diffusion in water. Therefore, extracting the micellar

diffusion from the slopes of the MSD curves (figure 5.4a) and a fit to a simple model with these

two ingredients yields an average end-to-end distance of the wormlike micelle in the 1 - 1.5 µm

range and is not strongly concentration-dependent (figure 5.4c), which is not far from the contour

length found by Lopez-Diaz et al.43

Rheology reports on longer timescales and lengthscales than NMR. There appears to be a dis-

tinct second relaxation time in the stress relaxation measurements which is also consistent with

oscillatory shear measurements (inset in figure 5.5a) that are not purely Maxwellian. This is con-

sistent with previously reports results43 which showed deviations from the Maxwellian model at

R = 0.45.

Finally, two distinct (Zimm and Rouse) polymer-like scalings are observed via NMR and

rheometry respectively, indicating that the worm-like micelles exhibit classic polymer-like be-

haviour in different hydrodynamic regimes.
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Chapter 6

NMR Detection of an Equilibrium Phase

Consisting of Monomers and Clusters in

Concentrated Lysozyme Solutions

Reproduced with permission from Suliman Barhoum and Anand Yethiraj. J. Phys. Chem. B, 2010,

114 (51), 1706217067. Copyright 2010, American Chemical Society.

6.1 Abstract

Protein aggregation is an important biophysical phenomenon, and it is technically challenging to

quantify. Scattering studies in concentrated protein solutions are not in complete agreement over

the existence of an equilibrium cluster phase. We use pulsed-field-gradient NMR spectroscopy to

characterize diffusion in the long-time limit in concentrated lysozyme solutions, and find strong

evidence for the existence of an equilibrium phase that consists of both lysozyme monomers and

clusters (aggregates). They indicate too that there is rapid exchange between monomer and ag-

gregate on the NMR timescale, and that macroscopic measurables (e.g., the relaxation rate and
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the observed diffusion coefficient) reflect a weighted average of the two fractions. Our results are

quantitatively compared, with no fit parameters, to simple theories of macromolecular crowding.1

6.2 Introduction

The interactions of proteins in water is important in many biophysical processes. Concentrated

solutions of protein exhibit a tendency to self-associate to form aggregates.2 This phenomenon is

important because many human proteins have segments that can form amyloid aggregates,3 which

are implicated in the root causes of many “conformational diseases”.4, 5 On the other hand, much

can be learned about structure and conformations of proteins in solution by treating them as poly-

meric colloidal suspensions,6 with a phase behavior that includes liquid-liquid phase separation7

and the formation of crystalline aggregates.8, 9 Dynamics in concentrated protein solutions is also

complicated by effects of macromolecular crowding.2, 10 This too can be modeled in analogy with

behavior in dense colloidal suspensions.11, 12

For this reason, the aggregation of lysozyme solutions has been studied extensively using scat-

tering techniques,13–19 nuclear magnetic resonance,8, 9, 17, 20 and computer simulations.21, 22 Lysozyme

solutions in the concentrated regime have been shown to exhibit metastable liquid-liquid phase seg-

regation7, 23 that is in some cases followed by crystallization and precipitation.7, 8, 19, 20 Aggregates

detected in solution in the latter studies are transient aggregates.

However, small-angle scattering studies have reported too that concentrated lysozyme solutions

form not only transient aggregates but also a stable equilibrium phase consisting of both individual

proteins (referred to here as “monomers”) as well as clusters.13, 14 Parameters like temperature,

salt concentration, and pH were found to play a role in changing cluster size and cluster den-

sity.13, 14 These results provide support for a colloidal model to understand the phase behaviour of

lysozyme,24 with the generic feature of long-range repulsions and short-range attractions yielding

the possibility for complex gel and glass phases in lysozyme solutions.25
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The small-angle scattering evidence for equilibrium clusters is based on one interpretation

of the interference peak observed at low scattering vectors. A second small-angle scattering

study,15 which also observes an interference peak, however attributes it to interactions of indi-

vidual monomers. In addition, a recent small-angle neutron scattering and neutron spin echo study

has proposed a scenario that invokes the existence of clusters (“dynamic clusters”) but with macro-

scopic properties in the long time limit that are determined by monomeric proteins.16 Thus scatter-

ing studies13, 15, 16, 26 are still not in complete agreement on the existence of an equilibrium cluster

phase.

In this context, we present an NMR study in concentrated lysozyme solutions that provides

quantitative and independent evidence, in the long time limit, for an equilibrium phase that consists

of fractions of protein monomers and fractions of aggregates or clusters. We find too that proteins

exchange rapidly between monomer and cluster form on the NMR timescale. The NMR signal

is a weighted average of the different fractions, and the macroscopic properties are governed by

this weighted average. Monomer diffusion coefficients are compared with theoretical models for

long-time self diffusion in crowded solutions: good agreement is found with the model of Han and

Herzfeld.11

6.3 Experimental

Hen egg white lysozyme with 14,600 average molecular mass and HEPES buffer were purchased

from Sigma-Aldrich Canada. We prepared 20 mM HEPES buffer solution in D2O at pH ≈ 7.5, and

used it to prepare lysozyme stock solution with 40 mg/ml lysozyme concentration. The lysozyme

stock solution was stirred and filtered using a 0.22 µm filter to remove undissolved material. A

centrifugal filter device with a YM-10 membrane was used to concentrate the lysozyme stock

solution more. This high concentration lysozyme stock solution was diluted with the 20 mM

HEPES buffer solution to prepare the lysozyme samples (batch 1, prepared from 274 mg/ml stock
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solution: 14 mg/ml, 36 mg/ml, 169 mg/ml, and 245 mg/ml; batch 2, prepared from 247 mg/ml

stock solution: 70 mg/ml and 100 mg/ml; batch 3, prepared from 274 mg/ml stock solution: 93

mg/ml). The lysozyme concentration was measured after preparation via the absorbance at λ = 595

nm27 using a UV-visible spectroscometer. In increasing order, these concentrations resulted in

lysozyme volume fractions of Φ = 0.012, 0.031, 0.059, 0.079, 0.085, 0.143 and 0.215.

Figure 6.1a shows the one-dimensional NMR spectrum of the highest lysozyme concentration

sample C = 254 mg/ml in an aqueous solution, while figure 6.1b shows the Fourier transform of

a pulsed gradient stimulated echo at a gradient strength where the water and HEPES signals are

completely attenuated, leaving only the lysozyme spectrum. NMR experiments were carried out

on a 600 MHz Bruker Avance II spectrometer equipped with a Micro-5 imaging (3-axis gradient)

probe with a maximum gradient strength of 200 G/cm (2 T/m). Unless otherwise stated, all NMR

experiments were performed at T = 298 K.

(a) (b)

Figure 6.1: Lysozyme(254 mg/ml)/HEPES/D2O, sample temperature 298 K. (a) 1H − NMR one-

dimensional (1D) spectrum of sample. (b) 1H − NMR 1D spectrum after a pulsed-gradient stimu-

lated echo (∆ = 100 ms, gradient strength = 0.62 T/m).

The self-diffusion results were obtained with a pulsed field gradient stimulated-echo sequence
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with (almost square) trapezoidal gradient pulses. The diffusion coefficient of the lysozyme species

in aqueous solution is obtained from the attenuation of the signal according to:28

ln
(
S(k)
S(0)

)
= −Dk (6.1)

where S(k) is the `̀ intensity´́ of the signal (the integration of the relevant peak region) in the pres-

ence of field gradient pulse, S(0) is the intensity of the signal in the absence of field gradient pulse,

k = (γδg)2(∆ − δ/3) is a generalized gradient strength parameter, g is the amplitude of the field gra-

dient pulse, γ = γH = 2.6571 × 108 T−1.s−1 is the gyromagnetic ratio of the 1H nucleus, δ = 2 ms

is the duration of the field gradient pulse, and ∆ is the time period between the two field gradient

pulses which was varied from 50ms to 700 ms.

The relaxation measurements were also performed using the imaging probe. The inversion re-

covery technique with 16 time delays t was used to measure T1, and the intensity data of lysozyme

peaks in the region between 6.5 to 9.5 ppm were fit to the equation I(t) = Io

(
1 − 2 exp

(
−t
T1

))
. A

series of 16 (π2 )x − t/2 − (π)x − t/2 − acquire spin echo experiments with varying delay times t was

used to measure T2, obtained similarly from a fit of the intensities to the equation I(t) = Io exp
(
−t
T2

)
.

6.4 Results and Discussion

6.4.1 Crowded Diffusion

Figure 6.2a shows a multi-exponential attenuation in the signal which is due to the existence

of water and HEPES molecules in the solution in addition to lysozyme species. The early linear

(small k) and later linear (large k) parts in the signal attenuation have distinct spectral signatures

that overlap in chemical shift but are separable in the field-gradient dimension (figure 6.1). The

linear regime at large k corresponds to the signal attenuation associated with lysozyme peaks in

the spectrum, which is mono-exponential. This is consistent also with relaxation results where the
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Figure 6.2: (a)The attenuation of the signal S(k)/S(0) on a log scale versus k = (γδg)2(∆ − δ/3)

for 254 mg/ml (Φ = 0.215) lysozyme concentration and with ∆=100 ms. The black line shows the

attenuation in signal of lysozyme peaks. The blue line shows the attenuation in signal of DOH and

HEPES peaks. (b) Lysozyme self-diffusion coefficient D (scaled by the theoretical value at zero

concentration20, 29 at diffusion times ∆= 50, 100, and 150 ms versus lysozyme volume fraction Φ.

Dashed lines are long-time self-diffusion coefficients obtained in the works of Medina-Noyola,30, 31

Tokuyama and Oppenheim12 and Han and Herzfeld.11 Volume fraction error bars (left error bars).

(c) Illustration of the effect of aggregate formation on the free volume seen by monomers.
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time dependence of the lysozyme signal attenuation exhibits a single relaxation time.

Figure 6.2b shows the variation of the lysozyme self-diffusion coefficient D at diffusion time

∆= 50, 100, and 150 ms as a function of lysozyme volume fraction:

Φ = C ×

NA ×
(

4πR3

3

)
Mw

 × 103 ≈ C × 0.85 × 10−3 (6.2)

treating the globular protein lysozyme as an ellipsoid with dimensions a = b = 15 Å and c =

22.5 Å,32 leading to hydrodynamic radius R = (abc)1/3
≈ 17 Å. In equation 6.2 NA is the Avogadro

number and MW is the molecular weight of lysozyme. If one used instead the specific volume of

lysozyme,33 one gets a lower value of volume fraction Φ = C × 0.717 × 10−3. The uncertainty

in volume fraction reflects a systematic difference in the calculation of volume fraction based on

the bare lysozyme volume (lower value) and the volume fraction deduced from the hydrodynamic

radius of the lysozyme molecule. The diffusion coefficients are scaled by the theoretical value

at zero concentration D0 = 11.7 × 10−11 m2/s20 which employs an anisotropy correction to the

calculation for spheres.29

Figure 6.2b shows that the lysozyme self-diffusion coefficient D increases with decreasing

lysozyme volume fraction Φ. Also plotted are the long-time self-diffusion coefficient according

to Tokuyama and Oppenheim,12 Medina-Noyola30 (using the formula obtained in van Blaaderen

et al.31) and Han and Herzfeld11 (using the self-consistent value ∆r/R = 2/3) - we would expect

the experiments to be closest to the model values for low volume fractions of lysozyme in solution

where aggregate formation is least important. For Φ < 0.1, the Medina-Noyola form appears

to be closest to the observed diffusion coefficient results for lysozyme. The Medina-Noyola and

Tokuyama-Oppenheim theoretical curves underestimate the diffusion coefficients at higher volume

fractions; this fact has been noted before20 and can be understood simply as follows:

• The observed diffusion coefficient is a relaxation-weighted average of monomer and aggre-

gate diffusion, as expressed in equation 6.4. This alone would indicate that the observed
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diffusion coefficient is a lower bound for the monomer diffusion.

• When there are aggregates, the calculated volume fraction reflects an underestimation of the

free volume and an overestimation of the effective volume fraction seen by the monomers.

This latter point is illustrated in the cartoon (figure 6.2c).

We revisit the comparison of experimental diffusion coefficients with theory after a more care-

ful analysis of the effects of relaxation weighting on the observed diffusion coefficients.

6.4.2 Relaxation Rates

Figure 6.3a and figure 6.3b show the variation of longitudinal relaxation rate R1 (=1/T1) and

transverse relaxation rate R2 (=1/T2) respectively as a function of reciprocal lysozyme concentra-

tion 1/C. Based on the assumption that the lysozyme molecules coexist with lysozyme aggregates

especially at high lysozyme concentration, the observed relaxation rates Ri (i.e R1 and R2) include

contributions from both the aggregate relaxation rate Ri,a and the monomeric relaxation rate Ri,m.

Therefore, the observed relaxation rates R1 and R2 may be written

Ri = bRi,m + (1 − b)Ri,a (6.3)

where Ri,m and Ri,a are R1,m or R2,m and R1,a or R2,a, and b = Cm/C is the fraction of the free

lysozyme monomers, and Cm is the free monomer concentration.

Parts a and b of figure 6.3 are clearly not a linear function of 1
C (equation 6.3). In simpler

micelle- and aggregate-forming systems (such as SDS and PEO-SDS solutions34) there is a linear

dependence of the relaxation rates on 1
C , this implies that the concentration of free monomers is a

constant above a critical aggregation concentration. In this system, the free fraction of monomers

is itself a function of C.
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Figure 6.3: (a) Proton longitudinal relaxation rates R1 and (b) transverse relaxation rates R2 versus

reciprocal of lysozyme concentration 1/C. Both relaxation rates show a systematic decrease as a

function of 1/C.
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Figure 6.4: (a) Lysozyme self-diffusion coefficient D versus diffusion time ∆ for lysozyme concen-

trations C = 169 mg/ml (Φ = 0.143) and 254 mg/ml (Φ = 0.215). The values of Dm obtained from

the fit are shown to the right of the data. (b) Mean-squared displacement z2 = 2D∆ as a function

of ∆ for C = 70, 100, 169, and 254 mg/ml.
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6.4.3 Fraction of Protein Monomers and Clusters

Figure 6.4a shows the variation of lysozyme self-diffusion coefficient D at two different

lysozyme concentrations (C= 169 mg/ml and 254 mg/ml) as a function of the diffusion time ∆.

At lower concentrations, we have limited signal at high ∆. At all concentrations, the signal at-

tenuation of lysozyme peaks is mono-exponential over the range of diffusion time ∆ probed (not

shown). The lysozyme self-diffusion coefficient shows a small but unambiguous increase with

diffusion time for both C = 169 mg/ml and 254 mg/ml.

Figure 6.2b shows that in the time scale of the NMR experiment we are already accessing

the long time self diffusion coefficient of lysozyme at ∆ = 50 ms. Therefore for a monodisperse

system of lysozyme proteins we would not expect D to show a dependence of ∆ for ∆ > 50 ms. In

addition, if we were not in the long-time limit, we would expect to see a decrease not an increase.35

However if the lysozyme exists in monomeric form and in clusters, then these two states would

be expected to have different microscopic correlation times: shorter for monomers and longer

for aggregates. Then the observed diffusion coefficients from a pulsed-gradient stimulated echo

would be a (longitudinal) relaxation weighted average of the monomer and the aggregate diffusion

coefficient.8, 20 Thus, the observed lysozyme self-diffusion coefficient D can be written in the form

D =
bDm exp (−R1,m∆) + (1 − b)Da exp (−R1,a∆)

b exp (−R1,m∆) + (1 − b) exp (−R1,a∆)
(6.4)

where from equation 6.3, b = (R1 − R1,a)/(R1,m − R1,a). By globally fitting the diffusion curves of

both C = 169 mg/ml and 254 mg/ml to equation 6.4, we are able to calculate the monomer and ag-

gregate relaxation rates (R1,m ≈ 0.30(4) s−1, R1,a ≈ 1.2(1) s−1, and Da ≈ 8(8)x10−12 m2/s). There is

a large uncertainty in Da. We can say unambiguously, however, that Da << Dm. An alternative ap-

proach is to calculate the mean-squared displacement z2 = 2D∆ (ignoring the effects of relaxation

weighting, figure 6.4b). The slope in figure 6.4b yields a reasonable estimate (although, comparing

with the fit to figure 6.4a, in fact an underestimate of about 10% at higher concentrations) of the

monomer diffusion coefficient.
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From the monomer and aggregate relaxation rates (R1,m and R1,a) and the measured relaxation

rates R1, we can obtain (equation 6.3) the fraction b of lysozyme free monomers in the solution and

the fraction (1 − b) of lysozyme molecules in the aggregate state for all samples; figure 6.5a shows

that the fraction b of free lysozyme monomers decreases by increasing the concentration, while

the fraction (1−b) of lysozyme monomers in the aggregate state increases with increasing concen-

tration. At large concentrations, approximately 25% of lysozyme molecules are in the aggregate

state. Using equation 6.4 and the calculated R1,m, R1,a, and Da at ∆ = 100 ms, we calculate the

scaled lysozyme monomeric diffusion coefficient Dm/D0 at different lysozyme volume fractions Φ

(figure 6.5b). A rough estimate of the error in Dm/D0 is obtained from the errors in the global fit-

ting. The Φ dependence of the monomer diffusion coefficients exhibit reasonable agreement with

the theoretical results of Han and Herzfeld up to Φ ≈ 0.15.

From the fit to the diffusometry results, we can plot the longitudinal relaxation rate R1 and

transverse relaxation rate R2 respectively as a function of the fraction b of free lysozyme monomers

(not shown). By fitting both curves to equation 6.3, we are able to calculate the longitudinal and

transverse relaxation rates of lysozyme monomer and aggregate. While R1,m = 0.29(7) s−1 and

R1,a = 1.2(3)s−1 (for the monomer and aggregate) are simply restating the results of the global

fitting in equation 6.4, we are also able to obtain the corresponding transverse relaxation rates

(R2,m = 75(6) s−1 and R2,a = 325(25) s−1).

The relaxation rate and the diffusion measurements for 254 mg/ml lysozyme sample have been

done at three different temperatures 298, 288, and 278 K. Figure 6.6a and figure 6.6b show the vari-

ation of longitudinal R1 relaxation rate, transverse R2 relaxation rate, and the diffusion coefficient

respectively as a function of temperature. The relaxation rates R1 and R2 increase as the tem-

perature decreases, while the diffusion coefficient shows a decrease as the temperature decreases.

This too is consistent with the fraction of lysozyme aggregate increasing with decreasing lysozyme

solution temperature.
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Figure 6.5: (a) The fraction b of lysozyme free monomers and the fraction (1 − b) of lysozyme

monomers in the aggregates versus lysozyme concentration C (b) Monomeric self-diffusion co-

efficient Dm/D0 (scaled by the theoretical value at zero concentration20, 29) at ∆= 100 ms versus

lysozyme volume fraction Φ. Dashed lines are long-time self-diffusion coefficients obtained in the

works of Medina-Noyola,30, 31 Tokuyama and Oppenheim12 and Han and Herzfeld.11
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Figure 6.6: (a) Relaxation rates R1 (open circles, left scale) and R2 (filled squares, right scale)

versus temperature T. (b) Lysozyme diffusion coefficient D versus temperature. C = 254 mg/ml.

6.5 Conclusion

We have carried out NMR relaxometry and diffusometry experiments on concentrated lysozyme

solutions. Mono-exponential dependence of the NMR signal on the delay time in the inversion
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recovery and spin echo experiments suggest that if there are multiple species in solution they must

be exchanging rapidly on the NMR timescale. Both longitudinal and transverse relaxation rates

show a sharp increase with increasing concentration, suggesting the increased contribution to the

signal from lysozyme clusters or aggregates.

Diffusometry as a function of lysozyme volume fraction Φ agreems with simple colloidal mod-

els for macromolecular crowding for Φ < 0.1, with no fit parameters. At higher volume fractions

or concentrations, there is a marked deviation, again pointing to the role of aggregates. All the

models underestimate the observed diffusion coefficients for large Φ. A simple picture for this is

that the formation of aggregates creates more free volume for the monomers.

The dependence of diffusion coefficient on diffusion time ∆ provides quantitative evidence

of aggregates. Prior to approaching the long-time self-diffusion limit, one would expect a de-

crease in D with increasing ∆. Given that the experiments are clearly in the long-time limit

(τBrownian ∼ 40 ns << ∆) , one would naively expect no ∆ dependence for a monodisperse sys-

tem. The presence of aggregates (with a relaxation rate larger than that of monomers) results in the

observed diffusion coefficients being a relaxation-weighted average of monomer and aggregate dif-

fusion. Unique to NMR is the fact that microscopic molecular correlation times in the picosecond

to nanosecond window lead to relaxation times in the millisecond to second window, where one is

probing long-time self diffusion. Putting together both diffusion measurements (e.g., figure 6.4a)

and relaxation measurements, we were able to calculate the relaxation rates of lysozyme in the

monomer and the aggregate state.

In addition, we obtained from the fit in figure 6.4a the self-diffusion coefficient of lysozyme

monomers Dm as a function of volume fraction, as well as of the aggregates Da. The monomeric

diffusion coefficient is in rather good agreement with simulations of crowded diffusion of model

proteins (Han and Herzfeld11). The value obtained for aggregate diffusion is Da ≈ 8 × 10−12 m2/s.

If the clusters were compact and freely diffusing, this implies an aggregate size of 9R0, about 2-3

times larger than the values deduced by Porcar et al.16 and Stradner et al.13 A possibility that
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is consistent with our experiments and with the picture of an equilibrium cluster phase driven by

competition between short range attraction and long range repulsion (as suggested by Stradner et

al13) is that the clusters are not tightly bound oligomers but instead form loose percolating networks

at higher density coexisting with, and exchanging with, monomers at lower densities. This has been

observed in colloidal systems.36 Finally, we quantified (figure 6.5a) the fraction b and 1− b of free

monomers and aggregates over the entire range of lysozyme concentration. Above C = 100 mg/ml

(at T = 298 K), the aggregate state constitutes a fraction of roughly 20 - 25% of the proteins in

solution, this fraction increases with decreasing T. The macroscopic properties of the long-time

limit are therefore governed by a weighted average of monomeric and aggregate properties.
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Chapter 7

NMR Study of Membrane-Associated

Peptides and the Impact of Peptide Size on

Micelle Properties

7.1 Abstract

The nature of peptide-micelle complexes and micelles were studied for a 19-residue antimicro-

bial peptide (Gad2) in complex with anionic surfactant (sodium dodecyl sulfate (SDS)) as well

as for two smaller dipeptides (Ala-Gly and Tyr-Leu) in complex with SDS, and in SDS alone re-

spectively. Using pulsed-field-gradient PFG-NMR spectroscopy measurements, we extracted the

hydrodynamic radius of an antimicrobial peptide (Gad2)-sodium dodecyl sulfate (SDS) complex

as a function of SDS concentration. The size of a Gad2-SDS complex shows more than a factor-

of-two increase over the entire range of SDS concentration, while there is only a small increase in

the aggregate number of SDS molecules per each Gad2 molecule. This suggests that the number

of peptide molecules in the complex increases with the SDS concentration. For dipeptide (Ala-Gly

and Tyr-Leu)-SDS solutions, PFG-NMR measurements show that the self-diffusion coefficient of
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SDS is similar to the self-diffusion of SDS in the absence of peptide. This indicates that, unlike

larger peptides, Ala-Gly and Try-Leu peptides do not impact significantly the aggregate nature

of SDS micelles. Comparing the diffusometry results of buffered SDS system with unbuffered

SDS/D2O systems suggested that the micellar size in the buffered system is smaller than the mi-

cellar size in the unbuffered system for SDS concentrations below 60 mM. Moreover, the observed

self-diffusion coefficient of SDS in the buffered and unbuffered SDS systems merge at around 60

mM. This concentration is identified as an onset of crowding beyond which hydrodynamic correc-

tions to the diffusion coefficient are extremely important.

7.2 Introduction

Membrane-associated proteins and peptides are often studied in the context of micelles. Micelles

provide a hydrophobic-hydrophilic interface, but unlike large systems such as liposomes, are small

enough to enable solution NMR signals to be observed. Micelles are commonly employed in

NMR structure determination of membrane proteins,1, 2 but have also been used in studies where

the protein-lipid interaction itself is the focus.3–6 One important class of membrane-associated

proteins are the antimicrobial peptides (AMPs).

AMPs are often short peptides consisting of 12 to 50 residues and act by associating with (and

often disrupting) membranes. AMPs have been shown to play an important role in attacking and

killing microbes such as bacteria, viruses, and fungi.7–10 Moreover, some AMPs exhibit activities

against tumor cells by disrupting the membrane of the diseased cells and targeting the cell interior

without affecting the membrane of host cells in the mammal’s body.11 This selectivity, for micro-

bial and/or tumour cells, is thought to arise in large part due to the interaction between the positive

charge on the AMP, with the anionic components of the tumour or pathogen cell membrane.12

Therefore, anionic sodium dodecyl sulfate SDS micelles are commonly employed in the structural

studies of AMPs, as well as other membrane proteins.13–21
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Studying the dynamics of proteins in protein-micellar systems by extracting their diffusion co-

efficients can be useful. These provide information about the fraction of peptide in the aggregate

and free states as well as the average size of protein-micelle complexes. Therefore, NMR diffu-

sometry3, 4 as well as fluorescence correlation spectroscopy5, 6 have been used as tools to obtain the

size of protein-micelle complexes.

A starting point for determining the details of protein or peptide structure is the determina-

tion of its hydrodynamic size. Extracting the true hydrodynamic radius RH of biomolecules or

biomolecular complexes in realistic mimetics of cellular environments is challenging for two rea-

sons. First, RH is only meaningful when extracted from self-diffusion coefficients extrapolated

to infinite dilution of the diffusing object. At finite concentrations there are hydrodynamic cor-

rections to the diffusion coefficient.22 Even for a simple colloidal system of spherical particles,

these corrections depend sensitively on the details of interparticle interactions. Second, this prob-

lem is compounded by the practical challenge that many membrane proteins of interest can only

be prepared in tiny quantities, making a detailed study as a function of micelle volume fraction

impractical.

In this work, we use NMR diffusometry and relaxometry to identify the principles one needs

to apply to obtain reliable quantities such as the hydrodynamic radius and the aggregate ratio, a

number characterizing the ratio of detergent to peptide molecules in the aggregate (non-free) state.

We find, reassuringly, that the most minimal model utilized to extract hydrodynamic size works

well for peptides, at least for those with the size (19 residues) of Gad2 or greater; however, one

must be careful to avoid the onset of crowding in order to reliably use these simple models.

The nature of the association of peptides with anionic SDS micelles depends on the details of

the electrostatic environment; for example, cationic peptides bind more strongly than their zwitte-

rionic counterparts.17 NMR diffusometry studies have also found that peptide binding with anionic

SDS micelles and zwitterionic dodecylphosphocholine (DPC) micelles are different, also due to

the difference in electrostatic environment.19 Similarly, it was found that a cell-penetrating peptide
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(CPP) alters the dynamics and size of neutral and negatively charged bicelles in different ways.23

Several diffusion studies in peptide- or protein-micelle systems have been carried out in the last

twelve years.20, 21, 23–30 However, the onset of crowding effects remain ambiguous, the partitioning

of SDS and peptide molecules and true hydrodynamic radius of a peptide-SDS complex over a

wide range of SDS concentration remain unquantified.

Pulsed-field gradient (diffusion) NMR studies have also showed that the hydrophobic interac-

tion has a significant role in the peptide-micelle binding process.18 A similar conclusion on the role

of the hydrophobic interaction was reached on the binding of neuropeptides to a membrane-mimic

environment28 and on the binding of two tripeptide systems to SDS micelles.16

NMR studies were carried out to study the binding of a cationic peptide on SDS micelles in

the presence and absence of zwitterionic CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-

propanesulfonate) surfactant as a crude model for cholesterol in the biological membrane. While

the binding of the peptide to the SDS micelle, in CHAPS-free solution, is attributed to electro-

static attraction as well as hydrophobic interaction, the presence of CHAPS in the solution inhibits

the hydrodynamic interaction of the peptide with the comicelles composed of anionic SDS and

zwitterionic CHAPS surfactants.15

Since AMPs are subjects of much interest and also represent an even larger class of amphi-

pathic, helical peptides, an AMP, Gad2, was selected for this study. Gad2, and a related peptide

Gad1, have been identified in recent efforts to discovere new AMPs in Atlantic Cod fish.31, 32

In this work, we used NMR diffusometry and relaxometry to study the interaction between the

cationic Gad2 AMP and an anionic SDS micelle as a membrane mimic environment. In order to

do so, we used the same simple model that was applied and developed to signal the changes in

the nature of the complexes in a system of nonionic polymer-anionic surfactant system in aqueous

solution.33 We compare the nature of the resulting peptide-SDS complex with those that form with

two much smaller peptides, and are able to identify important distinguishing characteristics.
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7.3 Experimental

Gad2 peptide with 2168 average molecular mass has been synthesized and purified in a similar way

as surfactant-protein B (SP-B) peptide.34 Ala-Gly peptide with 146.14 average molecular mass,

Tyr-Leu peptide with 294.35 average molecular mass, and SDS (99% purity) with 288.38 average

molecular mass were purchased from Sigma-Aldrich Canada and were used as received without

purification. Deuterium oxide D2O with 99.9% isotopic purity was purchased from Cambridge

Isotope Laboratories.

Table 7.1: Sample nomenclature. All samples unless stated have 0.1 M sodium oxalate buffer in

them.

Abbreviation Complete sample details

SDS-a SDS/sodium oxalate(0.1M)/D2O

SDS-b SDS(60mM)/sodium oxalate(0.1M)/D2O

SDS-c SDS(187mM)/sodium oxalate(0.1M)/D2O

Gad2-SDS-a Gad2/SDS/sodium oxalate(0.1M)/D2O

Gad2-SDS-b Gad2(2mM)/SDS(60mM)/sodium oxalate(0.1M)/D2O

Gad2-SDS-c Gad2(2.67mM)/SDS(80mM)/sodium oxalate(0.1M)/D2O

Ala-Gly-a Ala − Gly(2mM) /sodium oxalate(0.1M)/D2O

Ala-Gly-SDS-b Ala − Gly(2mM)/SDS/sodium oxalate(0.1M)/D2O

Ala-Gly-SDS-c Ala − Gly(2mM)/SDS(60mM)/sodium oxalate(0.1M)/D2O

Tyr-Leu-a Tyr − Leu(2mM)/sodium oxalate(0.1M)/D2O

Tyr-Leu-SDS-b Tyr − Leu(2mM)/SDS/sodium oxalate(0.1M)/D2O

Tyr-Leu-SDS-c Tyr − Leu(2mM)/SDS(60mM)/sodium oxalate(0.1M)/D2O

Gad2-SDS-a samples were prepared from two different stock solutions. We prepared three

different stock solutions: Gad2-SDS-b, Gad2-SDS-c, and sodium oxalate (0.1M)/D2O. Samples
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with SDS concentration (20 mM, 30 mM, and 60 mM) were prepared by mixing Gad2-SDS-b

stock solution with sodium oxalate(0.1M) /D2O stock solution, while we used Gad2-SDS-c stock

solution to prepare samples with SDS concentration (1 mM, 2 mM, 4 mM, 8 mM, 13.3 mM, 25

mM, 35 mM, 40 mM, 50 mM, 80 mM), where the ratio (R) of SDS concentration to peptide

concentration is constant (R = [SDS]/[Gad2] = 30).

Ala-Gly-SDS-b samples were prepared by mixing Ala-Gly-SDS-c stock solution with Ala-

Gly-a stock solution. Also, Tyr-Leu-SDS-b samples were prepared by mixing Tyr-Leu-SDS-c

stock solution with Tyr-Leu-a.

SDS-a samples were prepared from two different stock solutions. Samples with SDS concentra-

tion below 60 mM were prepared by mixing SDS-b stock solution with sodium oxalate(0.1M)/D2O

stock solution, while samples with SDS concentration above 60mM were prepared by mixing SDS-

c stock solution with /sodium oxalate(0.1M)/D2O stock solution. The pH value of different stock

solutions including the buffer solution were adjusted to be 4 by the addition of sodium deuteroxide

or deuterium chloride.

The one-dimensional (1D) proton NMR spectra for different species in all samples at a reso-

nance frequency of 600 MHz on a Bruker Avance II spectrometer are shown in figure 7.1. In all

cases the trace signal of HDO in D2O is the most dominant peak; however the HDO, peptide and

SDS peaks are all spectrally separable. An advantage of the Gad2 peptide is that it has aromatic

groups; thus the spectral region of the aromatic group is used to measure separately the peptide sig-

nal attenuation which is used to extract the self-diffusion coefficient of the peptide molecule in our

Gad2-SDS samples. In these samples, the spectra of both SDS and the Gad2 peptide components

overlap in the (0-4ppm) spectra region.

Figure 7.1 shows the one dimensional spectra for SDS-a with CSDS = 6 mM, Gad2-SDS-b,

Ala-Gly-SDS-b with CSDS = 6 mM, and Tyr-Leu-SDS-b with CSDS = 6 mM samples at sample

temperature 298K.

The self-diffusion measurements were carried out in a diffusion probe (Diff 30) and with maxi-
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(a) (b)

(c) (d)

Figure 7.1: 1D 1H NMR spectrum for (a) SDS-a with CSDS = 6 mM (b) Gad2-SDS-b (c) Ala-

Gly-SDS-b with CSDS = 6 mM (d) Tyr-Leu-SDS-b with CSDS = 6 mM at sample temperature 298

K.
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mum field gradient (1800 G/cm). Diffusion was measured with a pulsed-field gradient stimulated-

echo sequence35 with (almost square) trapezoidal gradient pulses. The diffusion coefficient of a

molecule in aqueous solution was obtained from the attenuation of the signal according to the

equation35

ln
(
S(k)
S(0)

)
= −Dk (7.1)

where S(k) is the `̀ intensity´́ of the signal (the integration of the relevant peak region) in the pres-

ence of field gradient pulse, S(0) is the intensity of the signal in the absence of field gradient pulse,

k = (γδg)2(∆ − δ/3) is a generalized gradient strength parameter, γ = γH = 2.6571 × 108 T−1s−1

is the gyromagnetic ratio of the 1H nucleus, δ = 2 ms is the duration of the field gradient pulse,

∆ = 100 ms is the time period between the two field gradient pulses, and g is the amplitude of the

field gradient pulse.

The signal attenuation in all samples was observed to be monoexponential (figure 7.2). This

suggests that the exchange of SDS molecules between the SDS in micelles and in free solution

must be very rapid on the NMR time scale. Values of the diffusion coefficients were calculated

from the monoexponential decays using equation 7.1.

Figure 7.2 shows the signal attenuation and the self-diffusion coefficients for SDS and peptides

in the different peptide systems. For SDS-a system (figure 7.2a), the spectrum region 0-4 ppm is

used to measure the signal attenuation. For the Gad2-SDS system (figure 7.2b) the spectrum region

0-4 ppm is used to measure the SDS signal attenuation while the spectrum region 7-9 ppm is used

to measure Gad2 signal attenuation. For the Ala-Gly-SDS-b system (figure 7.2c), the SDS signal

attenuation is measured using the SDS peak at 0.8 ppm, while the spectrum region at 3.6ppm is

used to measure the Ala-Gly signal attenuation. Also, for the Tyr-Leu-SDS-b system (figure 7.2d),

the SDS signal attenuation is measured using SDS peak at 3.8 ppm, while the spectrum region 6-8

ppm is used to measure the Tyr-Leu signal attenuation.
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Figure 7.2: The attenuation of the signal S(k)/S(0) on a log scale versus k = (γδg)2(∆ − δ/3) for

(a) SDS-a with CSDS = 40 mM(b) Gad2-SDS-c (c) Ala-Gly-SDS-b with CSDS = 2 mM (d) Tyr-

Leu-SDS-b with CSDS = 15 mM with δ = 2 ms and ∆ = 100 ms.
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Values of the self-diffusion coefficients D are calculated from the slopes of the curves in fig-

ure 7.2. The signal attenuation is normalized with respect to the value at zero gradient. Therefore,

ln(S(k)/S(0)) = 0 at zero field gradient. T1 relaxation measurements were also performed using

the Diff30 diffusion probe and the relaxation rates (R1 = 1/T1) are reported in section 7.4.1.

7.4 Results and Discussion

7.4.1 Relaxometry

Longitudinal T1 relaxation measurements were carried out for the SDS peaks for different peptide

samples and at different SDS concentration. All results (figure 7.3) exhibit an exponential de-

pendence on surfactant concentration. Because this exponential dependence arises from changes

in the surfactant environment, this is typically interpreted as an estimator of critical aggregation

concentrations.36–38

Figure 7.3 shows the variation in the proton relaxation rate R1 for the SDS peaks in SDS-a,

Gad2-SDS-a, Ala-Gly-SDS-b, and Tyr-Leu-SDS-b samples. In all cases, the concentration de-

pendence can be fit to an exponential, the exponent is an estimator of the critical aggregation

concentration (CAC) or critical micellar concentration (CMC). The monoexponential fit is phe-

nomenological.

Proton longitudinal relaxation measurements were carried out for the SDS peaks for SDS-a at

different SDS concentration (figure 7.3a). A fit to y0 + A exp(−CSDS/C0) yields a (C0 = 1.9 ± 0.2 mM),

which we identify with the critical micelle concentration CMC. Figure 7.3b shows the variation in

the proton longitudinal relaxation rate R1 for the SDS peaks for Gad2-SDS-a samples in the range

0 − 4 ppm at different SDS concentration, where the critical aggregation concentration CAC of the

Gad2-SDS-a system is (1.3 ± 0.1 mM). Figure 7.3c shows the variation in the proton longitudi-

nal relaxation rate R1 for the SDS peak for Ala-Gly-SDS-b samples at 0.8ppm at different SDS
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Figure 7.3: (c) Proton longitudinal relaxation rate R1 for SDS for SDS-a versus SDS concentration

CSDS. (b) Proton longitudinal relaxation rate R1 for SDS for Gad2-SDS-a samples (c) Proton lon-

gitudinal relaxation rate R1 for SDS for Ala-Gly-SDS-b samples (d) Proton longitudinal relaxation

R1 for SDS for Tyr-Leu-SDS-b samples.
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concentration, where the critical aggregation concentration CAC of the Ala-Gly-SDS-b system is

1.9 ± 0.2mM. Figure 7.3d shows the variation in the proton longitudinal relaxation rate R1 for the

SDS peak for Tyr-Leu-SDS-b samples at 3.8 ppm at different SDS concentration, where the critical

aggregation concentration CAC of the Tyr-Leu-SDS-b system is 1 ± 0.1 mM

7.4.2 Diffusometry

7.4.2.1 Surfactant Solutions and Analysis Methods

Figure 7.4a shows the self-diffusion coefficient of SDS in an SDS system SDS-a (with no peptide)

with sodium oxalate buffer (pH=4) (red open circles) and without sodium oxalate buffer SDS/D2O

(pH=3-3.5) (blue open squares). Also, in the same graph, the self-diffusion coefficient of SDS

in an SDS system SDS/D2O (with no peptide), without sodium oxalate buffer, and with pH=4

(black filled squares). SDS samples whose pH was not adjusted (pH=3-3.5), and SDS samples

whose pH was adjusted to pH=4 show certainly the same behavior, but the buffered samples at

pH=4 show different behavior in the SDS concentration regime below 60 mM. This indicates that

sodium oxalate buffer impacts significantly the self-diffusion coefficients.

Because the pulsed-field-gradient attenuation is monoexponential (figure 7.2a), this suggests

that the exchange of SDS molecules between the SDS in micelles and in free solution must be very

rapid on the NMR time scale. Therefore, in the interpretation of observed diffusion coefficients in

surfactant systems, where a surfactant molecule visits more than one environment over very short

timescales, a two-site exchange model is known to work very well.39 For example, in all systems

considered here, the SDS surfactant can either be a free monomer in solution or associated with a

surfactant-rich aggregate. Thus, the self-diffusion coefficient of SDS is a linear combination of the

self-diffusion coefficient DSDS
free of the free molecules in bulk and that of the bound molecules in the

micelle DSDS
micelle in peptide-free solutions or a peptide-SDS complex DSDS

Aggr:
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Figure 7.4: (a) Self-diffusion coefficient of SDS in an SDS system SDS-a (with no peptide) with

sodium oxalate buffer (pH=4) (red open circles) and without sodium oxalate buffer SDS/D2O

(pH=3-3.5) (blue open squares) as well as an SDS system SDS/D2O (with no peptide) with-

out buffer and with pH=4 (black filled squares) versus SDS concentration CSDS (b) self-diffusion

of SDS for SDS-a versus reciprocal of SDS concentration 1/CSDS (c) self-diffusion of SDS for

SDS/D2O versus reciprocal of SDS concentration 1/CSDS (d) fraction (fs) of free SDS for SDS-a

and SDS/D2O systems.
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DSDS
Obs = fs DSDS

free + (1 − fs) DSDS
Aggr (7.2)

for CSDS > C0, where fs is the fraction of free SDS molecules, DSDS
Aggr is either the micellar diffu-

sion coefficient or the micelle-peptide complex diffusion coefficient, and C0 refers to the critical

(micellar or aggregation) concentration (CMC or CAC), and CSDS is the total SDS concentration.

Two approaches are used in order to extract physical parameters such as the fraction (fs) of free

SDS molecules and the self-diffusion of a peptide-SDS complex DSDS
aggr or the micellar aggregate

DSDS
micelle. The first and more general approach is to rewrite equation 7.2 in the form

DSDS
Obs =

(
DSDS

free − DSDS
Aggr

) (
CSDS

free

) ( 1
CSDS

)
+ DSDS

Aggr (7.3)

for CSDS > C0, DSDS
free is always a constant and very close to the self-diffusion coefficient of SDS at

any concentration below the CMC. Linear dependence of the SDS self-diffusion DSDS
Obs versus the

reciprocal of SDS concentration 1/CSDS implies that CSDS
free and DSDS

Aggr are constants. In addition,

we may extract DSDS
Aggr, i.e. the self-diffusion coefficient for either an SDS micelle DSDS

micelle or a

peptide-SDS complex DSDS
Aggr from the intercept, and the concentration of free SDS molecules CSDS

free

is calculated from the slope. Using these values, in the linear (low concentration) regime, we can

obtain the free surfactant fraction as a function of concentration even at higher concentrations using

fs(CSDS) =
DSDS

Obs − DSDS
micelle

DSDS
free − DSDS

micelle

. (7.4)

A second and more mimimal approach is feasible when the size of the peptide that has a

tendency to associate with micelles is large enough that surfactant motion is rapid on the timescale

of peptide motion. Therefore, this kind of peptide is usually associated with several surfactants

and so there can never be a free peptide, i.e. the peptide binding fraction is close to 1. In this case,

DSDS
Aggr = DPeptide. Using this additional information allows us to use the two-site model even in a
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184



regime where the DSDS
Obs versus 1/CSDS relationship is not linear. The only proviso is that the overall

particulate volume fraction must always be small enough that hydrodynamic effects are negligible.

For the SDS system, this is generally true for concentrations below 60 mM, or volume fractions

below 0.04. Using this we can rewrite equation 7.2 in the form:

fs(CSDS) =
DSDS

Obs − DPeptide

DSDS
free − DPeptide

. (7.5)

For buffered and unbuffered SDS solutions we find a systematic difference in all quantities. The

micellar self-diffusion coefficient DSDS
micelle = 7.2 ± 0.1 × 10−11 m2/s and 4.42 ± 0.02 × 10−11 m2/s in

the SDS-a and SDS/D2O systems respectively. The self-diffusion coefficient of the SDS micelle

is extracted by linearly fitting the self-diffusion coefficient of SDS in figure 7.4b and figure 7.4c,

respectively, in the regime of SDS concentration that is higher than CMC but below the onset of

crowding.33

The concentrations of free surfactant in solution are found to be CSDS
free = 1.8 ± 0.1 mM and

5.1 ± 0.4 mM33 for SDS-a and SDS/D2O respectively. Moreover, the fraction (fs) of free surfac-

tant (figure 7.4d) is obtained using DSDS
free = (2.6 ± 0.1) × 10−10 m2/s and (4.7 ± 0.1) × 10−10 m2/s.

These are the SDS observed self diffusion coefficients in buffered and unbuffered systems, respec-

tively, at the lowest SDS concentration (figure 7.4a), which is below the CMC, and at very low

surfactant packing fraction (Φ < 0.001). Therefore, all surfactants are in the non-aggregated state,

and hydrodynamic effects are negligible.

The ratio of DSDS
free in the unbuffered with respect to the buffered SDS solution is ≈2 for CSDS <

60 mM (figure 7.4a). This indicates the presence of of stable dimers and n-mers (n < 23 = 8). Also,

the micellar self-diffusion coefficient in the unbuffered SDS solution is significantly larger than the

micellar self-diffusion coefficient in the buffered solution (figure 7.4b). This indicates that while

the micellar size in the SDS-a system is smaller than the micellar size in the SDS/D2O system, the

fraction (fs) of free SDS molecules (figure 7.4d) for SDS-a shows a more rapid decrease compared
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to the fraction (fs) for the SDS/D2O system. The presence of sodium oxalate buffer (Na2C2O4)

promotes the formation of SDS micelles. Moreover, it causes a decrease in the value of critical

micellar concentration.

7.4.2.2 Peptide: Gad2

Figure 7.5a shows the self-diffusion coefficient of Gad2 and SDS in Gad2-SDS-a. We measured

the self-diffusion of Gad2 in the SDS concentration range above 13.3 mM. Due to experimental

limitations (small value of signal to noise ratio), we were not able to extract the self-diffusion

coefficient of Gad2 in the SDS concentration range below 13.3 mM.

Figure 7.5b is a plot of DSDS
Obs versus 1/CSDS. Over a range of concentrations, this behavior is lin-

ear and yields DSDS
Aggr = (3.9 ± 0.1) × 10−11 m2/s. Since the concentration of SDS is 30 times higher

than Gad2 concentration (R = [SDS]/[Gad2] = 30), we know that there is unlikely to be free pep-

tide. Therefore, we use equation 7.5 with DPeptide = DGad2
Obs and DSDS

free = (2.6 ± 0.1) × 10−10 m2/s to

obtain the fraction (fs) of free surfactant in the monomer state in the aqueous solution as well as

the concentration of free surfactant CSDS
free , this is shown in figure 7.5c. With increasing surfactant

concentration, f decreases while CSDS
free rises from about 1 mM to an asymptotic value of ≈ 2 mM.

The lower value (near 1 mM) is consistent with CAC value of (1.1±0.2) mM that is extracted us-

ing relaxometry (figure 7.3b). This is consistent with the picture33, 40 that the concentration of free

surfactant above the CAC/CMC is equal to the value of the CAC/CMC. In the peptide-SDS sys-

tem (and similar to the behavior in the nonionic polymer-anionic surfactant system (poly(ethylene)

oxide (PEO)-SDS system)33) the free concentration rises further until it reaches the CMC value in

the buffered solution.

Also, we estimate the hydrodynamic radius RH of Gad2-SDS complexes (figure 7.6a) using the

Stokes-Einstein-Sutherland equation41
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RH =
KBT

6πηD
, (7.6)

where KB is the Boltzmann constant, T is the absolute temperature, D = DPeptide, and η is the solvent

viscosity (ηD2O=1.1 mPa.s). The RH value obtained from surfactant diffusion in a peptide-SDS

complex is consistent with the lowest value obtained for peptide diffusion in Gad2-SDS-a and is

approximately 5 nm. Since the values obtained from surfactant diffusion represent the asymptotic

value at low dilution, this agreement is a welcome self-consistency check. RH (obtained from

peptide diffusion) increases as a function of concentration to about 10 nm at 60 mM, approximately

a factor of 2 larger.

Moreover, the variation in the ratio of SDS molecules to peptide molecules in a complex r =

(CSDS − CSDS
free )/(CSDS/R) = (1 − f)R is extracted (figure 7.6b). It shows that r exhibits a very slight

increase, from 27 to 29, over the entire range of SDS concentration, it approaches R = 30 asymp-

totically. We need to understand how the aggregate size changes in order to accommodate the

two-fold increase in the hydrodynamic radius RH, we will return to this point later.

7.4.2.3 Dipeptides: Ala-Gly and Tyr-Leu

In order to study the effect of peptide size on the dynamics of peptide-SDS complexes, diffusometry

was carried out to quantify complex formation of SDS with the dipeptides Ala-Gly and Tyr-Leu.

A plot of the SDS self-diffusion coefficient for all systems in the current study in one graph

(figure 7.7) shows clearly that SDS diffusion looks similar for the systems with small di-peptides

(Ala-Gly and Tyr-Leu) and SDS-a systems. This suggests that the fraction of free SDS in Tyr-

Leu-SDS-b and Ala-Gly-SDS-b systems is similar to the fraction of free SDS in the SDS-a system

(figure 7.4d). On the other hand, SDS diffusion looks very different for the system with long

peptide (Gad2-SDS-a), suggesting that the Gad2-SDS complexes are very different from the other

Ala-Gly-SDS and Tyr-Leu-SDS complexes which are essentially indistinguishable from micellar
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aggregates with no peptide.

Figure 7.8a shows the self-diffusion coefficient of Ala-Gly and SDS in the Ala-Gly-SDS-

b system. By linearly fitting the self-diffusion of SDS, DSDS
Obs (figure 7.8b), for SDS concen-

tration higher than CAC, we extract the self-diffusion coefficient of SDS in the Ala-Gly-SDS

complex DSDS
Aggr = (7.4 ± 0.8) × 10−11 m2/s. The hydrodynamic radius of Ala-Gly-SDS complex

RH = (2.7 ± 0.3) nm is then calculated using equation 7.6. In addition, the concentration of free

SDS molecules CSDS
free = (1.7 ± 0.2) mM. The scatter in the values comes from the very low value

of the fraction of bound peptide (1 − fp) for concentrations ≤ 20 mM.

Since the Ala-Gly peptide is short, they are rapidly exchangeable between free and aggregate

states. Thus, the fraction (fp) of free Ala-Gly peptide is calculated using the following equation,

fp =
DPeptide

Obs − DSDS
Aggr

DPeptide
free − DSDS

Aggr

(7.7)

where DAla−Gly
free = (5.3 ± 0.2) × 10−10 m2/s is the self diffusion of Ala-Gly peptide in the SDS-free

solution and DSDS
Aggr = (7.4 ± 0.8) × 10−11 m2/s.

189



10
-11

2

4

6

10
-10

2

4

6

10
-9

D
 (

m
2 /s

)

1
2 4 6 8

10
2 4 6 8

100
C

SDS
 (mM)

   Ala-Gly-SDS-b
SDS self diffusion
 Ala-Gly self diffusion

(a)

250x10
-12

200

150

100

50

0

D
 (

m
2 /s

)

0.50.40.30.20.10.0

1/C
SDS

 (mM
-1

)

   Ala-Gly-SDS-b
 SDS self diffusion

(b)

1.0

0.8

0.6

0.4

0.2

0.0

A
la

-G
ly

 f
re

e 
fr

ac
ti

o
n

 (
f p

)

6050403020100
C

SDS
(mM)

    Ala-Gly-SDS-b
 Fraction of free peptide

(c)

80

60

40

20

0

r

6050403020100

C
SDS

(mM)

      Ala-Gly-SDS-b
 The ratio of SDS molecules to 

          peptide molecules in an aggregate

(d)
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From the calculated values of the free fraction (fs) of SDS and free fraction (fp) of Ala-Gly pep-

tide, the ratio of SDS molecules to peptide molecules in the aggregate state r = (CSDS/2mM)((1 − fs)/

(1 − fp)) is calculated in the Ala-Gly-SDS-b system (figure 7.8d). The graph shows a scatter in r

for finite concentration, with a mean value r = 48 ± 4.
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Figure 7.9: (a) Self-diffusion of Tyr-Leu and SDS for Tyr-Leu-SDS-b samples versus SDS concen-

tration CSDS (b) self-diffusion of SDS for Tyr-Leu-SDS-b versus reciprocal of SDS concentration

1/CSDS (c) fraction (fp) of free Tyr-Leu (d) The ratio (r) of SDS molecules to peptide molecules

`̀ in a complex´́ versus SDS concentration (CSDS) for Tyr-Leu-SDS-b samples.

Diffusometry was also carried out on the dipeptide Tyr-Leu system. Figure 7.9a shows the self-

diffusion coefficient of Tyr-Leu and SDS in Tyr-Leu-SDS-b. The analysis method is identical to
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that in the Ala-Gly-SDS-b system. The observed self-diffusion of SDS is a weighted-average pa-

rameter, where the self-diffusion coefficient of SDS DSDS
Aggr in the Tyr-Leu-SDS complex is extracted

by linearly fitting the self-diffusion of SDS DSDS
Obs (figure 7.8b) in the regime of SDS concentration

which is higher than CAC. Thus, by using equation 7.6, the hydrodynamic radius of Tyr-Leu-SDS

complex RH = (2.87 ± 0.04) nm.

For Tyr-Leu-SDS-b the DTyr−Leu
free = (4.0 ± 0.4) × 10−10 m2/s is the self diffusion of Tyr-Leu pep-

tide in SDS-free solution and DSDS
Aggr = (6.9 ± 0.1) × 10−11 m2/s (figure 7.9b). Therefore, the frac-

tion (fp) of free Tyr-Leu peptide (figure 7.9c), and the ratio of SDS molecules to peptide molecules

in the aggregate state (r) (figure 7.9d) for Tyr-Leu-SDS-b system have been extracted in a similar

way as for Ala-Gly-SDS-b system. However, for Tyr-Leu-SDS-b system, r exhibits a systematic

increase at low SDS concentrations with a change in slope between 5 and 10 mM, reaching a value

of approximately r = 20 at 40 mM. Note that the scattering in the data for Tyr-Leu is much smaller

than for Ala-Gly. This is due to the presence of a non-negligible fraction of bound peptide even at

small SDS concentration. The 60 mM value is not reliable due to crowding effects, this is discussed

later. This asymptotic value is comparable to Gad2-SDS, where the asymptotic value approaches

the molar ratio at large concentration, consistent with a binding ratio 1 − fp close to 1, and very

different from the Ala-Gly-SDS system, where it is closer to 0.5 at 40 mM.

7.5 Conclusion

Using diffusometry, we measured the signal attenuation curves of SDS and peptide components in

different samples. The monoexponential signal attenuation curves (figure 7.2) indicate that there

is either a quick exchange between the molecules in the monomeric state and aggregate state for

SDS and short peptides (Ala-Gly and Try-Leu) or the molecules are presented in one state (e.g. an

aggregate state for the long peptide (Gad2)). Therefore, the self-diffusions of SDS molecules and

short peptides are weighted-average parameters. Based on that, we were able to extract parameters
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such as the fraction and the concentration of free SDS and free peptide molecules over the entire

range of SDS concentration.

Using relaxometry (figure 7.3), we estimate the critical micellar concentration (CMC) for the

SDS-a system to be 1.9±0.2 mM (figure 7.3a), significantly lower than the value of CMC = 5.2 ± 0.2

mM33 for the unbuffered SDS/D2O system. This indicates that the presence of the sodium oxalate

buffer in the solution enhances micellar formation. The value of critical aggregation concentration

(CAC) for Gad2-SDS-a, Ala-Gly-SDS-b, and Tyr-Leu-SDS-b systems is 1.3 ± 0.1 mM, 1.9 ± 0.2

mM, and 1.0 ± 0.1 mM respectively. Values consistent with these are obtained from diffusion

measurements.

The concentration dependence of the self-diffusion coefficient depends sensitively on the pres-

ence of sodium oxalate buffer. In the presence of the buffer, we see, not only that the CMC is lower,

but micellar diffusion coefficient is larger by a factor of ≈ 2 and the micelle size is smaller by the

same factor (figure 7.4b). The diffusion coefficients for buffered and unbuffered surfactant merge at

around 60mM. In past work33 this concentration has been identified as the onset of crowding, and

so we can say with confidence that 60 mM in the SDS system signals the concentration at which

one cannot extract hydrodynamic radius or aggregate ratios from observed diffusion coefficients.

There is a distinct difference in the behavior of large peptides (Mpeptide
w > Msurfactant

w ) and small

dipeptides (Mpeptide
w ≈ Msurfactant

w ). The small dipeptides (Ala-Gly and Tyr-Leu) hardly affect the

SDS diffusion coefficient (figure 7.7). This is consistent with the dipeptides behaving just as the

surfactant does, i.e. rapidly exchanging between aggregate and free state. For large peptides such

as Gad2, on the other hand, rapid exchange between free and aggregate state is practically im-

possible. This is because the surfactant molecules form micellar-like aggregates along the peptide

chain. This is consistent with a bead-on-a-chain picture42, 43 for large-molecule aggregates.

The surfactant itself is always in the rapid exchange limit. The concentration of free SDS in

solution rises from the CAC value (≈ 1 mM) to the CMC value (≈ 2 mM) when the total SDS con-

centration increases from 10 to 60 mM. In Gad2-SDS samples, the SDS concentration is increased,
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with the peptide-surfactant molar ratio kept constant. Therefore, a moderate increase in free sur-

factant concentration necessarily implies a small change in aggregate number (the number of SDS

molecules associated with each Gad2 molecule) from 27 to 29. The hydrodynamic radius of the

aggregate state is more than 3 times the size of a peptide monomer in the absence of surfactant.

The concentration range between 0 and 10 mM is the regime where the linear model (equation 7.3)

is valid. At 10 mM, the surfactant aggregate diffusion coefficient and the peptide diffusion coef-

ficient coincide. At larger concentrations (where the linear model is not valid), the aggregate size

increases from 5 nm at 10 mM to 10 nm at 60 mM. In this range, crowding effects are not yet

important, therefore the increase in RH likely reflects a true increase in aggregate size. Given that

the ratio of SDS to Gad2 molecules in a complex is fixed, the only way for mean aggregate size

to increase is for the average number of peptides in one complex to increase from 1 (at 10 mM) to

approximately 2 (at 50 mM).

In all 3 systems, the concentration of free SDS CSDS
free is found to increase over the entire range

of SDS concentration, with the asymptotic value being close to 2 mM. This is roughly consistent

with the value of the CAC obtained from relaxation experiments, although the values from the

latter are not true measurements of the CAC but only indicative values.

Previous experiments have reported peptide binding fractions fb = 1 − fp in dipeptides based

on measurements at two concentrations.18 Our results for both Ala-Gly and Tyr-Leu provide these

values as a function of SDS concentration. Our values are roughly consistent with those quoted

values at concentrations of about 10 mM. We also calculate the ratio of SDS molecules to peptide

molecules in the aggregate state, r, in the three peptide-SDS systems, and can compare them to the

molar ratio R (which was held constant for Gad2-SDS-a but allowed to increase linearly for the

short dipeptides). The quantity r is highly susceptible to noise when the fraction of bound peptide

is very small, as is the case for Ala-Gly. The value of r has a self-consistent large concentration

asymptote of r = R for Gad2 (figure 7.6b) and Tyr-Leu (figure 7.9d) complexes. However, for

Ala-Gly complexes this value is noisy but has a mean value much larger than R (figure 7.8d). This
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is indicative of a high peptide free fraction. This indicates that SDS molecules have more affinity

to associate with Gad2 and Tyr-Leu peptides than to the Ala-Gly peptide. This is based on the fact

that Tyr-Leu dipeptide is more hydrophobic than Ala-Gly dipeptide.

We conclude with some recommendations for diffusion measurements made in order to extract

parameters such as the hydrodynamic radius and peptide binding fractions. Our results consistently

show that measurements should be made well below the concentration that signals the onset of

crowding (about 60 mM for SDS), and a safe recommendation is two-thirds of this value, i.e. 40

mM. Surfactant with sodium oxalate buffer can have unusual properties which should be known a

priori, e.g. pure SDS solutions contain micellar aggregates with a hydrodynamic radius twice that

of those in solutions with sodium oxalate buffer. Ideally measurements for hydrodynamic radius

should be carried out for at least two concentrations. This procedure will work very well for larger

peptides, but less well for small ones, especially those that are not very hydrophobic.
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Chapter 8

Conclusions

Multi-component solutions consisting of polymer, surfactants, micelles, proteins, and other macro-

molecules are common to many biological systems, as well as cosmetic, pharmaceutical and tech-

nological applications. In addition, the biological cell represents a vivid example of a system that

includes different kinds of macromolecules at high concentrations (i.e. 400 g/l). Such a high con-

centration makes the intracellular medium a crowded environment that affects the characteristics

of the macromolecules, such as the structure and dynamics. In our research study, we are trying

to experimentally simulate the multi-component crowded environment in the living cell. We have

investigated four systems which have significant relevance to modern day biology and medicine: a

polymer-surfactant solution, a wormlike micellar system, a protein solution, and a protein-micelle

system.

PFG-NMR is a powerful technique that can be used to study the dynamics of different molecu-

lar components simultaneously and to study the molecular diffusion in restricted geometries. This

might provide structural information about the restricted geometries. However, PFG-NMR, in my

view, is underutilized technique in the field of soft matter and biophysics. My doctoral studies rep-

resent a systematic attempt to utilize PFG-NMR in order to extract different physical parameters

for molecular complexes such as the hydrodynamic radius/radius of gyration of spherical charged
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or non-spherical uncharged complexes. As an example, this sheds more light on the binding char-

acteristic of an antimicrobial peptide Gad2 on a membrane mimic environment. Coupled with

other techniques, such as deuterium NMR, NMR relaxometry, and rheometry, we utilized PFG-

NMR to construct a picture of the microscopic structure of a wormlike micellar system as a system

composed of restricted geometries.

8.1 Polymer-Surfactant Aggregates

The dynamics of macromolecules in an anionic surfactant- nonionic polymer system (SDS-PEO

system) (chapter 4) has been investigated using nuclear magnetic resonance (NMR). We were able

to identify accurately and quantitatively the critical aggregation concentration (CAC) (figure 4.8)

and the onset of the crowding respectively.

We measured the self-diffusion of SDS, PEO, and DOH molecules simultaneously over the

entire range of SDS concentration in both SDS/D2O (figure 4.4a) and PEO (0.5% w/v)/SDS/D2O

(figure 4.5a) systems. Using the self-diffusion profile of the SDS molecules for SDS/D2O system,

we were able to extract the critical micellar concentration (CMC) (figure 4.4a).

In our self-diffusion analysis, we assume that the observed self-diffusion coefficient of SDS

molecule is a weighted-average of SDS in free and SDS-PEO aggregate (i.e. two-species model).

Based on this assumption, we calculated the concentration of SDS molecules in the monomeric

state (figure 4.8). We find that the two-species model is definitely valid below 64 mM, and def-

initely not valid above 145 mM. One can thus say that the onset of crowding occurs somewhere

in this concentration range. For CSDS > 145 mM the concentration of free SDS molecules Cf2

based on the two-species model exhibits a sharp increase above CMC that is clearly not physical

(figure 4.8). This is consistent with both relaxometry (figure 4.6) that shows crossover between

two different regimes at CSDS = 60 mM and DOH self-diffusion measurements (figure 4.10) that

exhibits a noticeable decrease above ≈ 100 mM. This indicates an increase of the fraction of DOH
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molecules associated with the charged surfactant. Therefore, a three-species model is defined in the

SDS concentration regime CSDS > 145 mM which considers the saturation of polymer molecules

with surfactant and the formation onset of SDS micelles in the solution. It implicitly signals the

onset of crowding in the solution. Based on this model, we were able to calculate the concen-

tration of SDS molecules in the micellar state as well as the concentration of SDS molecules in

the monomeric and SDS-PEO aggregate states over the entire range of SDS concentration (fig-

ure 4.9a).

8.2 Wormlike Micellar Aggregates

The second system that was studied is a mixed-surfactant wormlike micellar system composed of

anionic surfactant SDS and zwitterionic surfactant TDPS in brine solution at surfactant concentra-

tion ratio R = [SDS] /[TDPS] = 0.45 (chapter 5) that shows deviation from Maxwellian behavior.

Using relaxometry (figure 5.1), we identified the TDPS overlap concentration C? that shows a

crossover from dilute to semidilute regime.

Deuterium NMR spectra (figure 5.2a) shows that the wormlike micellar system is composed

of domains with different orientational orders, where there is a slow molecular exchange between

different domains. This is consistent with the anisotropic self-diffusion measurements (figure 5.3a)

that indicate an isotropic orientation of the micelles.

Moreover, both the time-dependent self-diffusion measurements (figure 5.3a) and the linearity

of the mean-square displacement with non-zero offset (figure 5.4a) indicate that the observed-

self diffusion is a combination of two dynamical modes: surfactant diffusion in a micelle and

micellar self-diffusion. Therefore, by applying the simple model of restricted diffusion within one

dimensional boundaries (equation 5.5), we were able to extract the average end-to-end distance

of the micellar chain (figure 5.4c). From the mean square displacement versus diffusion time

graph (figure 5.4a) we calculated the micellar self-diffusion ((Dm)x,(Dm)y,(Dm)z) over the entire
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of TDPS concentration in the semidilute regime (figure 5.4b). We found that self-diffusion of the

micelles in the semidilute regime is consistent with the self-avoiding walk model, while rheometry

(figure 5.5a and figure 5.5b) shows consistency with the random-walk model. This semi-dilute

wormlike micellar system behaves like a dilute polymer system when probed on (relatively) short

length scales by NMR, but like a concentrated polymer system when probed on long length scales

by rheology.

8.3 Protein Clusters in Equilibrium

The third system that was studied is the lysoyme protein system. Diffusometry and relaxometry

have been carried out on a system of concentrated lysozyme solutions (chapter 6). We found that

the observed self-diffusion coefficient of the lysozyme shows an increase with the diffusion time

(figure 6.4a) and that we are already accessing the long time self-diffusion limit (figure 6.2b) even

at ∆ = 50 ms. This indicates that these concentrated lysozyme solutions include lysozyme in both

monomeric and aggregate form, with the lysozyme self-diffusion coefficient being a relaxation-

weighted average of the monomer and the aggregate diffusion coefficients (equation 6.4). The

time scale is not in the fast exchange limit for the relaxation measurements but nevertheless is fast

enough that we get a monoexponential attenuation for diffusion. The average size of a lysozyme

cluster was estimated to be nine times the monomer size. Also, we calculated the fraction of

lysozyme in monomeric and aggregate states over the entire range of the lysozyme concentration

(figure 6.5a). The fraction of lysozyme in both states levels off above lysozyme concentration

C = 100 mg/ml (at T=298 K) with 20 − 25% fraction of lysozyme in the aggregate state. Our

results thus provided unambiguous support for the existence of a phase of equilibrium protein

clusters.
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8.4 Peptide-Surfacant Aggregates

The dynamics of macromolecules in peptide-anionic surfactant systems was explored using nu-

clear magnetic resonance (NMR). This study mainly includes three different systems: a system

composed of a 19-residue antimicrobial peptide (Gad2) and anionic surfactant (sodium dodecyl

sulfate) SDS, a system composed of dipeptides (Ala-Gly and Tyr-Leu) and anionic surfactant

(SDS), and a system consisting only of anionic surfactant (SDS) in an aqueous solution.

A comparison of diffusometry results of SDS solutions with and without sodium oxalate buffer

(figure 7.4) suggests that the micellar size in the buffered system is smaller than the micellar size in

the unbuffered system. Based on NMR diffusometry measurements, we identify the SDS concen-

tration (CSDS = 60 mM) beyond which the crowding effect (figure 7.4a) plays a crucial role in the

dynamics of macromolecular aggregates. This provides confirmation of the existence of collective

micellar effects at these concentrations, implying that measurements designed to extract true hy-

drodynamic radii should be carried out well below this concentration. Using NMR relaxometry

(figure 7.3) we identify the SDS concentration at which the peptide-SDS and micellar aggregates

start forming in a solution.

Next, we extract the true hydrodynamic radius (figure 7.6a) of the Gad2-SDS aggregate over the

entire range of SDS concentration where crowding effects are not significantly important. Using

NMR diffusometry, we extract the fraction of free dipeptides (figure 7.8c and figure 7.9c) over

the entire range of SDS concentration. The functional behavior of the free fraction for smaller

dipeptides shows more concentration dependence for the more hydrophobic dipeptide (Tyr-Leu)

which has more affinity to form peptide-SDS aggregates.

We find, in summary, that simple models for analyzing diffusion coefficients in peptide-surfactant

systems work best at relatively low surfactant concentrations, and for hydrophobic peptides that

are much larger than the surfactant, and less well for peptides whose size is comparable to the

surfactant.
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