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ABSTRACT: Although there are numerous self-assembly techniques to
prepare colloidal crystals, there is great variability in the methods used to
characterize order and disorder in these materials. We assess different
kinds of structural order from more than 70 two-dimensional microscopy
images of colloidal crystals produced by many common methods,
including spin-coating, dip-coating, convective assembly, electrophoretic
assembly, and sedimentation. Our suite of analysis methods includes
measures for both positional and orientational order. The benchmarks are
two-dimensional lattices that we simulated with different degrees of controlled disorder. We find that translational measures are
adequate for characterizing small deviations from perfect order, whereas orientational measures are more informative for
polycrystalline and highly disordered crystals. Our analysis presents a unified strategy for comparing structural order among
different colloidal crystals and establishes benchmarks for future studies.

■ INTRODUCTION

An important materials challenge in the last two decades has
been to obtain perfect, defect-free colloidal crystals for use as
photonic band gap materials.1−6 While this goal has thus far
remained elusive, new applications have recently been proposed
for colloidal films with lower degrees of order (such as
substrates for surface-enhanced Raman spectroscopy7) or even
amorphous structures (such as angle-independent structural
color8). This manuscript assesses, using different measures of
positional and orientational order, the crystalline quality of 2D
images of colloidal crystals, thus allowing systematic compar-
isons, with a single toolbox, of colloidal crystals reported in the
literature.
Structural comparisons of colloidal crystals have often been

based on visual inspection of microscopy images.4,9−11

Reciprocal space methods, either via Fourier transformation
of optical images3,12 or via small-angle scattering methods, are
useful in characterizing crystalline structures.13,14 However,
spatial resolution is invaluable for studies of the kinetics of
crystallization. Positional and orientational order, and correla-
tions, are all convenient for characterizing time-independent
and time-dependent processes on the same footing.15−19

A few recent studies have presented more quantitative
assessments in real space.12,20 Portal-Marco et al.12 have
compared colloidal structures composed of colloids with
different size distributions by calculating positional and
orientational correlation functions. Krejci et al.20 have assessed
the order in a system of nanoparticles using Voronoi
tessellation, a local bond-order parameter, an order parameter
defined from the radial distribution function g(r), and an
anisotropy parameter that quantified orientational order.
However, a detailed characterization of colloidal structures in
terms of their local and overall translational and orientational
order is still lacking.

In this work, we present a comprehensive comparison of
structural order in colloidal crystals based on two classes of
parameters: positional order and orientational order. We apply
our metrics first to computer-generated structures21,22 to
calibrate our assessments and then to a large collection of
images of colloidal crystals. This includes images from the
literature for samples prepared by a wide variety of
techniques.1−5,9−11,23−40 We also analyze large-area atomic
force microscopy images of colloidal crystals that are new to
this study.

■ METHODS
Structural Quantification. The positional coordinates of the

particles in each image were determined using a well-established
method introduced by Crocker and Grier.41 With these particle
positions, we calculated the parameters summarized in Table 1.
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Table 1. Summary of Quantification Parameters for
Structural Order in Colloidal Crystals

local parameters

α Lindemann parameter for positional disorder
Ψs local orientational bond order (s = 4 or 6)
⟨Ψs⟩ average local orientation bond order (s = 4 or 6)
f4, f6, fd fraction of particles with 4-fold, 6-fold, or disordered coordinations
σ most probable interparticle distance

long-range parameters

ξs positional correlation length within a single domain (s = 4 or 6)
Δs approximate domain size from diminishing orientational correlations

(s = 4 or 6)

Article

pubs.acs.org/Langmuir

© 2015 American Chemical Society 8251 DOI: 10.1021/acs.langmuir.5b01965
Langmuir 2015, 31, 8251−8259

pubs.acs.org/Langmuir
http://dx.doi.org/10.1021/acs.langmuir.5b01965


Table 2. Complete Set of Parameters Calculated for Images Used in This Study, Including Image Size (x × y), Effective
Lindemann Parameter (α), Average Local Orientational Bond Order (⟨Ψs⟩), Symmetry Fraction ( fs), Representative Domain
Size (Δ4), and Positional Correlation Length (ξs)

a

image source x × y α ⟨Ψ4⟩ f4 Δ4 ξ4 ⟨Ψ6⟩ f6 Δ6 ξ6

Convective
Wong(2003),2 3a 94 × 70 0.038 − − − − 0.96 1 S *
Wong(2003),2 3c 67 × 49 0.027 − − − − 0.95 1 S *
Cong(2003),23 4c 29 × 24 0.050 0.89 0.39 S 12 0.92 0.47 S 5
Gu(2002),25 8 20 × 20 0.020 − − − − 0.98 1 S 14
Gu(2002),25 8 20 × 20 0.025 − − − − 0.99 1 S 28
Teh(2005),26 4a 29 × 22 0.046 − − − − 0.92 0.85 S 17
Kuai(2004),10 4b 76 × 62 0.027 − − − − 0.98 1 S 6
Kuai(2004),10 4c 76 × 62 0.033 − − − − 0.96 1 S 7
Kuai(2004),10 4d 76 × 62 0.036 − − − − 0.96 0.94 S 5
Kim(2005),27 1a† 98 × 60 0.0634 − − − − 0.87 0.52 S 2
Kim(2005),27 1c† 98 × 65 0.055 − − − − 0.90 0.80 S 9
Kim(2005),27 1d† 98 × 65 0.027 − − − − 0.96 0.97 S 6
Ye(2001),28 1b 31 × 27 0.028 − − − − 0.97 1 S 14
Electrophoretic
Zhou(2013),29 6c 81 × 56 0.028 0.91 0.20 S 7 0.96 0.71 S 5
Zhou(2013),29 6d 36 × 62 0.019 − − − − 0.98 1 S 10
Choi(2013),31 3b† 18 × 18 0.020 − − − − 0.98 1 S 16
Electrospray
Coll(2013),32 pc1 47 × 35 0.021 − − − − 0.95 0.79 19 8
Coll(2013),32 pc2 170 × 83 0.040 − − − − 0.90 0.53 25 3
Coll(2013),32 pc3 55 × 45 0.026 − − − − 0.98 0.97 S 7
Coll(2013),32 pc4 35 × 29 0.027 − − − − 0.97 1 S 29
Air−Liquid
Wang(2011),4 pc1 19 × 13 0.038 − − − − 0.98 1 S 12*
Wang(2011),4 pc2 24 × 18 0.034 − − − − 0.97 1 S 8*
Wang(2011),4 pc3 21 × 18 0.030 − − − − 0.98 1 S 21*
Wang(2011),4 pc4 21 × 15 0.043 − − − − 0.97 1 S 34*
Wang(2011),4 pc5 24 × 17 0.026 − − − − 0.98 1 S 6*
Confining Cell
Park(1998),5 2a 77 × 64 0.023 − − − − 0.97 0.96 S 12
Wang(2009),35 2b 58 × 61 0.045 − − − − 0.92 0.87 S 4
Wang(2009),35 2h 52 × 32 0.040 − − − − 0.91 0.86 S 3
Dip-Coating
Nagao(2008),36 2a† 22 × 24 0.024 − − − − 0.97 1 S 7
Fu(2008),37 pc 23 × 19 0.051 − − − − 0.93 1 S *
Spin-Coating
Mihi(2006),39 pc1 39 × 29 0.053 0.90 0.57 32 3 0.86 0.09 3.0 ×
Mihi(2006),39 pc2 39 × 29 0.054 0.89 0.52 S 3 0.85 0.09 3.0 ×
Mihi(2006),39 pc3 39 × 29 0.048 0.87 0.35 17 5 0.90 0.30 16 3
Mihi(2006),39 pc4 37 × 27 0.059 − − − − 0.90 0.85 S 6
Jiang(2006),38 2b† 29 × 24 0.048 − − − − 0.92 0.94 S 4
Jiang(2004),3 5a 87 × 55 0.039 − − − − 0.94 0.93 S 13*
Cheng(2014),51 5b† 145 × 106 0.030 − − − − 0.96 0.93 33 16
10E40 μ3600† 115 × 115 0.026 − − − − 0.92 0.79 18 4
10E50 μ4000† 115 × 115 0.040 − − − − 0.90 0.79 15 5
10E50 μ4000† 115 × 115 0.037 − − − − 0.90 0.65 12 3
10E50 μ4500† 115 × 115 0.049 − − − − 0.89 0.70 18 5
10E50 μ4750† 115 × 115 0.039 − − − − 0.86 0.54 17 3
15E40 μ2750 115 × 115 0.081 0.82 0.06 5.0 − 0.85 0.52 18 5
15E40 μ2750 115 × 115 0.045 0.86 0.29 8.0 4 0.86 0.26 16 4
15E40 μ3000 115 × 115 0.046 0.87 0.47 14 5 0.84 0.12 7.0 4
15E40 μ3250 115 × 115 0.055 0.88 0.60 16 6 − − − −
15E40 μ4500 115 × 115 0.038 0.87 0.25 8.0 4 0.87 0.35 20 3
15E40 μ5000 115 × 115 0.040 0.89 0.60 15 4 − − − −
15E40 μ5500 115 × 115 0.038 0.90 0.60 15 4 0.82 0.05 × ×
20E40 μ2000 115 × 115 0.051 0.88 0.69 S 6 − − − −
20E40 μ2000 115 × 115 0.034 0.89 0.65 S 6 − − − −
20E40 μ2000 115 × 115 0.037 0.90 0.73 S 7 − − − −
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Local positional disorder is reported via the Lindemann parameter
α, defined as the standard deviation of the distribution of
displacements divided by the ideal lattice spacing.42,43 For images
from real colloidal crystals and the computer generated lattices labeled
CG2, the distributions in nearest-neighbor distances were calculated
over an entire image and fit with a Gaussian function to extract an
effective α. For computer generated lattices labeled CG1, α is the input
parameter used to generate a Gaussian distribution of particle
displacements in these images.
Local bond orientational order, defined as

∑Ψ = θ
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s
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N
i s

1

j

(1)

is assessed in the immediate neighborhood around a single lattice
point.44,45 Here, N is the number of the nearest neighbors at that
lattice point, and θj is the angle between a reference axis and the line
connecting that lattice point to its jth nearest neighbor. Ψs is calculated
relative to either perfect 4-fold (s = 4) or 6-fold (s = 6) symmetry, with
a value between 0 and 1, and 1 indicating perfect s-fold symmetry. We
calculate Ψs for both s = 4 and 6 for each particle and choose Ψs = 0.7
as the minimum threshold for s-fold order. The choice of 0.7 is
arbitrary but reasonable. Lower Ψs values are designated as disordered
coordination. In very rare cases (<0.1%), both Ψ4 and Ψ6 are larger
than the threshold value, and the order cannot be determined. For
easy visualization, we use color-coded images based on these
assignments such that blue signifies Ψ4 > 0.7, red indicates Ψ6 >
0.7, and white corresponds to disordered coordination.

Table 2. continued

image source x × y α ⟨Ψ4⟩ f4 Δ4 ξ4 ⟨Ψ6⟩ f6 Δ6 ξ6

Spin-Coating
20E40 μ2000 115 × 115 0.034 0.89 0.76 S 7 − − − −
20E40 μ3000 115 × 115 0.047 0.89 0.78 S 9 − − − −
15P40 μ3000 90 × 90 0.072 0.86 0.35 11 4 0.84 0.16 15 5
15P40 μ5000 115 × 115 0.082 0.87 0.66 11 6 − − − −
15P40 μ5000 115 × 115 0.085 0.86 0.45 10 4 − − − −
20P100 μ2000 115 × 115 0.054 0.84 0.08 5.0 3 0.87 0.50 20 5
20P100 μ5000 115 × 115 0.047 − − − − 0.88 0.65 23 5
20P100 μ5000 115 × 115 0.058 0.88 0.66 17 5 − − − −
20P100 μ5000 115 × 115 0.068 0.87 0.65 19 5 − − − −
20P10 μ7000 115 × 115 0.054 0.84 0.17 9.0 3 0.83 0.26 18 3
20P20 μ5000 90 × 90 0.064 0.89 0.46 S 5 0.88 0.21 15 4
30P40 μ3000 90 × 90 0.057 0.88 0.66 S 5 − − − −
40P40 μ3000 90 × 90 0.054 0.86 0.40 19 3 0.84 0.14 5.0 2
40P40 μ3000 90 × 90 0.058 0.87 0.59 S 4 0.82 0.06 3.0 ×
Sedimentation
Li(2005),40 1a 32 × 27 0.035 − − − − 0.88 0.92 S *
Li(2005),40 1b 32 × 27 0.039 − − − − 0.91 0.98 S 9*
Li(2005),40 1d 32 × 27 0.027 − − − − 0.89 0.96 S 11*
Random (CG3)
Ferry(2011),22 pc1 22 × 22 0.31 0.82 0.09 1.5 × 0.80 0.11 2.0 ×
Ferry(2011),22 pc2 27 × 27 0.28 0.81 0.07 2.0 × 0.79 0.13 3.5 ×
Ferry(2011),22 pc3 30 × 30 0.23 0.82 0.07 2.0 × 0.80 0.13 1.5 ×

aDagger (†) denotes monolayer crystals.

Figure 1. (a) A cropped SEM micrograph of a colloidal monolayer51 and (b) its local coordination color map (red = 6-fold coordination; white =
disordered coordination). The g(r) is compared with both an exponential gfit (c) and power law gfit (e) using histograms of the residuals for each fit
(d, f). After fitting the histograms with a Gaussian form, the narrower width of the exponential fit leads us to favor it over the power law fit.
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For each image used in this work, we report average bond orders
⟨Ψs⟩ to quantify the average values of Ψ4 (for only particles designated
as 4-fold sites) and Ψ6 (for only particles designated as 6-fold sites).
Furthermore, we assess the fraction fs (s = 4, 6, or d) of 6-fold, 4-fold,
or disordered regions, respectively, within a single image.
Next, going beyond nearest neighbor order, we assessed the

positional correlations across an entire image through the radial
distribution function
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Here, dn is the number of lattice points in a ring of inner radius r and
area dA, N is the total number of particles in the image, and A is the
total area of the image. We use the position r = σ of the first maximum
in g(r) as a measure of the most probable interparticle spacing for a
given image. By fitting this g(r) with a complicated function, we extract
a characteristic positional correlation length ξs that we report relative
to the most probable interparticle spacing σ.
It is well-known in the literature of 2D phase transitions that an

exponential decay in a radial distribution function g(r) indicates short-
range-order (such as for liquids), whereas a power law decay is
consistent with quasi-long-range order (such as for 2D solids).15,46−49

An earlier report showed that the g(r) for a two-dimensional solid can
be fitted to distinguish between exponential and power law behaviors,
such that50
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Here, L(r) can be either exp(−r/ξ) for an exponential fit or r−k for a
power law fit. We applied this fit to the radial distribution functions for
all 69 colloidal crystal images listed in Table 2. An example is shown in
Figure 1, and the details of our method follow below.
To use eq 3, we constrained several parameters during fitting. The

peak widths are set by σ σ̃ = ln r r( / )0 0 , where r0 = 0.3D, and σ0 was
limited to values between 0.03 and 0.08. D is the normalized lattice
spacing, which we constrained between 0.8 and 1.1. The remaining
parameters were unconstrained in our fits. A is a scaling factor to
adjust peak heights. ξ is the positional correlation length (for the
exponential fits), and k is the exponent (for the power law fits).
The most computationally intensive part of the fit is the gid(xi) term,

which gives the number of particles at a distance xi from a point in a
perfect lattice (either 6-fold or 4-fold, as appropriate). For example, x1
would be the position of the first peak of the g(r) in a perfect
(hexagonal or square) lattice, and gid(x1) would be the frequency of
that peak position. We used up to n = 400 points in the summation in
the fit function over a range from 0 ≤ r ≤ rmax. The quality of the
overall fitespecially in the first few g(r) peaksis influenced by the
value of rmax. For this reason, we investigated a statistical χ2 test, using
the sum of squared errors between the true g(r) and gfit(r), as a
function of the fitting range separately for each image. In general, the
statistical χ2 value grows as rmax increases until it reaches a plateau.
Because of this, we chose the optimal rmax to be where the statistical χ

2

plateaus. Beyond this range, the tail of the g(r) function overwhelms
the fit at the expense of the first peaks.
We applied the fit in eq 3 to all images listed in Table 2. This

included images of true 2D colloidal monolayers as well as images that
showed the top of multilayer structures (either quasi-2D or 3D). It was
surprising that an exponential fit works well for all images. Figure 1
compares an exponential and a power law fit to the g(r) for a
representative image of a colloidal monolayer. In this case, we favor the
exponential fit over the power law fit because of the narrower residual
width. Thus, it is noteworthy that we see (liquidlike) exponential g(r)
decay trends even for structures that are ostensibly crystalline.
Finally, we also assessed orientational correlations among different

domains within a single image. The orientational correlation
function50
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is defined in terms of bonds l between particles, and the angular
orientations of these bonds relative to either 4-fold (s = 8) or 6-fold
symmetry (s = 6). In the process of triangulation to identify bonds in a
4-fold structure, we can sometime encounter diagonal bonds. This can
be accounted for by using s = 8 for 4-fold symmetric order parameters
as was first suggested by Weiss and Grier.52 For the remaining
parameters in eq 4, θ(rk) and θ(rl) are the angles between the bonds at
rk and rl, each with respect to the same reference axis. nl is the number
of bonds at a distance r from bond l, and NB is the total number of
bonds in the structure. By assessing the orientational correlation
function over an entire image, we use the first value of r at which the
correlations disappear (gs(r) → 0) to indicate a representative size for
a single domain; we denote this value as Δs and give its value relative
to the most probable interparticle spacing σ.

Computer-Generated 2D Lattices. We used four different sets
of 2D computer-generated lattices to compare with images of
laboratory-produced colloidal structures. The first set of computer-
generated (CG1) lattices has a predetermined degree of disorder,
introduced by displacing each lattice point in a 2D crystal (with 4- or
6-fold symmetry) independently, such that there is a Gaussian
distribution of displacements relative to their positions in the
unperturbed crystal lattice.

The second set of computer-generated lattices (CG2) has disorder
introduced in a more physically meaningful way by mimicking the
effect of volume exclusion that occurs with nonzero particle sizes. We
used 4-fold symmetric configurations obtained from Monte Carlo
simulations of a 2D system of particles subject to a square-shoulder
square-well potential21 calculated at different temperatures to generate
different levels of disorder.

The third set of generated lattices (CG3) addresses the limiting case
when there is no long-range positional or orientational order. These
computer-generated random structures were obtained based on earlier
published work.22

Finally, multidomain crystals (CG4) were simulated by manually
rotating a small number of perfectly ordered lattices (CG1 with no
positional displacements) to create mosaics with arbitrarily rotated
domains.

Two-Dimensional Images of Colloidal Crystals. We collected
40 scanning electron microscopy (SEM) and confocal fluorescence
microscopy (CFM) images from the literature to span a wide range of
common colloidal crystal assembly techniques: convective assem-
bly,1,2,9−11,23−28 electrophoretic assembly,29−31 electrospraying,32 air−
liquid interface assembly,4,33,34 confinement,5,35 dip-coating,36,37 spin-
coating,3,38,39 and sedimentation.40

Additionally, 29 new atomic force microscopy (AFM) images were
obtained from spin-coated colloidal crystals made by spin-coating
(2000−7000 rpm) a suspension of 0.46 μm spherical silica particles
(10−40 vol %) in methyl ethyl ketone (MEK) or methyl propyl
ketone (MPK) on glass substrates as described in earlier work by some
of the same authors.17 Prior to AFM imaging (with Asylum Research
MFP-3D in contact mode with Au-coated Si cantilevers (Mikromasch
CSC37/Cr−Au/50, k ∼0.50 N/m)), the spin-coated colloidal crystals
were coated with a thin (∼50 nm) spin-coated layer of poly(methyl
methacrylate) (PMMA) to prevent displacement of the colloidal
particles while scanning.

A comprehensive summary of the images, their sources, and our
calculated parameters is given in Table 2. Images from the literature
are named according to the paper from which they came, including the
last name of the first author, its publication year, the reference citation,
and its figure number. In cases where images were obtained through
private communication, “pc” replaces a figure number. Our own
images (new to this study) use a different naming convention. For
example, “10MEK40μ3600” signifies 10 volume percent suspension of
0.460 μm spherical silica particles in Methyl Ethyl Ketone using 40 μL
during spin-coating at 3600 rpm. A dagger (†) after an image name
indicates that the colloidal crystal is monolayer; all other samples are
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multilayer. This is important to note because earlier studies have
demonstrated that a high degree of order in a surface layer does not
guarantee a high degree of order deeper inside a colloidal crystal.53,54

The full size of each image is listed as x × y in units of σ.
Each image has an effective Lindemann parameter α. The remaining

order parameter values (local orientational bond order ⟨Ψs⟩, symmetry
fraction fs, representative domain size Δ4, and positional correlation
length ξs) were calculated for s = 4- and 6-fold regions separately in
each image whenever possible. Where symmetry fractions or domain
sizes were too small to calculate meaningful values, table entries show
“−” or “ ×”. Single-domain images are indicated with Δs = S.
Uncertainty magnitudes are as follows: δα is 2 in the last decimal digit;
δΨs = 0.04; δfs/fs = 0.1 for fs above 0.2, and 0.1 < δfs/fs < 0.3 for fs
below 0.2. δΔs/Δs = 0.05. δξs/ξs = 0.05.
For some of the SEM and AFM images, g(r) fits were poor until we

modified the aspect ratio to compensate for image distortion (drift).
The ξs values extracted from rescaled images are noted with an asterisk
(*) in the table, based on these horizontal scaling factors:
Wang(2011)pc1 = 0.94, Wang(2011)pc2 = 0.93, Wang(2011)pc3 =
0.93, Wang(2011)pc4 = 0.94, Wang(2011)pc5 = 0.92, Jiang(2004)5a
= 0.90, Li(2005)1b = 0.88, and Li(2005)1d = 0.80. There were four
cases for which linear rescaling was not sufficient, and these have no
positional correlation length value listed.

■ RESULTS AND DISCUSSION

We begin by examining order as obtained through local
measures that depend only on the immediate (nearest-
neighbor) environment. We then compare this with parameters
for order related to longer-range correlations. Finally, we apply
both local and longer-range characterizations to images with
multiple domains.
Orientational Order Correlates with Positional Order.

We calibrated differences in local order for images of real
colloidal crystals by comparing with data from computer-
generated lattices (CG1, CG2, and CG3) with controlled levels
of positional disorder. The first step was to assign each particle
a coordination environment based on its local orientational
order parameter Ψs.
Panels a−e in Figure 2 show representative examples of both

computer-generated (CG1) and colloidal crystal lattices using
color codes of blue, red, and white for 4-fold, 6-fold, and
disordered coordinationsm, respectively. In computer-gener-
ated random lattices (CG3), most lattice points show
disordered coordination, as expected. However, in real samples,
the disordered coordinations tended to coincide with point
defects and domain boundaries.
Our comparisons between real and computer-generated

lattices show a useful correlation between average local
orientational order and average local positional order. For
each image, we calculated ⟨Ψ6⟩ and ⟨Ψ4⟩ for each symmetry
separately. The measured α value and ⟨Ψs⟩ for each image are
plotted in Figure 2f. Data for computer-generated lattices with a
simple Gaussian distribution of displacements (CG1, solid
curves) serve as an upper bound for ⟨Ψs⟩ at a given α value.
This is true for both s = 4 (blue) and s = 6 (red). For images
from real colloidal crystals, α falls in a narrow range above 0.03
but below 0.10 consistent with the Lindemann melting
criterion.42 Conversely, highly disordered computer-generated
structures (CG3) have liquidlike values (α ≥ 0.2). We note that
all of the images used in this study can be considered crystalline
because they do not exhibit orientational order features (small
dislocations) that are indicative of hexatic phases.21

We refer to all the order parameter measures discussed here
as “local” because they are based on nearest-neighbor
correlations. We find that the best indicator of local order for

real crystals is the parameter related to orientational order,
⟨Ψs⟩. In both simulated and experimentally obtained images,
the average bond orientational order parameter ⟨Ψs⟩ is very
high (0.9 < ⟨Ψs⟩ < 1) only when the positional disorder α is

Figure 2. Local order parameters compared among computer-
generated lattices and real colloidal crystals. (a) Representative
computer-generated lattices (CG1) and (b−e) AFM images of spin-
coated colloidal monolayers. Red, blue, and white indicate 6-fold, 4-
fold, and disordered coordination, respectively. Effective α values are
noted below each color-coded image. (f) Correlated average local
bond order ⟨Ψs⟩ with values of α. Trend lines for computer generated
lattices (CG1), including those shown in (e), are shown as solid curves
(s = 4 (6) in blue (red)). Additional computer-generated images
(CG2, CG3) are shown as solid black circles and solid triangles. The
remaining data points, shown with open circles, are from images of real
colloidal crystals.
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rather small (0 < α < 0.05). The shoulder in the simulated
curves (0.85 ≈ ⟨Ψs⟩) highlights the region below which Ψs is
simply not very sensitive. This is especially evident in the data
for the highly disordered computer-generated lattices (CG3),
which are not equally random based on their different α values
but have very similar ⟨Ψs⟩ values. Thus, in all subsequent
discussions, we use ⟨Ψs⟩ as the primary local order parameter.
Intermediate-Range Correlations versus Local Orien-

tational Order. Figure 3 examines correlations between local
order (through ⟨Ψs⟩) and longer-range order (through the
positional correlation length ξs). Because of the large number of
images in this study, we grouped the data based on different
colloidal crystal production techniques as shown in Figure 3:
convective assembly,1,2,9−11,23−28 electrophoretic assem-
bly,29−31 electrospraying,32 air−liquid interface assembly,4,33,34

confinement,5,35 dip-coating,36,37 spin-coating3,38,39 (the ma-
jority of which are original to this work), and sedimentation. 40

On the basis of ⟨Ψs⟩ (Figure 3i) and ξs data (Figure 3j), it is
tempting to make quantitative comparisons of crystal quality
among different production methods. For example, convective
assembly appears to have the potential to produce crystals with
the highest ⟨Ψs⟩. Convective assembly is also capable of
producing colloidal crystals with relatively high ξs, with spin-
coating offering a competitive quality, although this technique
in most cases seems to be poor in that regard. However, our
sampling of data is implicitly biased because published images
tend to be of the highest-quality areas rather than typical
examples. This is why we made and measured a larger range of
crystal images for one category of samples (spin-coating). It is
worth noting that the best spin-coated samples are comparable
to the best from convective assembly methods even though our
data show that spin-coated crystals can be made with far lower
degrees of positional correlation under some conditions.
Figure 3k shows the relation between positional correlation

length ξs and the average local (orientational) bond order ⟨Ψs⟩.

ξs is very small for ⟨Ψs⟩ < 0.9, which is another indication that
crystals with Ψs ≤ 0.9 do not correlate with good crystallinity.
This is a reasonable result because good local orientational
order is necessary for longer range positional correlations.

Distinguishing between Single Domains and Poly-
crystals. The metrics discussed thus far (i.e., ⟨Ψs⟩, α, ξs) work
well to characterize order within a single domain. This is
sufficient for many images of colloidal crystals in the literature,
due perhaps to the drive to make perfect photonic-grade
crystals. However, more disordered crystals are also finding
uses in optical applications.7,8 In an extreme, the average bond
orientational order ⟨Ψs⟩ is not very informative for a
polycrystalline sample containing grains with different
symmetry (4-fold versus 6-fold). Instead, for polycrystalline
colloidal materials (as are produced routinely by spin-
coating3,16), it is helpful to identify domain sizes. As we will
show, these domain sizes are consistent with practical upper
limits for the intradomain parameters ⟨Ψs⟩ and ξs.
We found a new and expedient way to assess representative

domain sizes based on differences in orientational order. Figure
4 shows two representative orientational correlation functions
gs(r) that have qualitatively different behaviors. When gs(r) is
calculated over a single domain, a nonzero plateau appears for
large r values (Figure 4a,b). However, gs(r) decays to zero when
the image contains multiple domains that disrupt the
orientational correlation (Figure 4c,d). We define Δs as the
normalized distance (r/σ) at which the orientational
correlations vanish. These gs(r) decays are replicated in
simulated polycrystalline lattices (Figure 4e).
A representative domain size derived from orientational

correlations has two clear benefits for quantitative character-
ization of colloidal crystals. First, this parameter can distinguish
a single domain with defects (Figure 4a, with ill-defined Δs)
from a polycrystalline sample (Figure 4c, with a finite Δs).
Second, the concept of a representative domain size provides a

Figure 3. Representative images of colloidal crystals produced by (a) convective assembly,28 (b) electrophoretic assembly,29 (c) electrospraying,32

(d) air−liquid interface assembly,4 (e) confinement,5 (f) dip-coating,36 (g) spin-coating (new to this work), and (h) sedimentation.40 Comparisons
of (i) average local orientational bond order ⟨Ψ6⟩, and (j) positional correlation length ξ6, sorted according to production method. In (i) and (j), the
black filled circles correspond to the data points for images (a−h). Data points marked with (*) in (i) correspond to computer-generated random
structures.22 Panel (k) shows the correlation of ξs with ⟨Ψs⟩, including data from colloidal crystals produced by all methods (whose details are listed
in Table 2).
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reasonable upper bound for the useful range of intradomain
characterization parameters such as ⟨Ψs⟩ and ξs. Figure 5
demonstrates that higher fractions of s-fold coordination ( fs)
correlate strongly with increases in both the average orienta-
tional bond order parameter ⟨Ψs⟩ and the representative
orientational domain size Δs. We note that, as demonstrated in
Figure 5g, the orientational domain size is consistently larger
than the translational correlation length for all colloidal crystals.
Finally, we address local order in polycrystals. The average

bond order ⟨Ψs⟩ increases monotonically as the corresponding
fraction fs increases (Figure 5e). When one symmetry
dominates (<0.1 or >0.9), small increases in fs lead to large
increases in the average bond order. For crystals that contain a
mixture of 4- and 6-fold regions (0.1 < f < 0.9), there is a more
modest increase in the average bond order with increasing f.
These results compare well with the trends observed for
computer-generated structures (solid lines in Figure 5e). Our
analyses show that, for a given fs value, real colloidal crystals
have average bond order values that are consistently equal to or
greater than those for computer-generated structures.
We emphasize that ⟨Ψs ⟩ is calculated only within regions of

specific symmetry (4- or 6-fold) and is not averaged over the
entire image. Thus, the increase in average bond order with
higher fractions is a true indication that the local order
improves. It is not a trivial artifact related to averaging over
ordered and amorphous regions. Figure 5f shows a strong
correlation between increasing fs and increasing domain size Δs.

■ CONCLUSION

Historically, a high degree of perfection was the goal for
colloidal crystals for potential use in photonics. However, an
increasing number of applications can take advantage of
colloidal films with lower degrees of order (such as substrates
for surface-enhanced Raman spectroscopy7) and even amor-
phous structures (such as angle-independent structural color8).
In this context, we find that, for 2D characterizations of
crystallinity, both orientational and translational measures are
useful. For very good crystals, translational measures are often
adequate because good translational order implies good
orientational order. However, for crystals with higher levels of
disorder that lead to polycrystallinity, the orientational
measures, such as Δs, are more sensitive indicators.
Although the positional correlation lengths are larger for

samples with better orientational order, it is a noisy correlation.
For example, excellent orientational order (⟨Ψs⟩ = 0.96) can be
found in samples with either very short (5σ) or very large (20σ)
ξs values. Even in single-domain samples, ξs is often limited.
Considering the spread of ξs and ⟨Ψs⟩ (Figure 3), the
disappointing conclusion is that no single method can
consistently produce only good crystals. Nevertheless, we
found that all real crystals have crystallinity metrics (α and ξs)
that are far better than truly random computer-generated
structures.
A useful finding is that the orientational correlation function

gs(r) is a sensitive way to detect domain size in polycrystalline
samples. This orientational domain size Δs shows a consistent
increase as the symmetry fraction fs increases. It is also
consistently larger than the positional correlation length.
Furthermore, the average local orientational order ⟨Ψs⟩ in
real samples is consistently better than values from simulated
samples. This trend is nonlinear as a function of symmetry
fraction, which shows once again that ⟨Ψs⟩ is a very sensitive
order parameter for nearly single domain samples ( fs = 0 or 1),
whereas the symmetry fraction fs is more informative for mixed
symmetry samples.
It is also interesting to note that we see good agreement with

an exponential decay in the g(r) functions in our images from
crystalline samples. It is well-known in the literature of 2D
phase transitions that an exponential decay suggests short-range
order (as is typical for liquids) and that a power law decay
implies quasi-long-range order (as is typical for 2D
solids).15,46−49 Because the thickness of many samples in this
study are not reported, it is unlikely that most published images
correspond to true 2D crystals. Out-of-plane distortions are
readily detected from AFM images in our spin-coated colloidal
crystals, but such distortions are tricky to infer from SEM
images. Furthermore, previous studies have demonstrated that
there can be different degrees of order among surface and inner
layers of multilayer colloidal crystals.53,54

From an overall perspective, the present study is valuable
because it compares a large number of published images of
colloidal crystals using the same assessment methods. Without
this kind of a standardized approach, there are too many
disparate methods of qualitative and semiquantitative character-
izations that make it hard to assess advances in controlling
order in these materials. The multiple characterizations of order
that we use here are relatively straightforward to calculate. In
addition, the analysis code we used is available to others upon
request. Looking ahead, this set of analysis tools will enable

Figure 4. Representative orientational correlation functions gs(r). For
a single domain (a), there is orientational correlation across the entire
image, so gs(r) never reaches zero (b). Polycrystals (c) have
orientational correlations that go to zero (d) at its representative
domain size (Δs). (e) Examples of computer-simulated polycrystalline
lattices and their corresponding gs(r) plots. Arrows show Δs values
(where gs(r) → 0) for three simulated polycrystals.
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quantitative comparisons between colloidal crystals from new
experiments with images of older samples.
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crystals by electrospraying polystyrene nanofluids. Nanoscale Res. Lett.
2013, 8, 26.
(33) Lu, Z.; Zhou, M. Fabrication of large scale two-dimensional
colloidal crystal of polystyrene particles by an interfacial self-ordering
process. J. Colloid Interface Sci. 2011, 361, 429−435.
(34) Ai-Jun, W.; Sheng-Li, C.; Peng, D.; Qian, Z.; Gui-Mei, Y.; Gu-
Cong, S. Self-Assembling of Colloidal Particles Dispersed in Mixture of
Ethanol and Water at the Air-Liquid Interface of Colloidal Suspension
at Room Temperature. Chin. Phys. Lett. 2009, 26 (8), 086104.
(35) Wang, X.; Husson, S. M.; Qian, X.; Wickramasinghe, S. R.
Vertical cell assembly of colloidal crystal films with controllable
thickness. Mater. Lett. 2009, 63, 1981−1983.

(36) Nagao, D.; Kameyama, R.; Matsumoto, H.; Kobayashi, Y.;
Konno, M. Single- and multi-layered patterns of polystyrene and silica
particles assembled with a simple dip-coating. Colloids Surf., A 2008,
317, 722−729.
(37) Fu, Y.; Jin, Z.; Liu, Z.; Liu, Y.; Li, W. Self-assembly of colloidal
crystals from polystyrene emulsion at elevated temperature by dip-
drawing method. Mater. Lett. 2008, 62, 4286−4289.
(38) Jiang, P.; Prasad, T.; McFarland, M. J.; Colvin, V. L. Two-
dimensional nonclose-packed colloidal crystals formed by spincoating.
Appl. Phys. Lett. 2006, 89, 011908.
(39) Mihi, A.; Ocaña, M.; Míguez, H. Oriented Colloidal-Crystal
Thin Films by Spin-Coating Microspheres Dispersed in Volatile
Media. Adv. Mater. 2006, 18, 2244−2249.
(40) Li, Q.; Chen, Y.; Dong, P. Improvement of the quality of silica
colloidal crystals by controlling drying. Mater. Lett. 2005, 59, 3521−
3524.
(41) Crocker, J. C.; Grier, D. G. Methods of Digital Video
Microscopy for Colloidal Studies. J. Colloid Interface Sci. 1996, 179,
298−310.
(42) Lindemann, F. The calculation of molecular vibration
frequencies. Phys. Z. 1910, 11, 609−612.
(43) Stacey, F. D.; Irvine, R. D. Theory of melting: thermodynamic
basis of Lindemann’s law. Aust. J. Phys. 1977, 30, 631−640.
(44) Murray, C. A. In Bond-Orientational Order in Condensed Matter
Systems; Strandburg, K. J., Ed.; Springer, 1991.
(45) Yethiraj, A.; Wouterse, A.; Groh, B.; van Blaaderen, A. Nature of
an Electric-Field-Induced Colloidal Martensitic Transition. Phys. Rev.
Lett. 2004, 92 (5), 058301.
(46) Murray, C. A.; Van Winkle, D. H. Experimental Observation of
Two-Stage Melting in a Classical Two-Dimensional Screened
Coulomb System. Phys. Rev. Lett. 1987, 58 (12), 1200−1203.
(47) Strandburg, K. J. Two-dimensional melting. Rev. Mod. Phys.
1988, 60 (1), 161−207.
(48) Quinn, R. A.; Cui, C.; Goree, J.; Pieper, J. B. Structural analysis
of a Coulomb lattice in a dusty plasma. Phys. Rev. E: Stat. Phys.,
Plasmas, Fluids, Relat. Interdiscip. Top. 1996, 53 (3), R2049−R2052.
(49) Qi, W.; Gantapara, A. P.; Dijkstra, M. Two-stage melting
induced by dislocations and grain boundaries in monolayers of hard
spheres. Soft Matter 2014, 10, 5449−5457.
(50) Knapek, C. A. Phase Transitions in Two-Dimensional Complex
Plasmas; Springer, 2011.
(51) Cheng, Y.; Jönsson, P. G.; Zhao, Z. Controllable fabrication of
large-area 2D colloidal crystal masks with large size defect-free
domains based on statistical experimental design. Appl. Surf. Sci. 2014,
313, 144−151.
(52) Weiss, J. A.; Oxtoby, D. W.; Grier, D. G.; Murray, C. A.
Martensitic transition in a confined colloidal suspension. J. Chem. Phys.
1995, 103, 1180.
(53) Yan, Q.; Zhou, Z.; Zhao, X. S. Inward-Growing Self-Assembly of
Colloidal Crystal Films on Horizontal Substrates. Langmuir 2005, 21,
3158.
(54) Emoto, A.; Fukuda, T. Tailored assembly of colloidal particles:
Alternative fabrication of photonic crystal or photonic glass. Appl. Phys.
Lett. 2012, 100, 131901.

Langmuir Article

DOI: 10.1021/acs.langmuir.5b01965
Langmuir 2015, 31, 8251−8259

8259

http://dx.doi.org/10.1021/jp103943y
http://dx.doi.org/10.1088/0953-8984/21/20/203101
http://dx.doi.org/10.1103/PhysRevE.77.050402
http://dx.doi.org/10.1021/la204123s
http://dx.doi.org/10.1039/c3sm51226f
http://dx.doi.org/10.1039/c3sm27455a
http://dx.doi.org/10.1103/PhysRevE.87.042307
http://dx.doi.org/10.1063/1.4870086
http://dx.doi.org/10.1021/nl202226r
http://dx.doi.org/10.1021/la0344480
http://dx.doi.org/10.1021/jp071233g
http://dx.doi.org/10.1021/cm0108435
http://dx.doi.org/10.1007/s00339-004-3095-y
http://dx.doi.org/10.1002/adfm.200400602
http://dx.doi.org/10.1063/1.1337619
http://dx.doi.org/10.1016/j.jcis.2013.01.052
http://dx.doi.org/10.1016/j.polymer.2009.03.062
http://dx.doi.org/10.1016/j.mee.2013.04.024
http://dx.doi.org/10.1186/1556-276X-8-26
http://dx.doi.org/10.1016/j.jcis.2011.06.011
http://dx.doi.org/10.1088/0256-307X/26/8/086104
http://dx.doi.org/10.1016/j.matlet.2009.06.025
http://dx.doi.org/10.1016/j.colsurfa.2007.12.011
http://dx.doi.org/10.1016/j.matlet.2008.07.004
http://dx.doi.org/10.1063/1.2218832
http://dx.doi.org/10.1002/adma.200600555
http://dx.doi.org/10.1016/j.matlet.2004.09.066
http://dx.doi.org/10.1006/jcis.1996.0217
http://dx.doi.org/10.1071/PH770631
http://dx.doi.org/10.1103/PhysRevLett.92.058301
http://dx.doi.org/10.1103/PhysRevLett.58.1200
http://dx.doi.org/10.1103/RevModPhys.60.161
http://dx.doi.org/10.1103/PhysRevE.53.R2049
http://dx.doi.org/10.1039/C4SM00125G
http://dx.doi.org/10.1016/j.apsusc.2014.05.167
http://dx.doi.org/10.1063/1.469828
http://dx.doi.org/10.1021/la047337p
http://dx.doi.org/10.1063/1.3698136
http://dx.doi.org/10.1021/acs.langmuir.5b01965

