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Contrasting the dynamics of elastic and non-
elastic deformations across an experimental
colloidal Martensitic transition

Saswati Ganguly, *a Priti S. Mohanty, bc Peter Schurtenberger, c

Surajit Sengupta d and Anand Yethiraj e

We present a framework to segregate the roles of elastic and non-elastic deformations in the

examination of real-space experiments of solid–solid Martensitic transitions. The Martensitic transformation

of a body-centred-tetragonal (BCT) to a body-centred-orthorhombic (BCO) crystal structure has been

studied in a model system of micron-scale ionic microgel colloids (P. S. Mohanty, P. Bagheri, S. Nöjd, A.

Yethiraj and P. Schurtenberger, Phys. Rev. X, 2015, 5, 011030). Non-affine fluctuations, i.e., displacement

fluctuations that do not arise from purely elastic (affine) deformations, are detected in particle

configurations acquired from the experiment. Tracking these fluctuations serves as a highly sensitive tool in

signaling the onset of the Martensitic transition and precisely locating particle rearrangements occurring at

length scales of a few particle diameters. Particle rearrangements associated with non-affine displacement

modes become increasingly favorable during the transformation process. The nature of the displacement

fluctuation modes that govern the transformation are shown to be different from those predominant in an

equilibrium crystal. We show that BCO crystallites formed through shear may, remarkably, co-exist with

those resulting from local rearrangements within the same sample.

1 Introduction

Martensitic transformations are characterized by the coordinated
motion of particles over long particle length scales leading to a
diffusion-less phase transition between solids. They occur in a
variety of materials like metals, alloys, ceramics and proteins, and
have practical consequences in a range of phenomena, from work
hardening of metals2,3 and ceramics4 to the ‘‘shape memory
effect’’ in alloys.5

Martensitic transitions are governed by the strain energies
associated with the homogeneous lattice-distortive strains and
the energies arising due to formation of the parent-product
interfaces. The homogeneous lattice deformation or the Bain
strain,6 makes an elastic order parameter a natural choice for

understanding such transformations. However, the constraint
of being forced to grow a product nucleus within the parent
matrix necessitates ‘‘lattice invariant’’ deformations such as
slips or twinning in order to minimize total energy. The exact
nature of these deformations depends on the structure and the
elastic properties of both the parent and product crystals.
Transformations associated with practically no plastic defor-
mations, like the ones observed in shape memory alloys, are
reversible. Quenching of steel, on the other hand, results in an
irreversible transformation often involving plastic deformation.
Analyzing Martensitic transformations in terms of an elastic
order parameter,7–10 imposing local elastic compatibility conditions,
has the restriction of smooth displacement fields which do not
allow dislocations or slips.

The factors affecting a structural transition and the wide
array of interesting micro-structural changes associated with it
cannot be fully understood within the scope of elasticity
theories. Studies done for the transition from square to rhombic
crystal structures indicate that the dynamics of non-elastic
displacements, associated with plastic events, have a significant
influence in determining the microstructure of the product
phase.11–15 External factors such as rate and depth of quench,
leading to the structural transitions, are known to influence the
resulting microstructure. Such external variables are correlated
to the non-elastic displacement variables.
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It is difficult to study kinetic pathways of Martensitic trans-
formation in atomic solids because of length and timescale
limitations as well as lack of access to particle trajectories.
Colloids are attractive model systems because of the detailed
real-space information readily obtainable at the single-particle
(‘‘atomic’’) level. This has been used to obtain new insights into
novel crystal structures and crystallization kinetics,16–22 hexatic
phases,23,24 crystal-to-crystal and crystal-to-glass transitions25–27

as well as multiple glassy states in a single colloidal system.28

The timescales of colloidal motions can, in principle, also
enable studies of phase transformation kinetics in real time.
There have been pioneering studies of colloidal kinetics but they
have been done either in 2 dimensions,29 or for slow dynamics in
glassy systems,30–32 or in reciprocal space methods.33 Recent
advances in confocal imaging methods have resulted in a flurry
of experimental work studying phase transformation kinetics
of colloidal solids via confocal laser scanning microscopy
(CLSM).1,34–36 While there has been much theoretical work
dedicated to studying solid–solid phase transformations,7–14,37

there has been no coherent comparison of the colloids experiments
with theory.

In this work, we utilize a theoretical framework to segregate
elastic and non-elastic displacements and show that both play
essential roles in the formation of the product crystal for a
colloidal Martensitic transition. It was shown in ref. 1, by
explicitly scanning in 3 dimensions, that turning on an electric
field at high enough particle volume fractions resulted in a
body-centred tetragonal (BCT) crystal with c-axis along the field
(z) direction, while turning off the field resulted in a Martensitic
transformation to a metastable body-centred orthorhombic (BCO)
crystal, also with c-axis along the z direction. The transformation
from a BCT to a BCO crystal structure in ref. 1 is a 3-dimensional
crystal phase transformation. Nevertheless, because the c-axis of
both parent and daughter crystals was parallel to the viewing
direction, the dynamics could be followed in a quasi-2D study.

We study the displacement fluctuations along the BCT to
BCO colloidal Martensitic transformation path using the language
of affine and non-affine displacements.38,39 Affine displacements
(Fig. 1a) of particles are the elastic part of the response of a solid to
an external or internal stress. Non-affine displacements (Fig. 1b),
on the other hand, cannot be described in terms of elastic strains
alone and may represent particle rearrangements.

We project the displacements onto mutually orthogonal
subspaces thus separating the purely affine strains from local
non-affineness. This allows us to quantify and study the

distinctive roles played by these displacement parameters in
the colloidal BCT to BCO transformation. The study also makes
it possible to illustrate a connection between the local elastic
environment in the parent crystal and the distinctive displace-
ment modes leading to crystallites in the product phase.

The paper is organized in the following sections. In Section
2.1 we briefly describe the experiments performed.1 Section 2.2
concerns the method of analysis of the data. Here we describe
the projection formalism to project particle displacements onto
the affine and non-affine sub-spaces thus evaluating the total
non-affinity, w and the affine deformation, D associated with a
particle within a predetermined coarse-graining volume. We present
the displacement modes corresponding to the non-affine subspace.
We analyse the experimentally obtained particle coordinates with
the aforesaid framework and discuss our results in Section 3.
Section 3.1 tests the validity of w as an effective diagnostic tool in
tracking the transition. In Section 3.2, we calculate the probability
density functions of the susceptibilities of the non-affine displace-
ments and the evolution of the gap separating the softest defect
precursor modes with the other non-affine modes at various stages
of the transformation. In Section 3.3 we discuss how different
particle rearrangements during the Martensitic transformation
can lead to identical crystal structures in the product phase. Finally
we conclude in Section 4 with suggestions of future directions.

2 Experiment and analysis
2.1 Experiment

For completeness, we briefly describe the experiments carried
out in ref. 1. Confocal microscopy experiments of 2-dimensional
(x–y) slices in the bulk of a 3D colloidal crystal were carried out
in order to follow 2-dimensional trajectories of particles in real
time. An a.c. electric field was applied perpendicular to the
image plane (i.e., along z), resulting in the formation of particle
chains along the field direction. Due to the quasi-2D nature and
the relatively slow kinetics from BCT to BCO, this experimental
work enabled the study of the detailed kinetics of a truly 3D
crystal phase transformation with 2D trajectories.

2.2 Affine and non-affine displacements

The formalism described in this section is developed and
discussed in detail in ref. 38 and 39. Here we briefly discuss
the ideas most relevant in the context of this work.

Displacements are identified as affine (Fig. 1a) or non-affine
(Fig. 1b) with respect to a reference configuration of N particles
on which a particle with index i (i = 1,. . .,N) is located at the
position Ri. Here the BCT structure at the beginning of the
experiment (time = 0) is considered as the reference. Since the
experiments reported were of 2-dimensional slices of 3D crystals,
the reference structure is a square lattice, and our analysis is 2D;
however, the analysis can be carried out for 3D data as well. In the
configurations in subsequent time steps, the displacement of
particle i from its position on the reference lattice is given by
ui = ri � Ri, with ri the instantaneous position of the particle.
Now within a neighborhood O around particle i, we define

Fig. 1 (a) Shows an affine shear transformation. A single deformation
tensor can represent the displacements of all the particles. (b) Shows a
non-affine displacement transformation. The displacements of the particle
at the center of the box cannot be represented by the shear matrix alone
that gives the displacements of the particles at the vertices of the box.
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relative particle displacements Dj = uj� ui with particle j a i A O.
The ‘‘best fit’’40 local affine deformation D is the one that

minimizes
P
j

Dj �D Rj � Ri

� �� �2
. The minimum value of this

quantity, w(Ri) Z 0, is identified as the non-affinity parameter.
This is obtained by projecting38 Di onto a non-affine subspace
defined by the projection operator P such that, w Rið Þ ¼ DTPD
and D ¼ QD. D is the column vector constructed out of the Di.

The projection operator P ¼ I � RQ with Q ¼ RTR
� ��1

RT and
R is the column vector constructed out of Ri. The strain
component of the affine part of the displacements is defined
as es = (Dxy + Dyx)/2 where Dxy, Dyx are the off-diagonal terms of
the deformation matrix D.

It has been shown in ref. 38 and 39 that the non-affine
displacement modes are the eigen-vectors corresponding to the
non-zero eigenvalues of the covariance matrix C ¼ DTD

� �
projected

on the non-affine subspace. Thus w(Ri) is given by the sum of the
eigenvalues (sm) of PCP. The non-affine eigenvalues sm can be
interpreted as the susceptibilities associated with specific non-affine
modes.39 Thus, a smaller value of sm

�1 implies a softer mode.
Indeed, within a harmonic theory, each sm is simply the inverse
curvature of the free energy in the direction of that specific
eigenmode – a direct consequence of equipartition.

The two dimensional confocal images of the cross sections
of the parent BCT crystal can be modeled as a square lattice network

of particles connected by harmonic springs, U ¼ 1

2
K r� r0ð Þ2, at

temperature T = 2.3, spring constant K = 1.0 and lattice parameter

l = 1.0 in reduced units implying that T ¼ T 0kB
unit of energy

,

K ¼ K 0

unit of energy=ðunit of lengthÞ2 and l ¼ l0

unit of length
. kB is

the Boltzmann constant and T0, K0 and l0 are temperature, spring
constant and length in conventional units. The length and the
energy scales are set by the lattice parameter l and Kl2 respectively.
This ‘‘l’’ of the harmonic model is essentially equivalent to the
diameter, d = 1 micron of the colloidal particles in our experiments.
We chose to represent all the lengths in units of the particle
diameter, d. w, defined in terms of displacement correlation matrix
C, naturally has the dimensions of length square and has been
represented in units of d2. The probability distribution, P(w) of the
non-affine parameter obtained from the ideal harmonic network
and the P(w) calculated from the 2D cross section of the quiescent
BCT crystal (Fig. 2a) shows reasonably good agreement. To
obtain a stable square lattice one needs nearest-neighbour as
well as next-near-neighbour (diagonal) bonds. In the harmonic
model we represent all the bonds by harmonic springs with the
same spring constant K. Defining displacements as affine and
non-affine necessitates a choice of O and the significance of this
volume is explained in the Appendix. The O chosen for calculating
w is slightly larger than the harmonic interaction volume. This
corresponds to three nearest neighbor shells instead of two. Since
there are 13 particles in the elementary volume O, there are 12 �
2 = 24 displacement modes. Subtracting out the 4 modes of affine
deformation in two dimensions, one has 20 non-affine modes
and therefore 20 non-trivial eigen-values of PCP. As previously

mentioned, the trace of the matrix PCP gives w and its eigenvalues
sms have the same dimension as w. Therefore sm

�1 is represented in
units of d�2. Fig. 2b. shows the sm

�1 for the ideal square lattice. In
a two dimensional triangular lattice39 the eigen-vector associated
with the most probable non-affine mode has been shown to be
identical to thermally induced defect precursor modes. The
situation is similar here. For example, in the m = 1 mode shown
in Fig. 2, the vertices a and b move apart while the c and d move
closer to each other thus attempting to introduce a defect
pair. For ideal lattices at a finite temperature those especially
soft modes are separated from other non-affine modes39 by a
relatively large gap ds = s2

�1 � s1
1. The values of the sm

�1

(Fig. 2b), represents the expectation values of the sm
�1 at the

thermodynamic limit of an ideal crystal with no defects. In a
finite sized real crystal at a given temperature, one would obtain
a distribution of sm

�1 where the width of the distribution,
centered around sm

�1, is determined by the temperature, system
size, defect concentrations etc. The ds, given here, also provides
an upper limit for the gap expected between the non-affine
modes in a real system. Finally, a large ds implies that the non-
affine component of all displacement fluctuations are dominated
by the defect precursor mode while a small gap would mean that
all non-affine modes with all possible non-strain distortions of O
are equally important.

3 Results
3.1 v as a local parameter to track structural transformation
kinetics

We define a 2D local bond order parameter cs ¼
1

N

PN
j¼1

eiyj

�����

����� in

order to quantify the local crystalline order of the transforming
confocal images. Here N is the number of nearest neighbors of
a lattice point, s can be either 4 or 6 and yj is the angle between
the line connecting a nearest neighbor to a lattice point and a

Fig. 2 (a) Comparison of the probability distribution, P(w) obtained from
the 2D confocal images of the cross sections of the parent BCT crystal
(black open circles) and the model harmonic square lattice network (black
solid line) at T = 2.3. (b) Plot of sm

�1 for the model harmonic square lattice
structure. s1

�1 and s2
�1 are the two softest non-affine eigenmodes. Note

that the displacement eigenvector corresponding to s1
�1 has the vertices

(a and b) moving apart while the vertices (c and d) coming closer, thus
forming a dislocation precursor mode. ds = s2

�1 � s1
�1, having dimensions

of the square of inverse length, estimates the gap between the two non-
affine modes.
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reference axis. The orientation order parameter c4 and c6

represent 4-fold and 6-fold coordination symmetries respectively.
In ref. 1, a sharp decrease in the population fraction ( f4) of 4-fold
particles and increase in the 6-fold particles ( f6) is observed at the
transition. The growth (Avrami) exponent a obtained from the
time evolution curve of f6 was found to be 8.5. This is not
consistent with the nucleation and 3D grain growth model
which dictates an exponent of a = 4. The coordinated non-
diffusive motion of the colloidal particles observed in the CLSM
videos also clearly indicates a Martensitic transformation. We
show the evolution of f4 and f6 with time (calculated from the
data in ref. 1) in Fig. 3a, as a standard for comparing our new
observations.

In Fig. 3b, we present w (green), in units of d2, as an effective
local order parameter for measuring different aspects of the
particle displacements and orientations during the course of
the stable BCT to metastable BCO structural transformation.
The non-affine parameter, w and the shear strain component,
es = (exy + eyx)/2 (Fig. 3b, purple curve), of the affine deformation
tensor reveal certain distinctive aspects of the particle rear-
rangements during the transition. w and es, both shown in
Fig. 3b as a function of time, are calculated with respect to the
BCT structure at time (t = 0) from the same data set as Fig. 3a.
Similar to f4 and f6, they show very prominent change at around
time (t = 30 s to 50 s) indicating the occurrence of the maximum
particle rearrangements. w also shows a pronounced change at
time t = 120 s. We show below and in the configuration plots in
Fig. 4 that this is consistent with the particles still undergoing
small local rearrangements which are seen as a very weak blip
in the orientation order parameter and the corresponding
population fraction f4 (see Fig. 3a, purple curve) but can be
observed very clearly using the local non-affinities.

We divide the total transformation time into 15 time windows
with each 10 second window represented by 140 snapshots of
configurations. These windows are marked in Fig. 3b with
numbers 1–15. The time windows (1–3) correspond to the BCT
structure before transition. The maximum structural rearrange-
ments occur in windows 4 and 5 leading to a still evolving BCO
structure (windows 6–11) with a final spurt of rearrangement in
window 12. Fig. 4 shows configurations at some of the time
windows. Each configuration is obtained by averaging over
140 snapshots collected over time windows of 10 seconds. Here
averaged particle positions, represented as white symbols, are
superimposed on a spatially varying w field obtained by inter-
polating w values available at particle positions. The fraction of
particles with relatively larger w starts to increase at time window
4 getting steady through 5–11 with further local rearrangement,
reflected in large local non-affinities, at 12. The configurations

Fig. 3 (a) Plots of population fraction f4 and f6 as they evolve with time
during the BCT to BCO transition. f4 represents the fraction of particles
with c4 4 0.55 and f6 represents the fraction of particles with c6 4 0.70.
(b) Plots of the non-affine parameter w (green) and the local shear strain
component es (purple) obtained from the best fit affine deformation tensor
D. The line representing w also shows the 10 second time windows into
which the whole transformation time has been divided. Note that all the
parameters f4, f6, w, es show a jump between time = 30 s to 50 s. w shows a
second smaller but prominent jump at time = 120 s while f4 shows a very
small ‘blip’ at that same time window. These are indicated by red arrows in
both (a and b).

Fig. 4 Averaged configurations at time windows 1, 2, 4, 7, 12, 15 respectively shown as white symbols superimposed on the averaged non-affine
parameter w represented as a spatially varying field coded with colors ranging from purple to orange with increasing values of w. Each configuration was
obtained by averaging over 140 snapshots collected over time windows of 10 seconds. Note that the fraction of particles with relatively larger w starts to
increase at 4 with further local rearrangement, reflected in large local non-affinities, at 12, finally reaching a steady state for the meta stable BCO crystal in 15.
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13 to 15 look almost identical owing to much larger relaxation
time scales of the meta stable BCO crystal.

We have shown here that the non-affine parameter serves as
a highly sensitive local parameter useful in precise detection of
rearrangements occurring at an atomic (or single-particle colloid)
length scale. In the next section we study these rearrangements
and their consequences as the transformation proceeds.

3.2 Non-affine rearrangements during the transformation

As stated earlier, the non-affine eigenvalues sm can be inter-
preted as the susceptibilities associated with specific non-affine
modes: smaller sm

�1 implies a softer mode. The probability
distributions, P(sm

�1) (Fig. 5a) of the inverse of these non-affine
eigenvalues (sm

�1) have been calculated from configurations at
various time windows (see Section 3.1 and Fig. 3) at the various
stages of the transformation. For an ideal crystal at the thermo-
dynamic limit, this distribution would have delta peaks centered
around the sm

�1s shown in Fig. 2b. Finite system size, introduction

of dislocations, inaccuracies arising from taking 2D cross sections
of a 3D crystal and limited statistics of the experimental data leads
to broadening and overlapping of the individual peaks. The
distributions corresponding to the parent BCT structure in time
windows 1, 2, 3 in Fig. 5a shows two broad peaks. The inverse of
the softest non-affine modes like s1

�1 contribute to the first peak
while the rest of the non-affine modes contribute to the second
broad peak and the tail of the distribution. The P(sm

�1) for the
fourth and the subsequent time windows in Fig. 5a shows an
increased probability of softer (smaller sm

�1) non-affine modes
compared to the P(sm

�1) for the BCT structure. This reflects the
greater ease (and hence large numbers) of non-affine rearrange-
ments occurring at this stage of the transformation (Fig. 4).

We also estimated the gap (ds = s2
�1 � s1

�1) between the
inverse of the eigenvalues of the two most probable non-affine
modes (Fig. 5b) as a function of the transformation time. The
gap ds, for the model harmonic square network is 0.96 (Fig. 2b)
and this sets an upper bound for this quantity. The value of ds
obtained from the 2D confocal images of the quiescent BCT
crystal is E0.175. The smaller value of the ds from the experi-
mental data can be attributed to the same factors that lead to
the broadening of the P(sm

�1). A detailed quantitative analysis
of the various factors affecting the P(sm

�1) has been presented
in the Appendix 5. As the crystal structure starts to undergo
rearrangements, thus moving away from the parent BCT structure,
during the Martensitic transition, the ds shows a marked decrease
(Fig. 5b). The gap ds separates preferred non-affine modes from
the rest of the spectrum. As mentioned before,39 these are the
defect precursors, which in an ideal crystal at finite temperature
are the only significant non-affine fluctuations. So a markedly
lower ds from the quiescent BCT value of close to 0.2 to a value
close to 0.03, indicates that during the BCT to BCO transformation,
there is an almost equal participation of all the non-affine modes.
Consequently, a crystal undergoing structural transformation
cannot be unambiguously represented as an elastic continuum
with a finite density of defects. On the other hand, characterizing
the displacement spectrum in terms of specific non-affine modes
makes it possible to quantify the precise difference in displace-
ments in a crystalline phase and the transforming structures.

3.3 Identification of different transformation paths leading to
similar crystalline structure

In this subsection we present results which show unambiguously
that different regions of the same product BCO phase with
identical final crystalline order can be, nevertheless, formed
through either almost purely affine shear transformations or
relatively large non-affine rearrangements. The local shear strains
and the non-affinities are estimated with respect to the parent
BCT structure.

The bond orientational order parameters c4 and c6 are used
in identifying the co-ordination symmetries of particles. Particles
with high c4 and c6 (in ref. 1, the thresholds were c4 4 0.55
and c6 4 0.7) are considered to have 4 (BCT) and 6 (BCO)
coordination numbers respectively. Local c6, w and es are
calculated for particles in the configuration obtained at time =
150 seconds. Fig. 6(a), shows a colour map of c6. Although there

Fig. 5 (a) log[P(sm
�1)] plotted as a function of log(sm

�1). Note the increase
in the probability of smaller sm

�1 in line 4, representing the lattice during
the transition as compared to 1–3 before transition. (b) The gap, ds,
between the inverse of the eigenvalues of the two most probable non-
affine modes plotted as a function of time. Each point is obtained by
averaging over 140 snapshots collected over a time window of 10 seconds.
Note that its value at the transition is much less than its initial value in the
crystalline structure indicating that all the non-affine modes become
important during the transition. The evolution of w is also plotted for
reference.
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are slight spatial variations in the values of c6, the overall
coordination symmetry of the lattice is represented by the
BCO structure. The local w map (Fig. 6(b)) of the same configuration
shows three regions with very different values of local non-
affinities – region (1) has undergone almost no non-affine
displacements while region (3) has undergone very large non-
affine displacements. However, the affine shear strain (es) map
in Fig. 6(c) indicates that region (1) has undergone much larger
affine transformation compared to region (2) and (3). This
clearly depicts that regions with identical crystalline order
can be attained through purely affine shear transformation as
in case of region (1) or predominantly non-affine particle
displacements as in region (3). The local non-affine parameter
w therefore depicts not only the current structure of a neigh-
bourhood but also its history. We believe that this analysis
would be extremely useful for studying structural transitions
where such detailed information is needed.

4 Discussion and conclusions

In this work, we find that the quantification of affine and non-
affine deformations is a natural and sensitive tool for studying
solid–solid phase transformations in colloids. They are natural,
because, the particle rearrangements are the primary events in
the phase transformation process. They are seen in this work to
be also highly sensitive indicators; for example, the hot spot in
Fig. 4 (time window 12) correlates with the jump in w in Fig. 3b
for t 4 100 seconds. This jump is, on the other hand, nearly
undetectable using bond order parameters fractions or maps
(Fig. 3a or 6a respectively). We thus suggest that any colloidal phase
transformation may benefit from similar analysis techniques.

In ref. 39, it has been demonstrated that the non-affine
displacement modes with the largest susceptibilities (hence the
softest and most probable) are those which tend to create defects
precursors viz. dislocation dipoles. In the crystalline solid these
defect precursor modes are energetically well separated from the
rest of the thermal non-affine displacement modes by a large gap
in the non-affine excitation spectrum. The colloidal Martensitic
transformation from the body-centred tetragonal (BCT) crystal

to a metastable body-centred orthorhombic (BCO) crystal is
accompanied by two main effects:

(1) an increase in the density of softer non-affine modes
(Fig. 5a).

(2) a marked decrease in the gap in the non-affine excitation
spectrum (Fig. 5b).

Effect (1) implies a greater ease of particle rearrangements.
Effect (2), on the other hand, reflects an almost equal participation
of all the non-affine modes during the transformation phase of the
solid. The latter is a distinctive feature of the displacement
spectrum of the transforming phase compared to that of a finite
temperature crystal structure which is predominated by only the
most probable or defect-precursor-like non-affine modes.

It has been explicitly shown in previous work (eqn (10) of
ref. 39) that the non-affine parameter and the susceptibility for
the formation of defects are correlated. The strength of the
correlation can be derived exactly from the particle interactions
and the structural details of the systems. Here we observe that
non-affine displacement modes other than dislocations also
become equally important during the structural transition.
Owing to the martensitic nature of this transformation, the
affine part of the rearrangements occurs at length scales larger
than the typical length-scale of a dislocation core. However,
regions with dislocations and grain boundaries in the parent
crystal have larger non-affine rearrangements. Even if one can
expect some correlation between the spatial distribution of
defects and that of w, this correlation should evolve depending
on the relative contributions of the different non-affine modes
as the structure changes from the parent to the product crystal.
But gleaning out meaningful information from such an analysis
requires careful studies of larger systems to minimize statistical
errors.

The non-affine parameter also codes the history of the
transformation. Considering the nature of a Martensitic trans-
formation, one would expect that the transformation within a
pure crystal grain will be predominated by simple ‘‘affine’’
displacements with small changes in particle neighbourhoods.
However, a different local elastic environment at the defects or
grain boundaries in the reference parent crystal might make
them more prone to rearrangements which cannot be represented
simply in terms of affine deformations. As w is sensitive to the

Fig. 6 Averaged configurations together with superimposed fields shown as colour maps as in Fig. 4(a). Map of c6 together with particle configurations
at time = 150 seconds. A predominant 6-fold (BCO) symmetry is observed. (b) w map of the same configuration, pointing out regions 1, 2, 3 with varying
amounts of non-affine displacements. (c) es map of the same configuration with varying amounts of shear strain. Remarkably, region (1) with almost zero
non-affine displacements has large affine shear strain, region (2) has small shear strains as well as small non-affine displacements and region (3) has
undergone much larger non-affine displacements with comparably small affine shear component. Note that the three regions have similar values of c6.
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precise nature of the displacements in particle neighbourhoods, w
will tend be larger at regions of defects and grain boundaries.
This is nicely depicted by the large non-affine displacements in
the region 3 in Fig. 6b, which coincides with the position of the
grain boundary seen in the parent crystal in Fig. 4(1, 2 and 4).
Careful analysis of the non-affine displacements in the meta-
stable BCO product crystal makes it possible to identify distinct
regions which have identical crystal symmetries. One can
associate these regions with very distinct values of local shear
strains and non-affinities. There are regions with large values of
affine shear strains and very small non-affine displacements as
well as regions, with small shear strains, while it has undergone
large non-affine displacements. Thus this approach makes it
possible to identify regions formed through different transformation
paths even though their final structures are identical. We
observe that the final product may be formed by both elastic
strain (shear), as well as, particle rearrangements in different
portions of the sample – making a ‘‘strain-only’’ description of
this transition essentially incomplete.7–10

Theories dealing with smooth displacement fields fail to
give a complete description of structural transitions accompanied
by plastic deformations. As we have shown, all the non-affine
displacement modes play an important role. So introducing
dislocations alone also provides a partial picture for the plastic
part of the displacements. It is difficult to separate out trans-
formations which are purely affine and purely diffusive because
both may occur in the same system and over roughly the same
time scales. This necessitates a much generalized theory capable
of addressing the various facets of structural transition. Our
present work provides some useful insights into the microscopic
mechanism of such transitions. In this paper we limit our analysis
to the specific case of the solid–solid martensitic transition.
However the framework used here is general and can be applied
to various systems like biological tissues41 in the context of
rigidity or nucleation of crystals22,42 where understanding the
exact nature of the displacement kinetics might be instructive.
We intend to extend our ideas for similar systems where care-
fully controlled experiments as well as simulations are possible.

Appendix
A.1 Calculating the non-affine parameter v, the eigenvalues of
the non-affine eigenmodes rl and the shear component es of
the affine stain tensor

To obtain the non-affine parameter w, for a particle i, we choose
a neighborhood O around i and minimize the function

w ¼
P
j

Dj �D Rj � Ri

� �� �2 for choices of the strain tensor D.

The sum is over all the neighbors ( j) of i within O. Here Rj � Ri

and Dj are the relative distances of particle j with respect to i in
the reference configuration and the configuration at any given
instant respectively. For convenience we define a vector e whose
components are the elements of the local deformation tensor,
D, arranged as a linear array (viz. e = (D11, D12,. . .,D1d, D21, D22))
in 2D, and a matrix R with elements corresponding to the
components of the lattice positions Rj � Ri. The matrix D

comprises of the instantaneous positions Dj of all the
neighbors.

The local deformation e is obtained as a result of the
minimization

w ¼ mine D�Reð Þ2

¼ mine DTD� DTRe� eTRTDþ eTRTRe
� � (1)

with the superscript T denoting the transpose operation. The
value of e for which the w is minimized is

e ¼ QD; where Q ¼ RTR
� ��1RT: (2)

The resulting non-affinity w from (1) is

w ¼ D�R RTR
� ��1RTD

	 
2
¼ DTPD;

where P ¼ I �RQ ¼ I �R RTR
� ��1RT:

(3)

P projects onto the space of D that cannot be expressed as an
affine deformation. P, being a projection operator, is sym-
metric and idempotent. So one can show that the expectation
value of w is hwi ¼ Tr½PCP� ¼

P
m
sm where C ¼ DTD

� �
is the

displacement correlation matrix for the particles within the
volume element O and sm are the eigenvalues of PCP. The
eigenvectors corresponding to the non-zero eigenvalues of PCP
gives the non-affine displacement modes.

The choice of O is dictated by the interaction length of the
model harmonic potential that we used to generate a stable
square lattice for our molecular dynamics simulations. A
change in the size of O implies a change in the number of
phonon modes and hence the number of non-affine modes. In
Fig. 7a, we show that choosing three different O do not affect
the main conclusions of our results. Though the number of
non-affine displacement modes changes, the gap ds remains,
making the dislocation precursor mode, the most important
non-affine mode is a perfect lattice. However, the coarse graining
volume cannot be increased indefinitely and should be taken to
be of the order of the interaction range.

A.2 Probability distribution P(rl
�1) of the inverse of the

non-affine eigenvalues rl
�1

As the quantity C involves calculating the correlations between
the relative displacements of the particles within the volume O,
this quantity is sensitive to the number of realizations over
which the expectation values are calculated. This is also
reflected in the width of the distribution of sm

�1. To illustrate
this in a quantitative way we consider our model Harmonic
square network described in Section 2.2 of the main article. We
calculate the P(sm

�1) in Fig. 8a for the perfect square lattice
networks of two different system sizes N = 100 and 2500 at
temperature T = 2.3 in reduced units. For the smaller system we
also do the calculation at T = 4.6. Fig. 8a depicts that as the
system size increases the width of the distribution around each

peak of sm
�1 decreases, and it roughly scales with 1

� ffiffiffiffiffiffiffiffi
ðNÞ

p
. On the

other hand, Fig. 8b shows the temperature dependence of P(sm
�1).

Soft Matter Paper



4696 | Soft Matter, 2017, 13, 4689--4697 This journal is©The Royal Society of Chemistry 2017

An increased temperature would mean greater ease of displace-
ments and this is reflected in a shift of the entire distribution
towards smaller values of sm

�1. The non-affine eigenvalues sm, like
w, are proportional to temperature; thus, naturally a difference
between the sm

�1 would scale with 1/T. This is also reflected in the
decrease in the gap ds in Fig. 8b by a factor of 0.5 when the
temperature of the system is doubled.

It is important to realize, though, that this simple depen-
dence on temperature is true only within a harmonic model
solid. Introducing quenched disorder in the Hamiltonian leads
to broadening of the individual peaks of P(sm

�1). The analysis
of the role of quenched disorder is at a preliminary stage and
will be the focus of future work. But one can still argue that
larger concentration of defects or grain boundaries would lead
to a broadening of P(sm

�1). In real solids, it is much more non-
trivial to account for all the factors like structural and elastic
heterogenities, as the temperature of the system is varied.
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