CHAPTER 1

INTRODUCTION

1.1 What is rheology?

The term ‘Rheology’ * was invented by Professor Bingham of Lafayette College,
Indiana, on the advice of a colleague, the Professor of Classics. It means the study of
the deformation and flow of matter. This definition was accepted when the American
Society of Rheology was founded in 1929. That first meeting heard papers on the
properties and behaviour of such widely differing materials as asphalt, lubricants,
paints, plastics and rubber, which gives some idea of the scope of the subject and
also the numerous scientific disciplines which are likely to be involved. Nowadays,
, the scope is even wider. Significant advances have been made in biorheology, in
i polymer rheology and in suspension rheology. There has also been a significant
appreciation of the importance of rheology in the chemical processing industries.
Opportunities no doubt exist for more extensive applications of rheology in the
biotechnological industries. There are now national Societies of Rheology in many
countries. The British Society of Rheology, for example, has over 600 members
made up of scientists from widely differing backgrounds, including mathematics,
physics, engineering and physical chemistry. In many ways, rheology has come of

age.

1.2 Historical perspective

In 1678, Robert Hooke developed his “True Theory of Elasticity”. He proposed

that “the power of any spring is in the same proportion with the tension thereof”,
i i.e. if you double the tension you double the extension. This forms the basic premise
behind the theory of classical (infinitesimal-strain) elasticity.

At the other end of the spectrum, Isaac Newton gave attention to liquids and in
the “Principia” published in 1687 there appears the following hypothesis associated
with the steady simple shearing flow shown in Fig. 1.1: “The resistance which arises
from the lack of slipperiness of the parts of the liquid, other things being equal, is
proportional to the velocity with which the parts of the liquid are separated from
one another”.

.

* Definitions of terms in single quotation marks are included in the Glossary.
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=0and y=d, the intervening space being

..mu,ﬂ.”mnbmm_”oﬂw M__v%u“.uoﬁ is what we now call *viscosity’. It is synonymous with
. 1s a measure of “resistance to flow”. The force per uni
neas - t ar
MMM_WHMMH_ oh.m v_,o.uc.cn m_.n B.o:on is F/A and is denoted by ¢ and is E%Mo_.mouw_ .MM
i nﬂ Nﬂ&mﬂn AMM M_HH.E B.,ﬁ.v Uyd, i.e. if you double the force you double the
~ ns i i i
o ot t of proportionality 7 is called the coefficient of

a=qU/d. (1.1)
(It Mw_ c«:wﬁ to write y for the shear rate U/d; see the Glossary.)
w_uﬁnMMM.E—Mn E.a water are commeon liquids that obey Newton’s postulate. For
. viscosity in SI units is of the order of 1 Pa.s, whereas the viscosity of
water is about 1 mPa.s, i.e. one thousand times less viscous e
En”.“”u ”M_Eocmw Newton :.E.oazn& his ideas in 1687, it was not until the
; o8 :MMM”.M«EFMW Jmﬁn.._smbn Stokes independently developed a consistent
_ﬁdn. . ry for what is now called a Newtonian viscous ligui
moeMME“w on._sm._.o._m for such a fluid are called the Navier—Stokes wamoww_n_. -
r the simple shear illustrated in Fig. 1.1, a ‘sh y in *fl
i . usts % % 8 ear stress’ o results in ‘flow’. 1
ooﬂ “MH nmw HthMMNEmb __M“.n. mﬂo flow persists as long as the stress is applied ~”
trast, €an solid, a shear stress o applied to the surface y = d s
an instantaneous deformation as shown in Fi 4 e b
¢ . 1.2. Once the deformed i
reached there is no furth ie s ¥ Towgha e
it airis urther movement, but the deformed state persists as long as the
The angle vy is called the ‘strain’ and the relevant ‘constitutive equation’ is
o=Gy,
. (1.2)
where G is referred to as the ‘rigidity modulus’.
y
y

Fig. 1.2 The result of the applicati wn
pplication of a shear stress o to a block of Hookean solid in secti
- . o ’
On the application of the stress the material section ABCD is deformed and conoEaAWww\Op\:U\ g
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Three hundred years ago everything may have appeared deceptively simple to
Hooke and Newton, and indeed for two centuries everyone was satisfied with
Hooke’s Law for solids and Newton’s Law for liquids. In the case of liguids,
Newton’s law was known to work well for some common liquids and people
probably assumed that it was a universal law like his more famous laws about
gravitation and motion. It was in the nineteenth century that scientists began to
have doubts (see the review article by Markovitz (1968) for fuller details). In 1835,
Wilhelm Weber carried out experiments on silk threads and found out that they
were not perfectly elastic. “A longitudinal load”, he wrote, “produced an immediate
extension. This was followed by a further lengthening with time. On removal of the
load an immediate contraction took place, followed by a gradual further decrease in
length until the original length was reached”. Here we have a solid-like material,
whose behaviour cannot be described by Hooke’s law alone. There are elements of
flow in the described deformation pattern, which are clearly associated more with a
liquid-like response. We shall later introduce the term ¢ viscoelasticity’ to describe
such behaviour.

So far as fluid-like materials are concerned, an influential contribution came in
1867 from a paper entitled “On the dynamical theory of gases” which appeared in
the “Encyclopaedia Britannica™. The author was James Clerk Maxwell. The paper
proposed a mathematical model for a fluid possessing some elastic properties (see
§3.3).

The definition of rheology already given would allow a study of the behaviour of
all matter, including the classical extremes of Hookean elastic solids and Newtonian
viscous liquids. However, these classical extremes are invariably viewed as being
outside the scope of rheology. So, for example, Newtonian fluid mechanics based on
the Navier—Stokes equations is not regarded as a branch of rheology and neither is
classical elasticity theory. The over-riding concern is therefore with materials be-
tween these classical extremes, like Weber's silk threads and Maxwell’s elastic fluids.

Returning to the historical perspective, we remark that the early decades of the
twentieth century saw only the occasional study of rheological interest and, in
general terms, one has to wait until the second World War to see rheology emerging
as a force to be reckoned with. Materials used in flamethrowers were found to be
viscoelastic and this fact generated its fair share of original research during the War.
Since that time, interest in the subject has mushroomed, with the emergence of the
synthetic-fibre and plastics-processing industries, to say nothing of the appearance
of liquid detergents, multigrade oils, non-drip paints and contact adhesives. There
have been important developments in the pharmaceutical and food industries and
modern medical research involves an important component of biorheology. The
manufacture of materials by the biotechnological route requires a good understand-
ing of the rheology involved. All these developments and materials help to illustrate
the substantial relevance of rheology to life in the second half of the twentieth

century.
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1.3 The importance of non-linearity

| So far we have considered elastic behaviour and viscous behaviour in terms of the
.ﬂzm of Hooke and Newton. .;nmn are linear laws, which assume direct proportion-
w:«. woqionn stress and strain, or strain rate, whatever the stress, Further b
_.Bu__nmzo:. the viscoelastic behaviour so far considered is also _EnE. €EE,. EM
F:ns_. ?E....n.s.o_.w. a wide range of rheological behaviour can be mnmoEEoﬁ_m__oﬁ_
cnw.,“”“nmr&_m, mn.wﬂnio.wr is very restrictive. The range of stress over which Ema_.u.m_m.
o early is invariably E..E..o.n_. and the limit can be quite low. In other words
enal properties such as rigidity modulus and viscosity can change with E.
w_u_u_.oa stress, and the stress need not be high. The change can %nn:.. eith :
instantaneously or over a long period of time, and it can appear as either an i -
or a decrease of the material parameter. T
,_..E” MME...M.%: mxmav_n of .=o=..==nw._.=x is known as ‘shear-thinning’ (cf. §2.3.2).
b uction of the viscosity with increasing rate of shear in steady flow. The
paste which sits apparently unmoving on the bristles of the toothbrush is easil
”mw—“ooa“ﬂ& M._..OB the toothpaste J:Wn.iu familiar example of shear-thinning. ,_.rw
mrnw?“. M-sn:_ Mbmnw.m ownm.. almost Emﬁannboocm_z in toothpaste. For an example of
s 2 __“ cl Onw_. not occur Eﬂmbﬂﬁ.uoo:m_w we look to non-drip paint. To
. quanc_u:onnom“w& ~w_,_..: u_..._..o :.o_.n.EE.. a _...Euzu.m:mr the slow recovery of viscosity
e onﬂ . nnu e. The mvwo_t term for time-dependent shear-thinning fol-
o _.MQ is p._:a.o:.ovw. and _.uos-nlu paint can be described as thixo-
oz..n_.m. Sy .n_x" nning 1s just one manifestation of non-linear behaviour, many
difficult to EmrM. —MMBM: Mﬂ”%iwrw_w._mﬂ n__._:.un__m 5= e e
appreciation of the general 5_...0..wa8 DM :M”-ﬂﬁ_:&“wm v o

1.4 Solids and liquids

It should now be clear that the concepts of elasticity and viscosity need

- g . . ﬂo
M“w_rh.non%hhoo _ﬁ_ﬂ_ materials can be made to display either property ow a SB_UFW..W
o m“:..mmﬂwwmcwﬂ__z.:u”_”nr vnovn._ﬁ_,w n_Mun:n.nm, and what the values of the

» ress and the duration of application of the str
.‘_._.5 reader will now ask what effect these ideas will have on o
M”..__H.Mﬂn_:\m concepts of solids .Eﬁ liquids. The answer is that in a anan_ManMM:HMM
ey WM“MHm these too will need to be qualified. When we look around at home,
pieleg v Ty, or on the factory :oo.n. we recognise solids or liquids by their
gl Mi stresses, usually determined by gravitational forces, and over a
m@nonnw Iﬂqﬂ.n@ :.ﬂ_?mnm_n. usually =....... more than a few minutes or less than a few
o .o_. 4 ver, if we .m_uv_w a very wide range of stress over a very wide spectrum
ﬁnovnz.w 2 ionm“mMcw. :M:._m _”rnw_om.nw_ apparatus, we are able to observe liquid-like
il ids an m.crn-Ea properties in liquids. It follows therefore that
les can, and do, arise when an attempt is made to label a given material as a
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solid or a liquid. In fact, we can go further and point to inadequacies even when
qualifying terms are used. For example, the term plastic—rigid solid used in
structural engineering to denote a material which is rigid (inelastic) below a ‘yield
stress’ and yielding indefinitely above this stress, is a good approximation for a
structural component of a steel bridge but it is nevertheless still limited as a
description for steel. It is much more fruitful to classify rheological behaviour. Then
it will be possible to include a given material in more than one of these classifica-
tions depending on the experimental conditions.

A great advantage of this procedure is that it allows for the mathematical
description of rheology as the mathematics of a set of behaviours rather than of a
set of materials. The mathematics then leads to the proper definition of rheological
parameters and therefore to their proper measurement (see also §3.1).

To illustrate these ideas, let us take as an example, the silicone material that is
nicknamed “Bouncing Putty”. It is very viscous but it will eventually find its own
level when placed in a container—given sufficient time. However, as its name
suggests, a ball of it will also bounce when dropped on the floor. It is not difficulty
to conclude that in a slow flow process, occurring over a long time scale, the putty
behaves like a liquid—it finds its own level slowly. Also when it is extended slowly
it shows ductile fracture—a liquid characteristic. However, when the putty is
extended quickly, i.e. on a shorter time scale, it shows brittle fracture—a solid
characteristic. Under the severe and sudden deformation experienced as the putty
strikes the ground, it bounces—another solid characteristic. Thus, a given material
can behave like a solid or a liquid depending on the time scale of the deformation
process.

The scaling of time in rheology is achieved by means of the ‘Deborah number’,
which was defined by Professor Marcus Reiner, and may be introduced as follows.

Anyone with a knowledge of the QWERTY keyboard will know that the letter
“R” and the letter “T” are next to each other. One consequence of this is that any
book on rheology has at least one incorrect reference to theology. (Hopefully, the
present book is an exception!). However, this is not to say that there is no
connection between the two. In the fifth chapter of the book of Judges in the Old
Testament, Deborah is reported to have declared, “The mountains flowed before
the Lord...”. On the basis of this reference, Professor Reiner, one of the founders
of the modern science of rheology, called his dimensionless group the Deborah
number D,. The idea is that everything flows if you wait long enough, even the
mountains!

D,=1/T, (1.3)

where T is a characteristic time of the deformation process being observed and 7 is
a characteristic time of the material. The time  is infinite for a Hookean elastic
solid and zero for a Newtonian viscous liquid. In fact, for water in the liquid state 7
is typically 102 s whilst for lubricating oils as they pass through the high pressures
encountered between contacting pairs of gear teeth 7 can be of the order of 107° s
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mmE for polymer melts at the temperatures used in plastics processing T may be as
high as a few seconds. There are therefore situations in which these liquids depart
:dB. purely viscous behaviour and also show elastic properties. %

High Uo_uo_.wr J:Evna correspond to solid-like behaviour and low Deborah
acag. to liquid-like behaviour. A material can therefore appear solid-like either
_uons_.mn it has a very long characteristic time or because the deformation process we
are using to study it is very fast. Thus, even mobile liquids with low characteristic
times ~can behave like elastic solids in a very fast deformation process. This
sometimes happens when lubricating oils pass through gears. .

. Notwithstanding our stated decision to concentrate on material behaviour, it ma
u.== be helpful to attempt definitions of precisely what we mean by solid EE_ I .&w
since we n_o. have recourse to refer to such expressions in this book. >ona..&bm_©E€m
aombn. a solid as a material that will not continuously change its shape when sub w.n___m&
10 a given stress, i.e. for a given stress there will be a fixed final deformation ﬁ.Enr
__w»x or may not _uo.wnwov.& instantaneously on application of the stress. We Lombn a

ac..n as a material that will continuously change its shape (i.e. will flow) wh

subjected to a given stress, irrespective of how small that stress may be. T

.:.5 term ° viscoelasticity’ is used to describe behaviour which falls between the
classical extremes of .Ioo_nown elastic response and Newtonian viscous behaviour. In
terms of .E.nw_ Ew—m:w_ response, a solid material with viscoelasticity is Eﬁlw._uq
nﬂ:& B viscoelastic solid’ in the literature. In the case of liquids, there is more
.u..“uc_%EQ. so nE.. as mn...EEo_oB‘ is concerned. The terms °viscoelastic liquid’,
- w»n”o HHMMQH.& ﬂMEam elastic liquid’ are all used to describe a liquid showing

oy oo_.%ono%n .wm D recent years, the term ‘memory fluid’ has also been used

e on. In this book, we shall frequently use the simple term elastic

oﬂ:—w.mwuhm mﬂ“uw oﬂn_.ESoE cannot cn.aﬂ.onnmv& on ...__n basis of the Navier—Stokes

e e noﬂ-ioﬁo:ﬁu liquids : Such liquids may or may not possess

ok . “Evm_dnm. This means that all viscoelastic liquids are non-Newtonian,

§ not true: not all non-Newtonian liquids are viscoelastic.

L5 Rheology is a difficult subject

By common consent, rheology is a difficult subject. This i i

vnnonmno:. of .En newcomer to the field. Various wnw“c_.m..: ME.W Mnnn“ﬂ_ uh.op_._ﬂmnsmcm
M“w_””u .zum view. For example, the subject is interdisciplinary and most scientists
i gineers H.Sca o move away from a possibly restricted expertise and develop a

roader scientific approach. The theoretician with a background in continuum
M”MM”MMMM needs to develop an wuv._.onmmno_.. of certain aspects of physical chemistry,
s E.on_unEom and other disciplines related to microrheological studies to
pr _W... wu_u_.uﬂwwpw E.." breadth of present-day rheological knowledge. Even more
i ting, perhaps, is the umom_ for non-mathematicians to come to terms with at
€ast some aspects of non-trivial mathematics. A cursory glance at most text books
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on rheology would soon convince the uninitiated of this. Admittedly, the apparent
need of a working knowledge of such subjects as functional analysis and general
tensor analysis is probably overstated, but there is no doubting the requirement of
some working knowledge of modern mathematics. This book is an introduction to
rheology and our stated aim is to explain any mathematical complication to the
nonspecialist. We have tried to keep to this aim throughout most of the book (until
Chapter 8, which is written for the more mathematically minded reader).

At this point, we need to justify the introduction of the indicial notation, which is
an essential mathematical tool in the development of the subject. The concept of
pressure as a (normal) force per unit area is widely accepted and understood; it is
taken for granted, for example, by TV weather forecasters who are happy to display
isobars on their weather maps. Pressure is viewed in these contexts as a scalar
quantity, but the move to a more sophisticated (tensor) framework is necessary
when viscosity and other rheological concepts are introduced.

We consider a small plane surface of area As drawn in a deforming medium (Fig.
1.3).

Let n,, n, and n, represent the components ‘of the unit normal vector to the
surface in the x, y, z directions, respectively. These define the orientation of As in
space. The normal points in the direction of the + ve side of the surface. We say
that the material on the +ve side of the surface exerts a force with components
F!™ As, F{™ As, F/™ As on the material on the —ve side, it being implicitly
assumed that the area As is small enough for the ‘stress’ components F(™, F™,
F'™ to be regarded as constant over the small surface As. A more convenient
notation is to replace these components by the stress components g,,, g,,, d,., the
first index referring to the orientation of the plane surface and the second to the
direction of the stress. Our sign convention, which is universally accepted, except by
Bird et al. (1987(a) and (b)), is that a positive o,, (and similarly o0,, and o,,) is a
tension. Components o, ,, o,, and o,, are termed ‘normal stresses’ and o,,, d,, etc.
are called ‘shear stresses’. It may be formally shown that ¢,,=o0,,, 0,,=0,, and
o,, = 0,, (see, for example Schowalter 1978, p. 44).

Figure 1.4 may be helpful to the newcomer to continuum mechanics to explain

fne.ny.ng)
».‘ * _.m::.ﬁ..a...w?:

z _.s
T_a side

* -ve side

X

Fig. 1.3 The mutually perpendicular axes Ox, Oy, 0z are used to define the position and orientation of the
small area 4s and the force on it.
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Fig. 1.4 The components of stress on the plane surfaces of a volume element of a deforming medium.
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the relevance of the indicial notation. The figure contains a schematic representation

oM ::,w mﬁnmw_m components on the plane surfaces of a small volume which forms part

of a general continuum. The stresses shown are those actin th

due to the surrounding material. T
,:...n uﬂ.& for an indicial uw:&ou is immediately illustrated by a more detailed

no.umﬁnawco:. of the steady simple-shear flow associated with Newton’s postulate

(Fig. 1.1), which we can conveniently express in the mathematical form:

e..«".w.t. cu.ﬂtuuc. AHhu

where v,, v,, v, are the velocity components in the x, y and z directions, respec-

tively, and ¥ is the (constant) shear rate. In th ian liqui
nd 7 i X e case of a Newtonian liquid
stress distribution for such a flow can be written in the form R

9,=1%, ©,.=0,=0, 8= 0,=0, 0, —d, =0, (1.5)

and here En_”n would be little purpose in considering anything other than the shear
stress o,, which we wrote as o in eqn. (1.1). Note that it is usual to work in terms of
normal stress differences rather than the normal stresses themselves, since the latter
are ».a_u_ﬁs to the extent of an added isotropic pressure in En.nwmn of incom-
pressible liquids and we would need to replace (1.5) by

Q».x."ﬂi. Qu»"ﬂ&n"c.

0= —P» DVG. mepP O ;™ .lﬁ‘v Aﬁ.ﬁv

where p is an arbitrary isotropic i it in usi
2 pressure. There is clearly merit in using (1.5) rather
than (1.6) since z:... need to introduce p is avoided (see also Dealy 1982, p. 8).
For n_»mjo liquids, we shall see in later chapters that the stress distribution is
more complicated, requiring us to modify (1.5) in the following manner:

Q!k"dﬁo.\vi.' Qhunﬁkuuc.
Oix — 0y = 2~A+v, Oy — 0, = ZMA.WV.

(1.7)
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where it is now necessary to allow the viscosity to vary with shear rate, written
mathematically as the function 7(¥), and to allow the normal stresses to be
non-zero and also functions of . Here the so called normal stress differences N,
and N, are of significant importance and it is difficult to see how they could be
conveniently introduced without an indicial notation *. Such a notation is therefore
not an optional extra for mathematically-minded researchers but an absolute
necessity. Having said that, we console non-mathematical readers with the promise
that this represents the only major mathematical difficulty we shall meet until we
tackle the notoriously difficult subject of constitutive equations in Chapter 8.

1.6 Components of rheological research

Rheology is studied by both university researchers and industrialists. The former
may have esoteric as well as practical reasons for doing so, but the industrialist, for
obvious reasons, is driven by a more pragmatic motivation. But, whatever the
background or motivation, workers in rheology are forced to become conversant
with certain well-defined sub-areas of interest which are detailed below. These are
(i) rheometry; (ii) constitutive equations; (iii) measurement of flow behaviour in
(non-rheometric) complex geometries; (iv) calculation of behaviour in complex
flows.

1.6.1 Rheometry

In ‘rheometry’, materials are investigated in simple flows like the steady simple-
shear flow already discussed. It is an important component of rheological research.
Small-amplitude oscillatory-shear flow (§3.5) and extensional flow (Chapter 5) are
also important.

The motivation for any rheometrical study is often the hope that observed
behaviour in industrial situations can be correlated with some easily measured
rheometrical function. Rheometry is therefore of potential importance in quality
control and process control. It is also of potential importance in assessing the
usefulness of any proposed constitutive model for the test material, whether this is
based on molecular or continuum ideas. Indirectly, therefore, rheometry may be
relevant in industrial process modelling. This will be especially so in future when the
full potential of computational fluid dynamics using large computers is realized
within a rheological context.

A number of detailed texts dealing specifically with rheometry are available.
These range from the “How to” books of Walters (1975) and Whorlow (1980) to the
“Why?” books of Walters (1980) and Dealy (1982). Also, most of the standard texts

* By common convention N, is called the first normal stress difference and N, the second normal stress
difference. However, the terms “primary” and “secondary” are also used. In some texts N, is defined

as o,,—a,,, whilst N, remains as o,,-0;,.
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on rheology contain a significant element of rheometry, most notably Lodge (1964,
1974), Bird et al. (1987(a) and (b)), Schowalter (1978), Tanner (1985) and
Janeschitz-Kriegl (1983). This last text also considers ‘flow birefringence’, which will
not be discussed in detail in the present book (see also Doi and Edwards 1986, §4.7).

1.6.2 Constitutive equations

Constitutive equations (or rheological equations of state) are equations relating
suitably defined stress and deformation variables. Equation (1.1) is a simple
example of the relevant constitutive law for the Newtonian viscous liquid.

Constitutive equations may be derived from a microrheological standpoint, where
the molecular structure is taken into account explicitly. For example, the solvent
and polymer molecules in a polymer solution are seen as distinct entities. In recent
years there have been many significant advances in microrheological studies.

An alternative approach is to take a continuum (macroscopic) point of view.
Here, there is no direct appeal to the individual microscopic components, and, for
example, a polymer solution is treated as a homogeneous continuum.

The basic discussion in Chapter 8 will be based on the principles of continuum
mechanics. No attempt will be made to give an all-embracing discourse on this
difficult subject, but it is at least hoped to point the interested and suitably
equipped reader in the right direction. Certainly, an attempt will be made to assess
the status of the more popular constitutive models that have appeared in the
literature, whether these arise from microscopic or macroscopic considerations.

1.6.3 Complex flows of elastic liquids

The flows used in rheometry, like the viscometric flow shown in Fig. 1.1, are
generally regarded as being simple in a rheological sense. By implication, all other
flows are considered to be complex. Paradoxically, complex flows can sometimes
occur in what appear to be simple geometrical arrangements, e.g. flow into an
abrupt contraction (see §5.4.6). The complexity in the flow usually arises from the
coexistence of shear and extensional components; sometimes with the added com-
plication of inertia. Fortunately, in many cases, complex flows can be dealt with by
using various numerical techniques and computers.

The experimental and theoretical study of the behaviour of elastic liquids in
complex flows is generating a significant amount of research at the present time. In
this book, these areas will not be discussed in detail: they are considered in depth in
recent review articles by Boger (1987) and Walters (1985); and the important subject

of the numerical simulation of non-Newtonian flow is covered by the text of
Crochet, Davies and Walters (1984).

CHAPTER 2

VISCOSITY

2.1 Introduction

In this chapter we give detailed attention to the steady mrn.E. &.ﬁ.b.m:w s.Eow was
introduced in Chapter 1. Such a study is appropriate, since viscosity is :mn_c.om_w:w
regarded as a most important material property and any v_.wncna. mE& _.onEEq.m a
knowledge of material response would automatically turn to the viscosity in the first
instance. 3 .

The concept of viscosity was introduced in §1.2 E-.w:mr Newton’s _uomgamﬁ in
which the shear stress o was related to the velocity gradient, or shear rate ¥, through
the equation

¥ (2.1)
o=y,

where 7 is the shear viscosity. Table 2.1 is an approximate guide to the range mn_:.
viscosities of familiar materials at room temperature and pressure. Most of the
examples shown exhibit Newtonian behaviour under normal circumstances, by
which we mean that 7 is independent of shear rate for :.Ho. shear _.mpnm &. ::n?wﬁ..

For Newtonian liquids, 7 is sometimes called the coefficient of viscosity but it is
now more commonly referred to simply as the enae..n._.:.. m:n_-. a S_.BEo_om.« is
helpful within the context of rheology, since, for most liquids, 7 is not a coefficient,

TABLE 2.1 :
The viscosity of some familiar materials at room temperature

Liquid Approximate viscosity (Pa.s)
Glass 10%
Molten glass (500 ° C) Ew
Bitumen Hou
Molten polymers 10 s
Golden syrup S_
Liquid honey So
Glycerol Su A
Olive oil 10 55
Bicycle oil 10 .,
Water 10
Air 107°

11
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but a function of the shear rate ¥. We define the function 3(y) as the ‘shear
viscosity’ or simply viscosity, although in the literature it is often referred to as the
‘apparent viscosity’ or sometimes as the shear-dependent viscosity. An instrument
designed to measure viscosity is called a * viscometer’. A viscometer is a special type
of ‘rheometer’ (defined as an instrument for measuring rheological properties)
which is limited to the measurement of viscosity.

The current SI unit of viscosity is the Pascal-second which is abbreviated to Pa.s.
Formerly, the widely used unit of viscosity in the cgs system was the Poise, which is
smaller than the Pa.s by a factor of 10. Thus, for example, the viscosity of water at
20.2°C is 1 mPa.s (milli-Pascal second) and was 1 cP (centipoise).

In the following discussion we give a general indication of the relevance of
viscosity to a number of practical situations; we discuss its measurement using
various viscometers; we also study its variation with such experimental conditions as
shear rate, time of shearing, temperature and pressure.

2.2 Practical ranges of variables which affect viscosity

The viscosity of real materials can be significantly affected by such variables as
shear rate, temperature, pressure and time of shearing, and it is clearly important
for us to highlight the way viscosity depends on such variables. To facilitate this, we
first give a brief account of viscosity changes observed over practical ranges of
interest of the main variables concerned, before considering in depth the shear rate,

which from the rheological point of view, is the most important influence on
viscosity.

2.2.1 Variation with shear rate

Table 2.2 shows the approximate magnitude of the shear rates encountered in a
number of industrial and everyday situations in which viscosity is important and
therefore needs to be measured. The approximate shear rate involved in any
operation can be estimated by dividing the average velocity of the flowing liquid by
a characteristic dimension of the geometry in which it is flowing (e.g. the radius of a
tube or the thickness of a sheared layer). As we see from Table 2.2, such calculations
for a number of important applications give an enormous range, covering 13 orders
of magnitude form 10~% 10 107 s~'. Viscometers can now be purchased to measure
viscosity over this entire range, but at least three different instruments would be
required for the purpose.

In view of Table 2.2, it is clear that the shear-rate dependence of viscosity is an
important consideration and, from a practical standpoint, it is as well to have the
particular application firmly in mind before investing in a commercial viscometer.

We shall return to the shear-rate dependence of viscosity in §2.3.

2.2.2 Variation with temperature

So far as temperature is concerned, for most industrial applications involving
aqueous systems, interest is confined to 0 to 100°C. Lubricating oils and greases are
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TABLE 2.2 .
Shear rates typical of some familiar materials and processes

Situation Typical range of Application
shear rates (s )

Sedimentation of

fine powders in a . .

suspending liquid 107%-10"* Medicines, paints
Levelling due to ; ks

mE.?aﬂ tension 1072-107! _un:._ﬂ.. printing Erm

ainin; avi 107 !'-10 Painting and coating.
o el i Toilet bleaches
Extruders 10°-102 Polymers
Chewing and swallowing 10'-10? Foods .
Dip coating 10'-102 Paints, confectionary
Mixing and stirring 10'-10° Manufacturing liquids
Pipe flow 10°-103 Pumping. Blood flow

i d brushin 103-10* Spray-drying, painting,
A ; fuel atomization
i 10*-10° Application of creams and lotions

P to the skin
Milling pigments . s

in nﬂﬂ bases 10%-10° Paints, printing inks

5 : 5_106 P
High speed coating 10°-10° aper .
Lubrication 10%-10’ Gasoline engines

used from about —50° C to 300° C. Polymer melts are usually handled in the range
150° C to 300° C, whilst molten glass is processed at a little above mcooA.u. .
Most of the available laboratory viscometers have facilities for testing in .En
range —50°C to 150° C using an external temperature controller and a circulating
fluid or an immersion bath. At higher temperatures, air baths are =m&.
The viscosity of Newtonian liquids decreases .SEH increase in temperature,
approximately according to the Arrhenius relationship:

5= mnlm\ﬂ. AM.NV

where T is the absolute temperature and 4 and B are constants o_... the liquid. In
general, for Newtonian liquids, the greater the viscosity, the stronger is Em §.Eunnm.
ture dependence. Figure 2.1 shows this trend for a number of lubricating oil
fractions. -

The strong temperature dependence of viscosity is such that, to _u_..oacon accurate
results, great care has to be taken with temperature control in viscometry. For
instance, the temperature sensitivity for water is 3% per °C at room temperature, so
that +1% accuracy requires the sample temperature to be E.NEQHE& to within
+0.3°C. For liquids of higher viscosity, given their stronger viscosity dependence
on temperature, even greater care has to be taken.
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log 0

Fig. 2.1. Logarithm of viscosity /tempera

5 - : ture derivative versus | ithm of vi it i icat-
ing oil fractions (Cameron 1966, p- 27). i Ry for VTS Kibiicas

It is important to note that it is not sufficient in viscometry to simply maintain
onwupwo_ of ﬁ.vn thermostat temperature; the act of shearing itself generates heat
E:,Eb the liquid and may thus change the temperature enough to decrease the
viscosity, unless steps are taken to remove the heat generated. The rate of energy
Ewh_ﬁwﬂos per unit <o._=3a of the sheared liquid is the product of the shear stress
H nwww”“. rate or, equivalently, the product of the viscosity and the square of the

Another important .?nuo_. is clearly the rate of heat extraction, which in viscome-
try depends on two things. First, the kind of apparatus: in one class the test liquid
flows :E.o:mv and out of the apparatus whilst, in the other, test liquid is perma-
:nﬂ.:z mongﬁ_ within the apparatus. In the first case, for instance in slits and
mw_uEE._B_ the :m_Ed flow itself convects some of the heat away. On the other hand
in instruments like the concentric cylinder and cone-and-plate viscometers, Em
conduction of heat to the surfaces is the only significant heat-transfer Eoonmw..

mwoo._._&w.. heat extraction depends on the dimensions of the viscometers: for slits
and capillaries the channel width is the controlling parameter, whilst for concentric

cylinders and cone-and-plate devices, the idth is i i i
i gap width is important. It is desirabl
these widths be made as small as possible. we G saes

2.2.3 Variation with pressure

The Swnoa.mq of liquids increases exponentially with isotropic pressure. Water
below 30°C is the only exception, in which case it is found that the viscosity first
decreases wnmo_”n eventually increasing exponentially. The changes are quite small
for pressures differing from atmospheric pressure by about one bar. Therefore, for
most practical purposes, the pressure effect is ignored by viscometer users. There

e - —
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Fig. 2.2. Variation of viscosity with pressure: (a) Di—(2-ethylhexyl) sebacate; (b) Naphthenic mineral oil
at 210°F; (c) Naphthenic mineral oil at 100 ° F. (Taken from Hutton 1980.)

are, however, situations where this would not be justified. For example, the oil
industry requires measurements of the viscosity of lubricants and drilling fluids at
elevated pressures. The pressures experienced by lubricants in gears can often
exceed 1 GPa, whilst oil-well drilling muds have to operate at depths where the
pressure is about 20 MPa. Some examples of the effect of pressure on lubricants is
given in Fig. 2.2 where it can be seen that a viscosity rise of four orders of
magnitude can occur for a pressure rise from atmospheric to 0.5 GPa.

2.3 The shear-dependent viscosity of non-Newtonian liquids

2.3.1 Definition of Newtonian behaviour

Since we shall concentrate on non-Newtonian viscosity behaviour in this section,
it is important that we first emphasize what Newtonian behaviour is, in the context
of the shear viscosity.

Newtonian behaviour in experiments conducted at constant temperature and
pressure has the following characteristics:

(i) The only stress generated in simple shear flow is the shear stress o, the two
normal stress differences being zero.

(ii) The shear viscosity does not vary with shear rate.

(iii) The viscosity is constant with respect to the time of shearing and the stress in
the liquid falls to zero immediately the shearing is stopped. In any subsequent
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shearing, however long the period of resting between measurements, the viscosity is
as previously measured.

(iv) The viscosities measured in different types of deformation are always in simple
proportion to one another, so, for example, the viscosity measured in a uniaxial
extensional flow is always three times the value measured in simple shear flow (cf.
§5.3).

A liquid showing any deviation from the above behaviour is non-Newtonian.

2.3.2 The shear-thinning non-Newtonian liquid

As soon as viscometers became available to investigate the influence of shear rate
on viscosity, workers found departure from Newtonian behaviour for many materi-
als such as dispersions, emulsions and polymer solutions. In the vast majority of
cases, the viscosity was found to decrease with increase in shear rate, giving rise to
what is now generally called “shear-thinning’ behaviour although the terms tem-
porary viscosity loss and “pseudoplasticity’ have also been employed.*

We shall see that there are cases (albeit few in number) where the viscosity
increases with shear rate. Such behaviour is generally called ‘shear-thickening’
although the term ‘dilatancy’ has also been used.

For shear-thinning materials, the general shape of the curve representing the
variation of viscosity with shear stress is shown in Fig. 2.3. The corresponding
graphs of shear stress against shear rate and viscosity against shear rate are also
given.

The curves indicate that in the limit of very low shear rates (or stresses) the
viscosity is constant, whilst in the limit of high shear rates (or stresses) the viscosity
is again constant, but at a lower level. These two extremes are sometimes known as
the lower and upper Newtonian regions, respectively, the lower and upper referring
to the shear rate and not the viscosity. The terms “first Newtonian region” and
“second Newtonian region” have also been used to describe the two regions where
the viscosity reaches constant values. The higher constant value is called the
“zero-shear viscosity”.

Note that the liquid of Fig. 2.3 does not show * yield stress’ behaviour although if
the experimental range had been 104 s=! t0 10~ s~ (which is quite a wide range)
an interpretation of the modified Fig. 2.3(b) might draw that conclusion. In Fig.

2.3(b) we have included so-called ‘Bingham’ plastic behaviour for comparison
purposes. By definition, Bingham plastics will not flow until a critical yield stress o,
is exceeded. Also, by implication, the viscosity is infinite at zero shear rate and there
is no question of a first Newtonian region in this case.

There is no doubt that the concept of yield stress can be helpful in some practical
situations, but the question of whether or not a yield stress exists or whether all
non-Newtonian materials will exhibit a finite zero-shear viscosity becomes of more

* The German word is *struk turviscositat” which is literally translated as structural viscosity, and is not
a very good description of shear-thinning,
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Fig. 2.3. Typical behaviour of a non-Newtonian liquid showing the ._.E.n_.q.o_.saou between the n_hnn:.u:
parameters. The same experimental data are used in each curve. (a) Viscosity versus shear stress. Notice
how fast the viscosity changes with shear stress in the middle of the graph; (b) .w__o.n- stress versus shear
rate. Notice that, in the middle of the graph, the stress changes very u_a.i_v. with increasing shear rate.
The dotted line represents ideal yield-stress (or Bingham plastic) _um_.wSoE“ (c) Viscosity versus shear
rate. Notice the wide range of shear rates needed to traverse the entire flow curve.

than esoteric interest as the range and sophistication of modern SEBn.TmE.wm
viscometers make it possible to study the very low shear-rate region-of the Smmom:w
curve with some degree of precision (cf. Barnes and Walters 1985). We simply
remark here that for dilute solutions and suspensions, there is no doubt that flow
occurs at the smallest stresses: the liquid surface levels out under gravity E_.n_. there
is no yield stress. For more concentrated systems, particularly for m:.nr materials as
gels, lubricating greases, ice cream, margarine and stiff pastes, there is understanda-
ble doubt as to whether or not a yield stress exists. It is easy to accept that a lump of
one of these materials will never level out under its own weight. Nevertheless there
is a growing body of experimental evidence to suggest ﬁ._uwp even concentrated
systems flow in the limit of very low stresses. These Ewﬁ:ﬁm appear uom ho :9.4
merely because the zero shear viscosity is so high. If the viscosity is 10™Pas it
would take years for even the slightest flow to be detected visually!

The main factor which now enables us to explore with confidence En very low
shear-rate part of the viscosity curve is the availability, on a commercial basis, of
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constant stress viscometers of the Deer type (Davis et al. 1968). Before this
development, emphasis was laid on the production of constant shear-rate viscome-
ters such as the Ferranti-Shirley cone-and-plate viscometer. This latter machine has
a range of about 20 to 20,000 s~ !, whilst the Haake version has a range of about 1
to 1000 ™7, in both cases a 10>-fold range. The Umstitter capillary viscometer, an
earlier development, with a choice of capillaries, provides a 10°-fold range. Such
instruments are suitable for the middle and upper regions of the general flow curve
but they are not suitable for the resolution of the low shear-rate region. To do this,
researchers used creep tests (§3.7.1) and devices like the plastometer (see, for
example, Sherman, 1970, p 59), but there was no overlap between results from these
instruments and those from the constant shear-rate devices. Hence the low shear-rate
region could never be unequivocally linked with the high shear-rate region. This
situation has now changed and the overlap has already been achieved for a number
of materials.

Equations that predict the shape of the general flow curve need at least four
parameters. One such is the Cross (1965) equation given by

N~ N 1

M= fe  (1+(K¥)™) 12:25)

or, what is equivalent,
Mo — M
N~ N

=K )e, (2.2v)

where 7, and 7, refer to the asymptotic values of viscosity at very low and very
high shear rates respectively, K is a constant parameter with the dimension of time
and m is a dimensionless constant.

A popular alternative to the Cross model is the model due to Carreau (1972)
N~ N 1

n . 23
Mo = Moo ?+Qa.$~vs_\n (23)

where K, and m, have a similar significance to the K and m of the Cross model.
By way of illustration, we give examples in Fig. 2.4 of the applicability of the
Cross model to a number of selected materials.
It is informative to make certain approximations to the Cross model, because, in
so doing, we can introduce a number of other popular and widely used viscosity
models. * For example, for n < 1y and 7 > 7, the Cross model reduces to

Nro &4

U]

* We have used shear rate as the independent variable. However, we could equally well have employed

the shear stress in this connection, with, for instance, the so-called Ellis model as the equivalent of the
Cross model.
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Fig. 2.4. Examples of the applicability of the Cross equation (eqgn. (2.2a)): (a) 0.4% aqueous solution of
polyacrylamide. Data from Boger (1977(b)). The solid line represents the Cross equation with ng - 1.82
Pass, 1., = 2.6 mPas, K=1.5s, and m = 0.60; (b) Blood (normal human, Hb = 37%). Data from Mills et
al. (1980). The solid line represents the Cross equation with ny =125 mPas, 7, =5 mPas, K= mu.m.m
and m = 0.715; (c) Aqueous dispersion of polymer latex spheres. Data from Quemada (1978). The solid
line represents the Cross equation with ng =24 mPas, 7, =11 mPas, K=0018 s and Slﬂ..o“ m&
0.35% aqueous solution of Xanthan gum. Data from Whitcomb and Macosko (1978). The solid line
represents the Cross equation with 5, =15 Pass, n, =5 mPas, K =10s, m = 0.80.

which, with a simple redefinition of parameters can be written
n=K,yy"" L. (2.5)

This is the well known ‘power-law’ model and n is called the power-law index. K is
called the ‘consistency’ (with the strange units of Pa.s").
Further, if 5 < 7,, we have

i Mo (2.6)
1 =s+AN$s

which can be rewritten as
n=1n,+ K" @7)

This is called the Sisko (1958) model. If n is set equal to zero in the Sisko model, we
obtain

, (2.8a)
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Fig. 2.5 Typical viscosity /shear rate graphs obtained using the Cross, power-law and Sisko models. Data
for the Cross equation curve are the same as used in Fig. 2.3. The other curves represent the same data
but have been shifted for clarity.

which, with a simple redefinition of parameters can be written
6 =0,+1.Y, (2.8b)

where o, is the yield stress and 7, the plastic viscosity (both constant). This is the
Bingham model equation.

The derived equations apply over limited parts of the flow curve. Figure 2.5
illustrates how the power-law fits only near the central region whilst the Sisko model
fits in the mid-to-high shear-rate range.

The Bingham equation describes the shear stress/shear rate behaviour of many
shear-thinning materials at low shear rates, but only over a one-decade range
(approximately) of shear rate. Figures 2.6(a) and (b) show the Bingham plot for a
synthetic latex, over two different shear-rate ranges. Although the curves fit the
equation, the derived parameters depend on the shear-rate range. Hence, the use of
the Bingham equation to characterize viscosity behaviour is unreliable in this case.
However, the concept of yield stress is sometimes a very good approximation for
practical purposes, such as in characterizing the ability of a grease to resist slumping
in a roller bearing. Conditions under which this approximation is valid are that the
local value of n is small (say < 0.2) and the ratio 1,/7,, is very large (say > 10%).

The Bingham-type extrapolation of results obtained with a laboratory viscometer
to give a yield stress has been used to predict the size of solid particles that conld be
permanently suspended in a gelled liquid. This procedure rarely works in practice
for thickened aqueous systems because the liquid flows, albeit slowly, at stresses
below this stress. The use of 5, and Stokes’ drag law gives a better prediction of the
settling rate. Obviously, if this rate can be made sufficiently small the suspension
becomes *“non-settling™ for practical purposes.
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Fig. 2.6. Flow curves for a synthetic latex (taken from Barnes and Walters 1985): (a and b) Bingham
plots over two different ranges of shear rate, showing two different intercepts; (c) Semi-logarithmic plot
of data obtained at much lower shear rates, showing yet another intercept; (d) Logarithmic plot of data
at the lowest obtainable shear rates, showing no yield-stress behaviour; (€) The whole of the experimental
data plotted as viscosity versus shear rate on logarithmic scales.

The power-law model of eqn. (2.5) fits the experimental results for many
materials over two or three decades of shear rate, making it more versatile than the
Bingham model. It is used extensively to describe the non-Newtonian flow proper-
ties of liquids in theoretical analyses as well as in practical engineering applications.
However, care should be taken in the use of the model when employed outside the
range of the data used to define it. Table 2.3 contains typical values for the
power-law parameters for a selection of well-known non-Newtonian materials.

The power-law model fails at high shear rates, where the viscosity must ulti-
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TABLE 2.3
Typical power-law parameters of a selection of well-known materials for a particular range of shear rates.
Material K,(Pas") n Shear rate range (s~ 1)
Ball-point pen ink 10 0.85 10°-10°

Fabric conditioner 10 0.6 10°-102

Polymer melt 10000 0.6 102-10*

Molten chocolate 50 0.5 1071-10

Synovial fluid 0.5 0.4 1071-102

Toothpaste 300 0.3 10°-10°

Skin cream 250 0.1 10°-102

Lubricating grease 1000 0.1 107'-102

mately approach a constant value; in other words, the local value of n must
ultimately approach unity. This failure of the power-law model can be rectified by
the use of the Sisko model, which was originally proposed for high shear-rate
measurements on lubricating greases. Examples of the usefulness of the Sisko model
in describing the flow properties of shear-thinning materials over four or five
decades of shear rate are given in Fig. 2.7.

Attempts have been made to derive the various viscosity laws discussed in this
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Fig. 2.7. Examples of the applicability of the Sisko model (eqn. (2.7)): (a) Commercial fabric softener.
Data obtained by Barnes (unpublished). The solid line represents the Sisko model with 9, = 24 mPa.s,
K;=0.11Pas" and n = 0.4; (b) 1% aqueous solution of Carbopol. Data obtained by Barnes (unpub-
lished). The solid line represents the Sisko model with Mo =0.08 Pas, K, =8.2 Pas" and n = 0.066; (c)
40% Racemic poly-y-benzyl glutamate polymer liquid crystal. Data points obtained from Onogi and
Asada (1980). The solid line represents the Sisko model with N =1.25 Pas, K; =15.5 Pas”, n=0.5; (d)
Commercial yogurt. Data points obtained from deKee et al. (1980). The solid line represents the Sisko
model with 5, =4 mPa.s, K, =34 Pas” and n=0.1.
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section from microstructural considerations. However, these laws must be seen as
being basically empirical in nature and arising from curve-fitting exercises.

2.3.3 The shear-thickening non-Newtonian liquid

It is possible that the very act of deforming a material can cause rearrangement
of its microstructure such that the resistance to flow increases with shear rate.
Typical examples of the shear-thickening phenomenon are given in Fig. 2.8. It will
be observed that the shear-thickening region extends over only about a decade of
shear rate. In this region, the power-law model can usually be fitted to the data with
a value of n greater than unity.

In almost all known cases of shear-thickening, there is a region of shear-thinning
at lower shear rates.
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Fig. 2.8. Examples of shear-thickening behaviour: (a) Surfactant solution. CTA-sal. solution at 25° C,
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showing a time-effect (taken from Gravsholt 1979); (b) Polymer solution. Solution of anti-misting
polymer in aircraft jet fuel, showing the effect of photodegradation during (/) 1 day, (2) 15 days, (3) 50
days exposure to daylight at room temperature (taken from Matthys and Sabersky 1987); (c) Aqueous
suspensions of solid particles. Deflocculated clay slurries showing the effect of concentration of solids.
The parameter is the %w,/w concentration (taken from Beazley 1980).
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2.3.4 Time effects in non-Newtonian liquids

We have so far assumed by implication that a given shear rate results in a
corresponding shear stress, whose value does not change so long as the value of the
shear rate is maintained. This is often not the case. The measured shear stress, and
hence the viscosity, can either increase or decrease with time of shearing. Such
changes can be reversible or irreversible.

According to the accepted definition, a gradual decrease of the viscosity under
shear stress followed by a gradual recovery of structure when the stress is removed is
called “thixotropy’. The opposite type of behaviour, involving a gradual increase in
viscosity, under stress, followed by recovery, is called ‘negative thixotropy’ or
‘anti-thixotropy”. A useful review of the subject of time effects is provided by Mewis
(1979).

Thixotropy usually occurs in circumstances where the liquid is shear-thinning (in
the sense that viscosity levels decrease with increasing shear rate, other things being
equal). In the same way, anti-thixotropy is usually associated with shear-thickening
behaviour. The way that either phenomenon manifests itself depends on the type of
test being undertaken. Figure 2.9 shows the behaviour to be expected from relatively
inelastic colloidal materials in two kinds of test: the first involving step changes in
applied shear rate or shear stress and the second being a loop test with the shear
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Fig. 2.9. Schematic representation of the response of an inelastic thixotropic material to two shear-rate
histories.
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rate increased continuously and linearly in time from zero to some maximum value
and then decreased to zero in the same way.

If highly elastic colloidal liquids are subjected to such tests, the picture is more
complicated, since there are contributions to the stress growth and decay from
viscoelasticity.

The occurrence of thixotropy implies that the flow history must be taken into
account when making predictions of flow behaviour. For instance, flow of a
thixotropic material down a long pipe is complicated by the fact that the viscosity
may change with distance down the pipe.

2.3.5 Temperature effects in two-phase non-Newtonian liquids

In the simplest case, the change of viscosity with temperature in two-phase
liquids is merely a reflection of the change in viscosity of the continuous phase.
Thus some aqueous systems at room temperature have the temperature sensitivity of
water, i.e. 3% per °C. In other cases, however, the behaviour is more complicated.
In dispersions, the suspended phase may go through a melting point. This will result
in a sudden and larger-than-expected decrease of viscosity. In those dispersions, for
which the viscosity levels arise largely from the temperature-sensitive colloidal
interactions between the particles, the temperature coefficient will be different from
that of the continuous phase. For detergent-based liquids, small changes in tempera-
ture can result in phase changes which may increase or decrease the viscosity
dramatically.

In polymeric systems, the solubility of the polymer can increase or decrease with
temperature, depending on the system. The coiled chain structure may become more
open, resulting in an increase in resistance to flow. This is the basis of certain
polymer-thickened multigrade oils designed to maintain good lubrication at high
temperatures by partially offsetting the decrease in viscosity with temperature of the
base oil (see also §6.11.2).

2.4 Viscometers for measuring shear viscosity

2.4.1 General considerations

Accuracy of measurement is an important issue in viscometry. In this connection,
we note that it is possible in principle to calibrate an instrument in terms of speed,
geometry and sensitivity. However, it is more usual to rely on the use of standar-
dized Newtonian liquids (usually oils) of known viscosity. Variation of the molecu-
lar weight of the oils allows a wide range of viscosities to be covered. These oils are
chemically stable and are not very volatile. They themselves are calibrated using
glass capillary viscometers and these viscometers are, in turn, calibrated using the
internationally accepted standard figure for the viscosity of water (1.002 mPa.s at
20.00°C, this value being uncertain to +0.25%). Bearing in mind the accumulated
errors in either the direct or comparative measurements, the everyday measurement
of viscosity must obviously be worse than the 0.25% mentioned above. In fact for
mechanical instruments, accuracies of ten times this figure are more realistic.
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shear rate is maintained. This is often not the case. The measured shear stress, and
hence the viscosity, can either increase or decrease with time of shearing. Such
changes can be reversible or irreversible.

According to the accepted definition, a gradual decrease of the viscosity under
shear stress followed by a gradual recovery of structure when the stress is removed is
called *thixotropy’. The opposite type of behaviour, involving a gradual increase in
viscosity, under stress, followed by recovery, is called ‘negative thixotropy’ or
‘anti-thixotropy’. A useful review of the subject of time effects is provided by Mewis
(1979).

Thixotropy usually occurs in circumstances where the liquid is shear-thinning (in
the sense that viscosity levels decrease with increasing shear rate, other things being
equal). In the same way, anti-thixotropy is usually associated with shear-thickening
behaviour. The way that either phenomenon manifests itself depends on the type of
test being undertaken. Figure 2.9 shows the behaviour to be expected from relatively
inelastic colloidal materials in two kinds of test: the first involving step changes in
applied shear rate or shear stress and the second being a loop test with the shear
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Fig. 2.9. Schematic representation of the response of an inelastic thixotropic material to two shear-rate
histories.
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rate increased continuously and linearly in time from zero to some maximum value
and then decreased to zero in the same way.

If highly elastic colloidal liquids are subjected to such tests, the picture is more
complicated, since there are contributions to the stress growth and decay from
viscoelasticity.

The occurrence of thixotropy implies that the flow history must be taken into
account when making predictions of flow behaviour. For instance, flow of a
thixotropic material down a long pipe is complicated by the fact that the viscosity
may change with distance down the pipe.

2.3.5 Temperature effects in two-phase non-Newtonian liquids

In the simplest case, the change of viscosity with temperature in two-phase
liquids is merely a reflection of the change in viscosity of the continuous phase.
Thus some aqueous systems at room temperature have the temperature sensitivity of
water, i.e. 3% per °C. In other cases, however, the behaviour is more complicated.
In dispersions, the suspended phase may go through a melting point. This will result
in a sudden and larger-than-expected decrease of viscosity. In those dispersions, for
which the viscosity levels arise largely from the temperature-sensitive colloidal
interactions between the particles, the temperature coefficient will be different from
that of the continuous phase. For detergent-based liquids, small changes in tempera-
ture can result in phase changes which may increase or decrease the viscosity
dramatically.

In polymeric systems, the solubility of the polymer can increase or decrease with
temperature, depending on the system. The coiled chain structure may become more
open, resulting in an increase in resistance to flow. This is the basis of certain
polymer-thickened multigrade oils designed to maintain good lubrication at high
temperatures by partially offsetting the decrease in viscosity with temperature of the
base oil (see also §6.11.2).

2.4 Viscometers for measuring shear viscosity

2.4.1 General considerations

Accuracy of measurement is an important issue in viscometry. In this connection,
we note that it is possible in principle to calibrate an instrument in terms of speed,
geometry and sensitivity. However, it is more usual to rely on the use of standar-
dized Newtonian liquids (usually oils) of known viscosity. Variation of the molecu-
lar weight of the oils allows a wide range of viscosities to be covered. These oils are
chemically stable and are not very volatile. They themselves are calibrated using
glass capillary viscometers and these viscometers are, in turn, calibrated using the
internationally accepted standard figure for the viscosity of water (1.002 mPa.s at
20.00°C, this value being uncertain to +0.25%). Bearing in mind the accumulated
errors in either the direct or comparative measurements, the everyday measurement
of viscosity must obviously be worse than the 0.25% mentioned above. In fact for
mechanical instruments, accuracies of ten times this figure are more realistic.
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3. 2.10. Examples of industrial viscometers with complicated flow fields, including star-ratings for
wvenience and robustness.

4.2 Industrial shop-floor instruments

Some viscometers used in industry have complicated flow and stress fields,
though their operation is simple. In the case of Newtonian liquids, the use of such
struments does not present significant problems, since the instruments can be
librated with a standard liquid. However, for non-Newtonian liquids, complicated
coretical derivations are required to produce viscosity information, and in some
ses no amount of mathematical complication can generate consistent viscosity
ita (see, for example, Walters and Barnes 1980).

Three broad types of industrial viscometer can be identified (Fig. 2.10). The first
pe comprises rotational devices, such as the Brookfield viscometer. There is some
»pe of consistent interpretation of data from such instruments (cf. Williams 1979).
1e second type of instrument involves what we might loosely call “flow through
mstrictions” and is typified by the Ford-cup arrangement. Lastly, we have those
at involve, in some sense, flow around obstructions such as in the Glen Creston
lling-ball instrument (see, for example, van Wazer et al. 1963). Rising-bubble
chniques can also be included in this third category.

For all the shop-floor viscometers, great care must be exercised in applying
rmulae designed for Newtonian liquids to the non-Newtonian case.

4.3 Rotational instruments; general comments

Many types of viscometer rely on rotational motion to achieve a simple shearing
>w. For such instruments, the means of inducing the flow are two-fold: one can
ther drive one member and measure the resulting couple or else apply a couple
1d measure the subsequent rotation rate. Both methods were well established
fore the first World War, the former being introduced by Couette in 1888 and the
tter by. Searle in 1912.

There are two ways that the rotation can be applied and the couple measured:
e first is to drive one member and measure the couple on the same member, whilst
e other method is to drive one member and measure the couple on the other. In
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modern viscometers, the first method is employed in the Haake, Contraves, Fer-
ranti-Shirley and Brookfield instruments; the second method is used in the Weissen-
berg and Rheometrics rheogoniometers.

For couple-driven instruments, the couple is applied to one member and its rate
of rotation is measured. In Searle’s original design, the couple was applied with
weights and pulleys. In modern developments, such as in the Deer constant-stress
instrument, an electrical drag-cup motor is used to produce the couple. The couples
that can be applied by the commercial constant stress instruments are in the range
107° to 10~ Nm; the shear rates that can be measured are in the range 107° 10 10?
s~!, depending of course on the physical dimensions of the instruments and the
viscosity of the material. The lowest shear rates in this range are equivalent to one
complete revolution every two years; nevertheless it is often possible to take
steady-state measurements in less than an hour.

As with all viscometers, it is important to check the calibration and zeroing from
time to time using calibrated Newtonian oils, with viscosities within the range of
those being measured.

2.4.4 The narrow-gap concentric-cylinder viscometer

If the gap between two concentric cylinders is small enough and the cylinders are
in relative rotation, the test liquid enclosed in the gap experiences an almost
constant shear rate. Specifically, if the radii of the outer and inner cylinders are r,
and ry, respectively, and the angular velocity of the inner is ,, (the other being
stationary) the shear rate ¥ is given by

rof2,
e (2.9)

.w"

For the gap to be classed as “narrow” and the above approximation to be valid to
within a few percent, the ratio of r; to ro must be greater than 0.97.
1 If the couple on the cylinders is C, the shear stress in the liquid is given by

C
o= ,
2ar2L

(2.10) -

and from (2.9) and (2.10), we see that the viscosity is given by

a2 Clro—ny)

.a N..q__.m.a_h. ;

(2.11)

where L is the effective immersed length of the liquid being sheared. This would be
the real immersed length, /, if there were no end effects. However, end effects are
likely to occur if due consideration is not given to the different shearing conditions

which mav avict in anv linnid cavacinm tha aede < oL a0 3.
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One way to proceed is to carry out experiments at various immersed .-n:m:.w I,
keeping the rotational rate constant. The extrapolation of a plot of C ..“-mE_..m..pq then
gives the correction which must be added to the real immersed length ”.o _u_..oSnn. the
value of the effective immersed length L. In practice, most commercial viscometer
manufacturers arrange the dimensions of the cylinders such that the ratio of the
depth of liquid to the gap between the cylinders is in excess of 100. Under these
circumstances the end correction is negligible. 2eh

The interaction of one end of the cylinder with the bottom of the containing
outer cylinder is often minimized by having a recess 5. :z.“ _...ozoi of the inner
cylinder so that air is entrapped when the viscometer .m.g_nn. prior to making
measurements. Alternatively, the shape of the end of the cylinder can be nromnn.. asa
cone. In operation, the tip of the cone just touches the bottom of the outer cylinder
container. The cone angle (equal to tan~' [(rg — r;)/75]) is such that the m_-nw._. rate
in the liquid trapped between the cone and the bottom is the same as that in the
liquid between the cylinders. This arrangement is called the Mooney system, after
its inventor.

2.4.5 The wide-gap concentric-cylinder viscometer . :

The limitations of very narrow gaps in the concentric-cylinder viscometer are
associated with the problems of achieving parallel alignment and the &hﬂ_n::m of
coping with suspensions containing large particles. For these reasons, in many
commercial viscometers the ratio of the cylinder radii is less than that stated in
§2.4.4; thus some manipulation of the data is necessary to 13&:&." the correct
viscosity. This is a nontrivial operation and has been studied in detail by Krieger
and Maron (1954). Progress can be readily made if it is mwmﬁ.una that the shear
stress/shear rate relationship over the interval of shear rate in the gap can be
described by the power-law model of eqn. (2.5). The shear rate in the liquid at the
inner cylinder is then given by

.H U‘B_ ) (2.12)
T (1= 67y

where b is the ratio of the inner to outer radius (i.e. b= n /1) ioao that the shear
rate is now dependent on the properties of the test liquid, unlike the narrow-gap
instrument. 1 {iFs.

The shear stress in the liquid at the inner cylinder is given by

) (2.13)
2arlL

The value of n can be determined by plotting C versus £, on a double-logarithmic
* -3 eiliel tha abama ot tha valne of Q. nunder consideration.
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Fig. 2.11. Ratio of actual (eqn. 2.12) to approximate (eqn. 2.9) shear rates at the rotating cylinder as a
function of the ratio of the inner to the outer cylinder radii, with n the power law index as parameter.

The viscosity (measured at the inner-cylinder shear rate) is given by

_ Cn(1-b¥")

2 4arlLQ,

(2.14)

The error involved in employing the narrow-gap approximation instead of the
wide-gap expression, eqn. (2.14), is shown in Fig. 2.11. Clearly, using values of
b < 0.97 gives unacceptable error when the liquid is shear-thinning (n < 1).

The lower limit of shear rate achievable in a rotational viscometer is obviously
governed by the drive system. The upper limit, however, is usually controlled by the
test liquid. One limit is the occurrence of viscous heating of such a degree that
reliable correction cannot be made. However, there are other possible limitations.
Depending on which of the cylinders is rotating, at a critical speed the simple
circumferential streamline flow breaks down, either with the appearance of steady
(Taylor) vortices or turbulence. Since both of these flows require more energy than
streamline flow, the viscosity of the liquid apparently increases. In practical terms,
for most commercial viscometers, it is advisable to consider the possibility of such
disturbances occurring if the viscosity to be measured is less than about 10 mPa.s.

2.4.6 Cylinder rotating in a large volume of liquid
If we take the wide-gap Couette geometry to the extreme with the radius of the
outer cylinder approaching infinity, the factor (1 —5*") in (2.12) and (2.14)
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Fig. 2.12. The cone-and-plate viscometer. Cross-sectional diagram of one possible configuration, viz. cone

on top, rotating plate and couple measured on the cone. The inset shows the form of truncation used in
many instruments.

approaches unity. For a power-law liquid, the values of the shear rate and shear
stress in the liquid at the rotating cylinder of radius r, are then given by

Y=282,/n (2.15)
and

(]
o= -
2arlL

(2.16)

Again, at any particular value of £,, n can be calculated as the local value of
d(In C)/d(In £2,). These equations are applicable to viscometers of the Brookfield
type in which a rotating bob is immersed in a beaker of liquid. The technique is
restricted to moderately low shear rates: 0.1 s ' to 10s ' is a typical range.

2.4.7 The cone-and-plate viscometer

In the cone-and-plate geometry shown in Fig. 2.12, the shear rate is very nearly
the same everywhere in the liquid provided the gap angle , is small (see Chapter 4
for the details). The shear rate in the liquid is given by

Y =2,/6,, (2.17)

where 2, is the angular velocity of the rotating platten. Note that the shear rate
does not depend on the properties of the liquid.
The shear stress (measured via the couple C on the cone) is given by
iC

2ma’

o=

; (2.18)

where 4 is the radius of the cone. Thus the viscosity is given by
3Cé,
a = U .
27a 2,

(2.19)

If the liauid under investieation has a low viscositv. high rotational speeds are
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often necessary to produce torques large enough to be measured accurately. How-
ever, under these circumstances, ‘secondary flows’ may arise (see, for example,
Walters 1975). The secondary flow absorbs extra energy, thus increasing the couple,
which the unwary may mistakenly associate with shear-thickening. Cheng (1968) has
provided an empirical formula which goes some way towards dealing with the
problem.

All cone-and-plate instruments allow the cone to be moved away from the plate
to facilitate sample changing. It is very important that the cone and plate be reset so
that the tip of the cone lies in the surface of the plate. For a 1° gap angle and a cone
radius of 50 mm, every 10 um of error in the axial separation produces an
additional 1% error in the shear rate.

To avoid error in contacting the cone tip (which might become worn) and the
plate (which might become indented), the cone is often truncated by a small
amount. In this case, it is necessary to set the virtual tip in the surface of the plate as
shown in Fig. 2.12 (b). A truncated cone also facilitates tests on suspensions.

2.4.8 The parallel-plate viscometer
For torsional flow between parallel plates (see Fig. 2.13) the shear rate at the rim
(r=a) is given by

%h"hbm\\u. AN.NQU

It is this shear rate that finds its way into the interpretation of experimental data for
torsional flow. It can be shown (Walters 1975, p. 52) that the viscosity is given by

3Ch
n= ’ ANumv

1dinC
4 = I, ol
2ma b~7+un:=b;

where C is the couple on one of the plates. For power-law models, eqn. (2.21)
becomes

3Ch
7=

| ||~§.PT - mv : (222)

Couple
measuring
device

Drive

Fig. 2.13. Cross-sectional diagram of the torsional parallel-plate viscometer.




32 Viscasity [Chap. 2

It will be noticed from eqn. (2.20) that the rim shear rate may be changed by
adjusting either the speed £, or the gap h.
In the torsional-balance rheometer, an adaptation of the parallel-plate viscometer

(see Chapter 4 for the details), shear rates in the 10* to 10° s~! range have been
attained.

2.4.9 Capillary viscometer
If a Newtonian liquid flows down a straight circular tube of radius a at a volume

flowrate Q (see Fig. 2.14), the pressure gradient generated along it (d P/dl) is given
by the Poiseuille equation:

dp _ 80
Tt (2.23)

In this situation, the shear stress in the liquid varies linearly from (a/2)(d P/dl) at
the capillary wall to zero at the centre line. For Newtonian liquids, the shear rate
varies similarly from 4Q/(7a) in the immediate vicinity of the wall to zero at the
centreline. If, however, the viscosity varies with shear rate the situation is more
complex. Progress can be made by concentrating on flow near the wall. Analysis
shows (cf. Walters 1975, Chapter 5) that for a non-Newtonian liquid, the shear rate
at the wall is modified to

_40(3 1dimg
7a*\4 4dlng, )’

Yo (2.24)

whilst the shear stress at the wall ¢,,, is unchanged at (a/2) (d P/d!). The bracketed
term in (2.24) is called the Rabinowitsch correction. Then finally

.y _ % _ ___ wa*(dP/dl)
() o 13, 1dhg 2 (2.25)
P12 7an o,

When shear-thinning liquids are being tested, d(In Q)/d(In o, ) is greater than 1 and
for power-law liquids is equal to 1/n. Since n can be as low as 0.2, the contribution

Velocity
profile

Differential pressure dP over length di—i

Fig. 2.14. Cutaway diagram of laminar Newtonian flow in a straight circular capillary tube.

2.4] Viscometers for measuring shear viscosity 13

of the d(In 0)/d(In g,,) factor to the bracketed term can be highly significant in
determining the true wall shear rate.

Care has to be taken in defining and measuring the pressure gradient d P/d/. If
the pressure in the external reservoir supplying the capillary and the receiving vessel
are measured, then, unless the ratio of tube length to radius is very large (> 100),
allowance must be made for entrance and exit effects. These arise from the
following sources for all types of liquid:

(i) Viscous and inertial losses in the converging stream up to the entrance.

(ii) Redistribution of the entrance velocities to achieve the steady state velocity
profile within the tube.

(iii) Similar effects to the above at the exit.

Formulae exist which account for these effects for Newtonian liquids, (/) and
(iii) being associated with the names of Hagenbach and Couette (see, for example
Kestin et al. 1973). However, these effects are small if the ratio of tube length to
radius is 100 or more.

The main end effects can be avoided if at various points on the tube wall, well
away from the ends, the pressures are measured by holes connected to absolute or
differential pressure transducers. Any error arising from the flow of the liquid past
the holes in the tube wall (see §4.4.1.1) is cancelled out when identical holes are
used and the pressure gradient alone is required.

It is not often convenient to drill pressure-tappings, and a lengthy experimental
programme may then be necessary to determine the type-(i) errors in terms of an
equivalent pressure-drop and type-(ii) errors in terms of an extra length of tube.
The experiments required can be deduced from the theoretical treatment of Kestin
et al. (1973) and a recent application of them has been published by Galvin et al.
(1981). If the liquid is highly elastic, an additional entrance and exit pressure drop
arises from the elasticity. The so-called Bagley correction then allows an estimate of
the elastic properties to be calculated. It is also used to provide an estimate of the
extensional viscosity of the liquid (see §5.4.6).

Before leaving the discussion of the capillary viscometer, it is of interest to study
the pressure-gradient / flow-rate relationship for the power-law model (2.5):
dP 2K, a=+:m_=

dl  a wna’ ’

(2.26)

From this equation we see the effect of changes in such variables as pipe radius. For
Newtonian liquids, the pressure drop for a given flow rate is proportional to the
fourth power of the radius, but this is changed if the liquid is shear-thinning. For
instance, if n = 1, the pressure drop is proportional to the square of the radius. This
is clearly important in any scale-up of pipe flow from pilot plant to factory
operation.
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Power law index. n
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P Qh

Fig. 2.15. The velocity profiles for the laminar flow of power-law liquids in a straight circular pipe,
_uw_n:_mqon for the same volumetric throughput. Note the increase in the wall shear rate and the
increasingly plug-like nature of the flow as n decreases.

. H.._.n velocity profile in pipe flow is parabolic for Newtonian liquids. For power-law
liquids this is modified to

o (r)e O0(3n+1) ? - Ahv?l:\..v.

na*(n+1) a

(2.27)

._n_m:_.n .N.Hm shows the effect of progressively decreasing the power-law index, ie.
increasing the degree of shear thinning. We see the increasing plug-like nature of the
.:Di with, effectively, only a thin layer near the wall being sheared. This has
mportant consequences in heat-transfer applications, where heating or cooling is
applied to the liquid from the outside of the pipe. The overall heat transfer is partly
oﬁaﬂo:& by the shear rate in the liquid near the pipe wall. For a power-law liquid,
this shear rate is changed from the Newtonian value by a factor [3 + (1/n)]/4. This
means that heat transfer is increased for shear-thinning liquids (n < 1) and de-
creased for shear-thickening liquids (n > 1), but the former is the larger effect.

2.4.10 Slit viscometer

Flow E:_n.n an applied pressure gradient between two parallel stationary walls is
r:os.:. as slit .noi. It is a two-dimensional analogue of capillary flow. The
governing equations for slit flow are (cf. Walters 1975, Chapter 5)

L, _hdp
and
. _ 20 dln Q
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where A is the slit height and b is the slit width, Q is the flow rate and d P /d/ is the
pressure gradient.

Slit flow forms the basis of the viscometer version of the Lodge stressmeter. The
stressmeter is described more fully in Chapter 4. The viscometer version differs from
that discussed in §4.4.3 in that the transducer T, in Fig. 4.13 is unnecessary and is
replaced by a solid wall. The instrument has the advantage that shear rates in excess
of 10® s~! can be achieved with little interference from viscous heating.

2.4.11 On-line measurements

It is frequently necessary to monitor the viscosity of a liquid “on line” in a
number of applications, particularly when the constitution or temperature of the
liquid is likely to change. Of the viscometers described in this chapter, the capillary
viscometer and the concentric-cylinder viscometer are those most conveniently
adapted for such a purpose. For the former, for example, the capillary can be
installed directly in series with the flow: the method has attractive features, but its
successful application to non-Newtonian liquids is non-trivial.

Care must be taken with the on-line concentric-cylinder apparatus, since the
interpretation of data from the resulting helical flow is not easy.

Other on-line methods involve obstacles in the flow channel: for example, a float
in a vertical tapered tube, as in the Rotameter, will arrive at an equilibrium position
in the tube depending on the precise geometry, the rate of flow, the viscosity and the
weight of the obstacle. The parallel-plate viscometer has also been adapted for
on-line measurement (see, for example, Noltingk 1975).




