NMR STUDIES ON SOLID STATE POLYMER ELECTROLYTES

Ramesh Kumar Mani

December 1, 2008

- Introduction about Magnetic Resonance
- Transition Energy
- NMR Spectrometer
- Solid State NMR
- Basics of ²H and ⁷Li NMR
- Solid State Polymer Electrolytes
- Experimental Results

Nuclear Magnetic Resonance

- NMR exploits the magnetic properties of certain nuclei.
- Subatomic particles can be imagined as spinning on their axes.
- If the number of neutrons and the number of protons are both even, then the nucleus has NO spin.
- The overall spin of the nucleus is determined by the spin quantum number *I*.
- For Non-zero spin; Magnetic Moment;

$$\mu = \gamma \cdot I$$

Dr. Joseph Hornak, The Basics of NMR., A non-technical overview of NMR theory

NMR Spin Energy States

Dr. Joseph Hornak, The Basics of NMR., A non-technical overview of NMR theory

Resonance Energy

Figure: Difference in Energy

Dr. Joseph Hornak,, The Basics of NMR., A non-technical overview of NMR theory

Caclulating Transition Energy

 The nucleus has a positive charge and is spinning. Magnetic moment, μ, which is proportional to its spin, *I*.

$$\mu = \frac{\gamma \cdot I \cdot h}{2\pi} \tag{1}$$

 γ - magnetogyric ratio, h - Planks Constant

• The energy of a particular energy level is given by;

$$\mathsf{E} = -\frac{\gamma \cdot \mathsf{H}}{2\pi} \mathsf{m} \mathsf{B} \tag{2}$$

- B Strength of magnetic field
- The difference in energy between levels;

$$\Delta E = -\frac{\gamma \cdot H \cdot B}{2\pi}$$

NMR Spectrometer

Figure: NMR Spectrometer

http://www.cem.msu.edu/ reusch/VirtualText/Spectrpy/nmr/nmr1.htm

PHYS-6900 NMR Studies

solid-state NMR spectroscopy

- In media with no or little mobility anisotropic interactions have a substantial influence on the behaviour of a system of nuclear spins.
- High-resolution conditions in solids can be established using magic angle spinning (MAS) or macroscopic sample orientation.
- A fundamental RF pulse sequence in most solid-state NMR experiments is cross-polarization (CP).
 - CP is a basic building block of most pulse sequences in solid-state NMR spectroscopy.

Schaefer, J., Journal of the American Chemical Society ., 98 (1976) 1031

Basics of ²H and ⁷Li NMR

• In solid-state ²H NMR, the first order quadrupolar interaction,

$$\omega_{Q}(\theta,\phi) = \pm \frac{\delta}{2} \left(3 \cdot \cos^{2}\theta - 1 - \eta \cdot \sin^{2}\theta \cdot \cos^{2}\phi \right)$$
(4)

 \pm sign corresponds to the two allowed transitions between the Zeeman levels; θ,ϕ - orientation of the EFG tensor with respect to B_0.

- In solid-state ⁷Li NMR (*I* = 3/2), first order quadrupolar interaction affects the frequencies of the two satellite transitions |±3/2⟩ ↔ |±1/2⟩, but not that of the central transition |-1/2⟩ ↔ |+1/2⟩.
- Therefore, the ⁷Li NMR spectra of powder samples are comprised of a narrow line and a broad line corresponding to the central and satellite transitions, respectively.

M. Vogel., J. Phys. Chem. B., 112 (2008) 11217-11226

Solid Polymer Electrolytes

- Great amount of work in the field of polymer research has focused on poly(ethylene oxide) (PEO).
- Dynamic and structural properties of melt-crystallized PEO depends on various factors; M_w and end groups.
- PEO consists four different regions;
- Ionic conductivity of PEO is due to polymer segmental motion in amorphous region.
- PEO has the ability to dissolve metal salts and got low T_g.
- Nuclear magnetic resonance (NMR) spectroscopy provides access to the dynamics of both crystalline and amorphous PEO.

M. Vogel., J. Phys. Chem. B., 112 (2008) 11217-11226

Ionic Conductivity

Figure: The structure of the polymer electrolyte PEO₆:LiSbF₆

- Sample: crystalline and amorphous forms of PEO₆:LiSbF₆
- By combining LiSbF₆ with methoxy end-capped PEO of low weight-averaged molecular mass (Mw = 1,000) a crystalline 6:1 phase was obtained.

Zlatka., Letters to Nature., 412 (2001) 520

Crystalline Polymer Electrolytes

Figure: (a) Ionic conductivity σ (S cm⁻¹) of amorphous (open circles) and crystalline (filled circles) PEO₆:LiSbF₆ as a function of temperature. (b) ¹H NMR linewidth as a function of temperature for amorphous PEO₆:LiSbF₆.

Zlatka., Letters to Nature., 412 (2001) 520

Crystalline Polymer Electrolytes

Figure: (a) $PEO_6:LiXF_6$ for X = Sb,P. a, Proton-decoupled static ⁷Li spectra for amorphous (upper line) and crystalline (lower line) $PEO_6:LiSbF_6$. (b), Linewidth variations for the crystalline complex $PEO_6:LiPF_6$ as a function of temperature: ³¹P (open squares) and ⁷Li (filled squares).

Zlatka., Letters to Nature., 412 (2001) 520

- Ion transport in solids \rightarrow Hopping of ions
- Polymer electrolytes → lons move in dynamic environment accelerated by polymer chain motion.
- Achievable ionic conductivity in amorphous polymers $\rightarrow 10^{-4} \text{ S cm}^{-1}$.
- Conductivity can be enhanced by organizing the stucture.

Lil-PEO based Solid Electrolytes

- Composite polymer electolytes consisting of poly ethylene oxide, a lithium salt and an inorganic oxide have received considerable attention.
- Presence of inorganic oxide can improve;
 - Electrical Conductivity
 - Stability of Li/Polymer electrolyte interfacial resistance.
 - Interfacial ion transport through grain boundaries.
- NMR methods are well suited for studying;
 - lonic environments and mobility in disordered and hetrogeneous polymer electrolytes.
 - Coexistence of mobile and immobile Li⁺ phases.

Y.Dai., Solid State Ionics., 106 (1998) 25-32

Lil-PEO based Solid Electrolytes

Figure: 1. Line variable ⁷Li NMR Spectra of $P(EO)_{1.5}$ Lil with 6 Vol% Al₂O₃ (Left), Without Al₂O₃. 2. With Al₂O₃ (Bottom) without Al₂O₃ (Top).

Lil-PEO based Solid Electrolytes

- The right side peak is associated with Li⁺ ions in close proximity to the protons from PEO.
- Left side peak represents Li in more purely ionic configuration.
- In the sample without Al₂O₃, the third peak represents crystalline Lil regions and it remains even at higher temperature.
- Surface interaction between Lil and Al₂O₃ can create high defect density and thus suppresseing the formation of crystalline Lil.

Figure: 1. ⁷Li NMR Spectra of P(EO)_{1.5}Lil with 6 Vol% Al₂O₃ (Left), Without Al₂O₃ (Right).

Y.Dai., Solid State Ionics., 106 (1998) 25-32

Conclusions

- Solid state NMR Spectroscopy can be used for a media with no or little mobility anisotropic interactions.
- ¹H NMR linewidth as a function of temperature was used to find the T_g for amorphous PEO₆:LiSbF₆.
- ⁷Li spectra was used to distinguish between amorphous and crystalline P(EO)₆:LiSbF₆.
- ⁷Li and ³¹P spectra were used to find the relative contributions of cation and anion transport to conduction in the 6:1 crystalline polymer electrolytes.
- ⁷Li spectra was used to find the Coexistence of mobile and immobile Li⁺ phases and the conductivity of P(EO)_{1.5}Lil with 6 Vol% Al₂O₃ and without Al₂O₃ samples.

Zlatka., Letters to Nature., 412 (2001) 520

Y.Dai., Solid State Ionics., 106 (1998) 25-32

