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Abstract

To understand coastal dispersal dynamics of Atlantic cod (Gadus morhua), we examined spatiotemporal egg and larval
abundance patterns in coastal Newfoundland. In recent decades, Smith Sound, Trinity Bay has supported the largest known
overwintering spawning aggregation of Atlantic cod in the region. We estimated spawning and dispersal characteristics for
the Smith Sound-Trinity Bay system by fitting ichthyoplankton abundance data to environmentally-driven, simplified box
models. Results show protracted spawning, with sharply increased egg production in early July, and limited dispersal from
the Sound. The model for the entire spawning season indicates egg export from Smith Sound is 13%Nday21 with a net
mortality of 27%Nday–1. Eggs and larvae are consistently found in western Trinity Bay with little advection from the system.
These patterns mirror particle tracking models that suggest residence times of 10–20 days, and circulation models
indicating local gyres in Trinity Bay that act in concert with upwelling dynamics to retain eggs and larvae. Our results are
among the first quantitative dispersal estimates from Smith Sound, linking this spawning stock to the adjacent coastal
waters. These results illustrate the biophysical interplay regulating dispersal and connectivity originating from inshore
spawning of coastal northwest Atlantic.
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Introduction

The early life history of marine species has long been considered

a critical component of recruitment and population structure

[1,2]. Population persistence requires that births and immigration

equal, or exceed, deaths and emigration. Therefore, the descrip-

tion of population movement, immigration and emigration, or

dispersal is critical to understanding population dynamics [3].

When dispersal is successful, connections among populations are

established, the degree of which is defined as connectivity [2].

The egg and larval stages are typically the primary periods for

dispersal and consequently have attracted considerable attention

for understanding population dynamics [4] often with the goal of

improving fisheries management [5]. Transition from the disper-

sive egg and larval stages to appropriate settlement habitat defines

recruitment (immigration) to a location or population. Successful

recruitment at this stage is a product of placing propagules into

optimal survival conditions [6], coupled with oceanographic

conditions that associate settling stage larvae with suitable

settlement habitat [7]. For coastal environments, multiple studies

attribute strong survival from dispersive egg and larval stages

through settlement to local retention [8].

The importance of inshore spawning in coastal Newfoundland

has been shown for several species, but especially for Atlantic cod

(Gadus morhua); coastal embayments offer abundant food resources

[9], important spawning sites [4], and myriad habitats suitable for

settlement and survival of vulnerable juvenile stages [10]. The

heterogeneous mosaic of sub-populations within and between bays

in coastal Newfoundland [11] is maintained through migration,

spawning and dispersal [12]. Egg and larval dispersive stages of a

population can connect spatially extant population sub-units [13],

contributing to population structure [14].

In the mid-1990’s the discovery of an anomalously large,

previously undocumented, spawning aggregation of Atlantic cod

in Smith Sound Trinity Bay, Newfoundland [15,16] drew attention

to the potential role of inshore spawning in the recovery of depleted

cod stocks. The Smith Sound aggregation represented the largest

known cod stock component remaining through the 1990’s. The

role of this large spawning aggregation in potential recovery of

stocks at local or large scales drew considerable attention [12,15,16].

Although previous researchers explored topics such as genetic

isolation [12], recruitment success [16], reproductive biology [17],

and spawning characteristics [18,19] in the region, no study has

detailed early life history dispersal originating in, and propagating

away from Smith Sound. The dispersal characteristics of eggs and

larvae leaving the Sound remain unresolved, and by closing this gap

we begin to address how this large spawning aggregation connects at

various spatial scales.

Smith Sound is a relatively small (,36 km2) fjord, bounded by

land on three sides, resulting in a natural system in which eggs and

larvae disperse from a relatively localized and large source [16],

providing a model system to measure marine dispersal from a

fairly discrete and known point of origin. This study addresses two
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broad themes describing dispersal and connectivity of the Smith

Sound-Trinity Bay model system: 1) What are the dispersal

characteristics of eggs and larvae spawned from a small coastal

embayment and how do they vary seasonally? 2) How does

movement of eggs and larvae from that small embayment

influence subsequent transport in the adjacent bay and beyond?

These questions are addressed by describing flow conditions in

Trinity Bay and by determining dispersal from empirical data

fitted to several biophysical model scenarios using simplified box

models to represent the Smith Sound-Trinity Bay system. The

results illustrate dispersal potential from Smith Sound, providing

new insight into the source dynamics of the Trinity Bay-Smith

Sound aggregation. This study builds on current understanding of

the biophysical interplay that regulates dispersal, recruitment and

therefore connectivity of coastal spawning fish stocks.

Methods

Study Area
Trinity Bay (48u 29N, 53u 259W) is a coastal embayment on the

northeast coast of Newfoundland (Fig. 1a,b). The Bay is roughly

Figure 1. Maps of study area and survey locations depicting. (a) Study site relative to NAFO divisions 2J+3KL in the northwest Atlantic Ocean.
(b) Trinity Bay tucker trawl survey array. Open circles represent eastern Trinity Bay Stations, dashed line represents mean passive flow conditions
(Tittensor 2001; 2002), and * represents Bonaventure Head. (c) Smith Sound ring net survey stations. Star refers to temperature logger mooring
location.
doi:10.1371/journal.pone.0075889.g001

Factors Regulating Inshore Atlantic Cod Dispersal

PLOS ONE | www.plosone.org 2 September 2013 | Volume 8 | Issue 9 | e75889



100 km long and 30 km wide. A trench runs centrally down the

lengthwise axis of the bay with maximum depths exceeding 600 m

ending in a sill at the mouth of the bay with a maximum depth ,
250 m [20]. Circulation modelling by Yao [21], Davidson et al.

[22], and Tittensor et al. [23] reveals a weak anti-cyclonic

circulation and the strong influence on circulation by wind forcing,

both local and non-local [24]. Smith Sound is a narrow, ,20 km

long by 2 km wide fjord on the western side of Trinity Bay adjacent

to Random Island. Trenches running down the center of the Sound

extend to depths of 200–350 m and the sill rises to ,50 m. A shoal

and causeway separate Smith Sound from the adjacent Northwest

Arm, restricting the movement of water through a channel that is

less than 10 m wide and 2 m deep (Fig. 1c).

Biological sampling
To estimate temporal characteristics of egg release by spawning

cod, ichthyoplankton were sampled bi-weekly at six stations in

Smith Sound (Fig. 1c) from March to August in 2006 and 2007 with

a 1-m diameter by 3-m long ring net fitted with 333 mm mesh and a

General Oceanic flow meter to estimate sample volume. Ring nets

were towed at the surface at approximately 4 kmNh21 for 20

minutes. Synoptic ichthyoplankton surveys of Trinity Bay provided

a basis to infer a dispersal trajectory and the spatial pattern of

propagules produced by spawning events in Smith Sound. During

the spring (May of 2004 and 2006) and summer (July 2004),

ichthyoplankton were collected on board the CCGS Shamook over a

grid of twenty stations radiating in a ‘‘bulls eye’’ pattern from Smith

Sound (Fig. 1b). Double oblique tows were carried out using a 4 m2

Tucker trawl fitted with decreasing mesh sizes of 1000, 570, and

333 mm. The trawl was lowered to a maximum depth of 40 m and

towed at 4 kmNh21 for 20 minutes; 40 m is the approximate depth

of the upper mixed layer and has been used a bench mark depth for

integrated cod egg and larval sampling in this region [25,26].

Volumes sampled were estimated using flow meters fitted at the

mouth of the trawl. All necessary permits for collecting ichthyo-

plankton were obtained prior to sampling in accordance with the

Canadian Council of Animal Care guidelines. No specific locational

permits were required for ichthyoplankton sampling in Smith

Sound-Trinity Bay, and no threatened or endangered species were

at risk of incidental capture.

Ichthyoplankton samples were preserved in 4% formalin in

buffered sea water. In the laboratory, all fish eggs and larvae were

removed and identified except where egg stage and larval

abundances for taxon exceeded 300 individuals, in which case

they were sub-sampled using a Motodo plankton splitter. Eggs of

all species were grouped into four taxonomic development stages

adapted from methods outlined in Markle and Frost [27]. Samples

from May 2006 were also processed for zooplankton abundances

[28] following sub-sampling protocols outlined for the cod eggs

according to the lowest taxonomic level identifiable. All eggs

Figure 2. Illustration of model setup for primary (a) and secondary (b) models. Equations define daily egg numbers. Source terms of
secondary model (b) are loss terms from primary model (a). ‘‘*’’ refers to Bonaventure Head.
doi:10.1371/journal.pone.0075889.g002
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identified as cod were classified as CHW, representing cod,

haddock (Melanogrammus aeglefinus) or witch flounder (Glyptocephalus

cynoglossus). Eggs classified as CHW are indistinguishable to species

level until the final developmental stage. In all cases final stage eggs

were identified to species [27]. The vast proportion of the CHW

eggs was, in fact, cod. Relatively low levels of both witch flounder

[29] and haddock in the regions further suggest that Atlantic cod

[19] comprised the majority of early stage CHW eggs.

Physical observations
Temperature can be used to estimate egg stage duration

[30,31], and was therefore the key linking variable in modelling

scenarios for biological field observations. Continuous temperature

data for Smith Sound were derived from temperature loggers

secured at depths ranging from 10 – 40 m collected during the

spring and summer from 2004–2007 (Fig. 1c). Vertical CTD casts

for conductivity, temperature, fluorescence and depth (SeaBird

Electronics SBE 19) were collected with each ichthyoplankton tow

during the Trinity Bay Tucker trawl surveys, providing physical

profile data for Smith Sound and Trinity Bay. We collected

current measurements in Smith Sound, in 2007, with a 300 khZ

RDI Acoustic Doppler Current Profiler (ADCP), deployed in an

upward-looking configuration in the middle of the Sound (Fig. 1c).

We calculated the residence time for particles in the surface

waters of Trinity Bay using a regional ocean circulation model

designed for simulating ocean currents [22]. The model was run at

1 km resolution and forced with wind speed data collected at St.

John’s airport. The circulation field was determined for the

summer period (June to September) for each year from 1953 to

1992. Particles (n = 49) were randomly placed in 3 km by 3 km

boxes, 400 in total for Trinity Bay. Particles were tracked until

more than half had left the bay and this duration was identified as

the residence time for the particles in that box.

Data analysis
Spatial patterns of egg and larval concentrations, and comple-

mentary biological/physical variables were interpolated between

sample stations using kriging (SurferH 9). Spatial estimates of egg

and larval concentrations were obtained using kriging data

interpolated from all stations sampled, thus providing a mecha-

nism to map spatial heterogeneity. Based on preliminary

examination of the data, which suggested an east-west disconti-

nuity, we separated subsequent analyses by dividing the interpo-

lated field into eastern and western groupings (Fig. 1b).

From the interpolated fields, the ‘‘centre of mass’’ (COM) of egg

stage within a particular survey was calculated according to the

equation:

COMz~
X

(Di
:Zi):

X
(Di)

{1 ð1Þ

where COMz is the calculated centre of mass along either the

latitudinal or longitudinal axis for a given latitude or longitude Zi,

for station i, and Di is the observed concentration at the ith station.

The interpolated output from linear kriging analyses was used as a

mechanism to avoid, or at least minimize, spatial bias associated

with closely-spaced stations (Fig. 1b). Passive transport rates were

Figure 3. Results of regional circulation model detailing (a) average residence times for particles released in the surface waters of
Trinity Bay (June-September, 1953–1992) and (b) mean currents in Trinity Bay (May-August 2002) at a depth of 40 m. The solid axes
represent standard deviation of the flow along the direction of maximum and minimum variance. Redrawn with permission from Tittensor et al. [23].
doi:10.1371/journal.pone.0075889.g003
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estimated from the distance between COM, calculated using great-

circle distance and the transition time between early (1–2) and late

(3–4) egg stages. Transition times were calculated according to

temperature data from CTD measurements, utilizing development

equations from Bradbury et al. [8]. To account for variability in the

estimate of the mean temperature, and therefore passive pelagic

duration, 1000 randomizations were run in Matlab using the

maximum and minimum observed temperatures as constraints.

Randomized mean temperatures were then used to calculate

possible transport distances for the different egg durations. These

error estimates enable a realistic comparison of transport distance

variability based on real data and are independent of any specific

statistical error structure. Estimates from this analysis provide a

metric of diffusion of eggs within the Trinity Bay system.

Egg number as a function of distance from the presumed source

was determined by multiplying the concentration of eggs observed

by the mixed-layer depth (from CTD casts) and the radial surface

area assigned to the station. The radial surface area was derived

from the surface area of an arc sector radiating out from a vertex at

the mouth of Smith Sound and expanding to the north-west and

south-east boundaries of the sample array. The distance of a station

from Smith Sound was determined from the great-circle calculation.

Modelling
A two-box model was coded in Matlab to estimate the

parameters defining spawning and dispersal from Smith Sound.

The primary box represents Smith Sound (Fig. 2a) where eggs are

released, experience mortality, and progress through egg stages

with each time step (daily). In the model, the box is a point,

representing the area of Smith Sound. In the primary box,

mortality is the combined effect of loss from death and loss from

advection out of the system because eggs can leave the box at the

end that connects to Trinity Bay. For each day, the model output

dictates the numbers of each egg stage present in the Sound. The

Figure 4. Mean stage 1 CHW egg density±standard error sampled in Smith Sound during 2006–2007 ring net surveys. Solid line
indicates mean mixed-layer temperature (,40 m).
doi:10.1371/journal.pone.0075889.g004
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secondary box, which represents Trinity Bay, includes an input of

eggs from Smith Sound to Trinity Bay (Fig. 2b). The eggs that exit

Smith Sound are an output of the primary model, and enter as an

input to the Trinity Bay box of the model. Thus the two boxes of

the model are connected. We assume that the eggs leave Smith

Sound and enter Trinity Bay but in essence the model

representation is for the net result of transfer between the two

systems and could be considered as the sum, at any particular

time, of the eggs leaving Smith Sound and those entering the

Sound. The model depends on the time-scales for this problem.

The typical advective time-scale for Smith Sound is likely to be

long relative to the model, since the mean currents in the Sound

are weak, less than a few cm/s, leading to a time scale of roughly

20,000 m/1022 mNs21or, roughly 20 days. As Figure 3a shows the

time-scale for residence in Trinity Bay is also quite long, 20–50

days, and so on the time scale of the model, a day, the system can

be thought of as relatively stationary since the time scales in both

systems is at least twenty times longer. These advective time scales

are also long relative to the time that it takes to conduct a survey:

1–2 days for Smith Sound and 2–3 days for the Trinity Bay region.

The times are also long relative to the transition times for the eggs,

which are , 4–5 days. The advective time scales of Smith Sound

and Trinity Bay support the relevance of the model.

The primary model was constructed in Matlab using a three-

vector Leslie matrix:

b~½i,j,k� ð2Þ

where b is the matrix representing Smith Sound, i is the vector

tracking the cohort released over the spawning period (144 days), j

is the vector that tracks day 1–144 and k tracks egg stage (stages 1–

4 and larvae). Eggs are released each day according to the

spawning scenarios described below. Each day (ji) eggs progress

through part of an egg stage (I–IV) according to the cumulative egg

development durations (D) successfully employed to describe cod

dispersal in neighboring Placentia bay by Bradbury et al. [8].

DI~e½2:36zT(0:12)� ð3Þ

DII~e½3:12zT(0:15)� ð4Þ

DIII~e½3:45zT(0:17)� ð5Þ

DIV~e½3:65zT(0:12)� ð6Þ

Each time step is associated with a temperature observation (T)

from the Sound on the jth day. Each day, ji, the cohort completes a

percentage of a stage (k) according to temperature development

equations defined in Bradbury et al. [8] compiled from data

presented in Pepin et al. [32]. Once a cohort completes 100% of a

stage, it is lost from the preceding stage it then moves on to the

subsequent stage on the next day ji+1. Eggs are tracked and

experience mortality collectively as cohorts. Daily cohorts include

the previous day’s cohort minus mortality loss for that stage.

Mortality in the primary model is a single term varied from 0–99%

which is a sum of death due to natural mortality and dispersion

from the system. Essentially dispersion out of the box, at the

mouth, is equivalent in the single box model to natural mortality.

The temporal characteristics of spawning were modelled using

Gaussian- distributed spawning scenarios, varying in degrees of

protraction, and an empirically-derived spawning model based on

observed temporal patterns in egg abundance from the Smith

Sound surveys (Fig. 1c). The peak egg abundance predicted by the

Gaussian curves was set to coincide with the peak mean

abundance observed in the Smith Sound surveys and to

encompass the entire observed spawning period (March 30th to

August 20th). The primary model was tested with different

spawning distributions (n = 6) and mortality levels (0–99%) to

estimate both the temporal characteristics of spawning and net

mortality in the system. The output from each model run consisted

of a distribution of egg stage counts, with associated percent stage

development, for every day of the spawning season.

The output of the egg time series from the primary model was

compared to abundances estimated from bi-weekly Smith Sound

surveys. The model tracks the relative abundance of eggs although

it does not represent a concentration abundance that can be

compared with the observations from the field. Instead of absolute

egg numbers or concentrations, the model output and field

abundances were compiled into relative frequencies of each egg

stage (k) for given day (ji). In essence, the model and the

observations are really relative indices of abundance rather than

estimates of absolute abundance. The survey data and model

prediction of relative frequency for each egg stage over the

spawning period were compared, resulting in a coefficient of

determination (r2) or least squares fit. For every model permuta-

tion, we varied spawning scenario (n = 6) and mortality values (0–

99%) and calculated an r2 for each stage. The fit of the model

permutation was evaluated by calculating the mean r2 minus the

variance in r2, among all egg stages. This method maximized the

model fit to all egg stages, and avoided erroneous parameter

estimates associated with strong fits to some stages and weak fits to

others. To account for variability in ichthyoplankton survey data

(6 stations, Fig. 1c), a randomization was employed, constrained

by mean egg stage concentration61 standard deviation, to

compute 1000 mean relative abundances of each egg stage, each

sample day, and thus 1000 estimates of model fitness for each

model permutation. Global model fits to each permutation,

accounting for this ichthyoplankton variability, could then be

assigned using the same algorithm described above (mean-

variance). The spawning treatment and corresponding net

mortality with the highest global model fit represented the best

estimation of Smith Sound ichthyoplankton data.

Net mortality estimated from the model is the sum of both

advective loss from the system and natural mortality (death,

predation, etc.). To estimate advective loss from net mortality an

estimate of natural morality was calculated from Trinity Bay

ichthyoplankton data according to the equation:

D~ ln (N1
:N{1

o ):(ti{to){1 ð7Þ

where No and N1 are the combined mean survey abundances for

consecutive stages and to and t1 are the predicted egg stage

Figure 5. Spatially-contoured CHW eggs stage concentration (eggsNm23) for May 2004 Trinity Bay Tucker trawl surveys. Dots
represent station array and dashed line represents east west division.
doi:10.1371/journal.pone.0075889.g005
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durations. To account for the variability in abundance among

Trinity Bay stations, abundance and temperature data from each

survey were bootstrapped 1000 times to estimate a mean mortality

rate and the associated standard deviation. Previous natural

mortality rate estimates range from 0.1/day to 0.3/day [8,33–37].

By estimating a possible range of natural mortalities observed in

the field, the advective loss from the system given a known net

mortality can be inferred.

The primary model estimates the spawning characteristics of the

Smith Sound aggregation defining production and mortality.

Mortality in the primary model represents the sum of egg

mortality and advection from the system but cannot differentiate

between the two. Egg stage abundance data collected from surveys

in adjacent Smith Sound were utilized to estimate the advection

from the primary model. In this case the advective component of

mortality in the primary model was treated as the input into the

secondary model representing Trinity Bay (Fig. 2b). The primary

model scenario with the best fit was used to simulate egg

production throughout the spawning season in Smith Sound.

Again, as in the primary model, daily relative frequencies were

used as indices of egg stage abundance because data did not

permit parameter estimation using egg number. Each day the

primary model predicts egg stage abundances which are multiplied

by a dispersal term to be used as the source for eggs in the Trinity

Bay system. The dispersal term varied from 1% to the net

mortality estimated by the primary model. Each model permu-

tation then provides egg stage abundances that are released into

Trinity Bay, which then progress in daily time steps just as in the

primary model. Loss rates were calculated by minimizing the sum

of the squared differences between the relative frequency of each

egg stage predicted by the model and observed in the field for each

sampling day in each permutation. Data from 2004 provided

enough temporal coverage (May and July) to fit a seasonal estimate

of advection. The predicted relative abundance of each egg stage

was compared to the field estimates taken on respective sampling

days. As in the primary model, each permutation produced an r2

for each egg stage. The model fit was calculated by taking the

mean r2 minus the variance in predicted r2 among stages. The

randomization and global model fit procedure used in the primary

analysis to incorporate variability in the field data was repeated

with the western Trinity Bay data (10 stations; Fig. 1c).

Results

Particle tracking and residence time
In general, Smith Sound mean currents are less than a few cm/s

and decrease in speed from the mouth to the head of the inlet.

Current meter observations from Trinity Bay show that the mean

flow speed is typically close to the variance [23] indicating

substantial variability in the circulation relative to the mean flow

pattern. Nonetheless, on average, water clearly enters on the west

and exits on the eastern coast generating a weak anti-cyclonic flow.

Current variability, primarily driven by wind stress [22], produces

complex patterns of response dominated by an upwelling-down-

welling cycle and a Kelvin wave signature [22]. A counter

clockwise gyre observed near the mouth of Smith Sound exhibits

some strong flow (Fig. 3b). Tracking models suggest residence

times ranging from 20–30 days for particles released near the

mouth of Smith Sound. As expected, much longer residence times

near the head of Trinity Bay (50–60 days) greatly exceed those

near the mouth (5–10 days). Overall, expected residence times for

particles retained within the sampling array (Fig. 1b) ranged from

20 to 50 days (Fig. 2a).

Field observations
Mean concentrations of stage 1 CHW eggs were highest in

Smith Sound during early summer (particularly early July 2007).

Increases in egg concentrations through June and July also

coincided with increases in mixed-layer temperatures (Fig. 4).

Abundances of stage 1 CHW eggs, relative to all other stages, in

Smith Sound correlated negatively with mixed-layer temperature

among sample years (Pearson correlation = 20.368, p = 0.041,

n = 29; controlled for year). All late stage CHW eggs were

identified as Atlantic cod as in previous ichthyoplankton studies in

Trinity Bay [15,16] and nearby Placentia Bay [8]. All CHW eggs

were therefore considered to be Atlantic cod with an unknown, but

likely small, number of early stage eggs possibly misidentified.

The highest concentrations of early CHW egg stages (1–2) were

closely associated with Smith Sound, the presumed natal source.

Late stage CHW eggs (3–4) were typically most abundant on the

western inner portion of Trinity Bay, as predicted from mean

southerly transport of eggs flushed from Smith Sound. Spatial

associations of stage 1 eggs were consistent among all surveys

whereas late stage distributions, particularly stage 4, were much

more variable (see Figs 5, 6, 7 for May 2004, July 2004 and May

2006 respectively). Egg concentrations from the July 2004 survey

were the highest observed among all Trinity Bay Tucker trawl

surveys; this timing was consistent with temporal spawning data

from Smith Sound. In all surveys, the western side of Trinity Bay

had significantly greater concentrations of egg stages (GLM egg

density, side of bay, controlling for survey, F = 34.743, 16.306,

3.433, 84.490; p = ,0.0001, ,0.0001, 0.064, ,0.0001, for stages

1–4 respectively). Larvae were also significantly more abundant on

the western side of Trinity Bay [7].

Area-corrected egg numbers (see Methods section) were unrelated

to distance from Smith Sound. Regression analysis demonstrated

that the egg number was effectively constant (slope = 0.021,

f = 11.048, r2 = 0.062, p = 0.001) as a function of distance from

Smith Sound for all surveys and egg stages. There was also no

significant trend in distance from Smith Sound and variance in egg

concentrations (f = 0.225, p = 0.636) for individual or pooled surveys.

Mixed-layer temperatures near Bonaventure Head (those

stations within 10km), western Trinity Bay, were significantly

colder than temperatures observed in the remaining stations

(Fig. 8). This observation was consistent during all of the sampling

periods in spring and summer (Table 1), and with previous studies

in the area [20–23,38]. Similarly, stations within the upwelling

region were characterised by significantly higher primary produc-

tivity levels (fluorescence) and zooplankton abundance than

remaining stations (Table 1).

Centre of mass (COM) calculations conform to predictions of

relative differences between early (1–2) and late (3–4) CHW egg

stages based on temperature derived duration. The longest

observed distance between early to late COM was the May

2006 mean distance of 7.6 km (standard deviation (s.d.) = 0.3).

Distances were less for July 2004 (2.8 km, s.d. = 0.5) and May

2004 (3.0 km, s.d. = 2.4) respectively. The shortest COM distance

was in the first survey of July (0.2 km) but subsequent survey

rounds during the same cruise produced a mean distance of

4.4 km (s.d. = 0.3). Based on known development rates (see

Figure 6. Spatially-contoured CHW egg stage concentration (eggsNm23) for July 2004 Trinity Bay Tucker trawl surveys. Dots represent
station array and dashed line represents east-west division.
doi:10.1371/journal.pone.0075889.g006

Factors Regulating Inshore Atlantic Cod Dispersal

PLOS ONE | www.plosone.org 9 September 2013 | Volume 8 | Issue 9 | e75889



Factors Regulating Inshore Atlantic Cod Dispersal

PLOS ONE | www.plosone.org 10 September 2013 | Volume 8 | Issue 9 | e75889



Methods section) passive transport rates were estimated to be

0.43 kmNday21 (s.d. = 0.25) and 0.32 kmNday21 (s.d. = 0.18) for

surface and mixed layer temperatures respectively. Centre of mass

calculations tend to produce conservative transport distances

because they artificially mask symmetrical bidirectional dispersion.

However spatial observations (Figs 5, 6, 7) coupled with COM

locations suggest a reasonable approximation of mean transport

conditions in the field.

Model results
Model simulations indicated that the most protracted spawning

scenarios produced the best fit (mean - variance) for the 1000

randomizations of survey data for both mixed-layer and surface-

layer temperatures (Fig. 9), with mixed layer temperatures yielding

the best predictive capacity at 73% explained variance. The weakest

predictive outcome for the temperature treatments (surface and

mixed-layer) was the empirically approximated bi-modal distribu-

tion. Gaussian distributions and mixed-layer temperatures were

therefore used for the remainder of the modelling analyses.

Daily natural mortality (death) was estimated using field egg

abundance data at ,7% (s.d. = 1%). In contrast with the mortality

estimate above, models compared with Smith Sound ring net

survey data estimated net mortality at approximately 27%Nday21,

explaining approximately 73% of the variance in the data among

stages (Fig. 10). This estimate of net mortality corresponds to a

daily loss rate from Smith Sound of ,20% (Loss = Net Mortality –

Natural Mortality).

Loss rates estimated from western Trinity Bay data ranged from

2–15%Nday21 for individual surveys and were significantly

positively correlated with day of year (GLM, f = 64.689,

p,0.0001) (Fig. 11). The average loss rate estimated from all

individual survey estimates was 10.3%Nday21 (s.d. = 7.7%). Stan-

dard deviation associated with mean estimates of loss demonstrat-

ed no significant trend with day of year (GLM, f = 4.616,

p = 0.084). In 2004, there were enough sample days to estimate

the parameters for among-stage model fitting that was utilized in

the primary model. Daily loss rate from Smith Sound was

estimated from the 2004 spawning season regression model at

13%Nday21, with higher variability (s.d. = 11%) than that found

for individual surveys. Based on all loss estimates derived from

individual surveys and annual data, the mean loss rate from Smith

Sound was estimated to be 9%Nday21 (s.d. = 7.5%).

Discussion

Understanding movement and survival during pelagic dispersive

stages of benthic organisms is critical to the evaluation of how

populations are linked both genetically and demographically [3].

Inshore spawning of Atlantic cod has been well documented [39]

and tied to both stock structure and population stability [40]. Central

to the study of inshore spawning has been the evaluation of

biophysical interactions which define placement of larvae to suitable

settlement habitat [41] or retention within the inshore nursery

environment [8,42]. Our study offers the first empirically-derived

measurements of early life history dispersal, and associated

environmental factors, from a discrete source of Atlantic cod eggs and

larvae, and thus represents a model system and analytical approach

for inferring dispersal of pelagic spawners in coastal embayments.

Using this approach we were able to generate mortality and dispersal

estimates to describe dispersal in an inshore system.

After a nearly two decade-long fishing moratorium and no clear

signs of recovery, the potential to forecast the future of the

northern cod stock depends on understanding its current spatial

structure and mechanisms of connectivity. The cod in Smith

Sound, discovered in 1995, form the largest known spawning

aggregation in the northern cod stock complex. Despite recent

indications that the Smith Sound stock has reduced substantially in

size [12], its anomalously high abundance and patchy nature have

attracted significant research attention, including monitoring of

Smith Sound annual adult biomass [43–45] behavioural studies

[18,44,46,47], measurements on physiological traits [17] and

speculation on the spatial and temporal origins of the stock [12].

As is common for other harvested fish populations worldwide,

however, little detailed information exists on dispersal and

connectivity of egg and larval stages so important in determining

Figure 7. Spatially contoured CHW egg stage concentration (eggsNm23) for May 2006 Tucker trawl surveys. Dots represent station array
and dashed line represents east-west division.
doi:10.1371/journal.pone.0075889.g007

Figure 8. Spatially-contoured CTD cast temperature data for the mixed-layer (average up to 40 m depth) collected during
ichthyoplankton surveys of Trinity Bay 2004–2006. Bar plots represent mean temperatures6standard error for the stations within (white bar)
and outside (black bar) the upwelling zone (those within 10 km of Bonaventure Head). Dashed line represents the radius of temperature data
sampled for Bonaventure Head (*) and dots represent station array used for all surveys.
doi:10.1371/journal.pone.0075889.g008
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overall population viability. In the case of Smith Sound, the role of

dispersal of progeny from the area has received less empirical

attention than for other offshore stocks [48] and nearby Placentia

and Conception Bays [49,50].

Observations from Smith Sound ichthyoplankton surveys in 2006

and 2007 indicate a bi-modal, protracted spawning pattern, from

March to August, peaking weakly in late May and strongly in mid to

late-July, confirming a complementary study by Knickle and Rose

[19]. Peak egg production in late July coincided with increases in

temperature, exposing these eggs and their development to the

highest expected annual temperatures (July and August). Model

simulations are consistent with strong temperature dependency and

protracted, rather than discrete, spawning events. Models incorpo-

rating the protracted spawning scenario provided the best fit to field

data. In this respect, our results were consistent with previous studies

that documented protracted spawning in Atlantic cod [51] and

inferred timing of Trinity Bay cod spawning from ichthyoplankton

surveys [46]. Both modelling and field data show a strong positive

relationship between stage 1 CHW egg abundance and temperature

(see Fig. 4). The observed temperature dependence builds on

previous results that suggest environmentally-driven spawning in

Smith Sound [46] and nearby Conception Bay [50] strongly related

to temperature [49]. Other studies report regional variation in

timing of cod spawning [52,53], and link spawning variability to

temperature and other regional differences.

The protracted nature of cod spawning, and seasonal changes in

environmental condition, lead to the prediction that seasonal

variation in spawning influences annual recruitment success [8].

Temperature can drive pelagic egg mortality both negatively [54]

and positively [30,31], depending on the underlying process (i.e.

growth or predation). In particular, spawning in colder tempera-

tures extends pelagic durations thus prolonging exposure to high

mortality rates characteristic of pelagic stages [54] and increasing

the potential for dispersal from inshore nursery areas [8,55]. Data

comparing early spawning (May) to mid-summer (July) offers an

alternative to this generalization. The ratio of peak stage 1 to stage 4

egg abundances did not vary seasonally, indicating that survival of

the egg stage likely does not vary significantly among seasons despite

a 1-week extension in development times early in the season (based

on mean mixed-layer temperatures). The consistency in spatial

patterns seasonally suggests that oceanographic processes can

facilitate retention and persist through the spawning period.

Spawning at warmer temperatures results in faster development

and reduced pelagic durations, thus leading to generally shorter

passive transport distances and increased local retention [4,7,8].

Our results generally confirm this pattern. Specifically, the longest

transport distances estimated among all surveys occurred when the

coldest temperatures were recorded. These results indicate that the

timing of Smith Sound spawning appears to favour retention,

which the presence of late eggs stages and larvae in and near

Smith Sound confirm. The majority of spawning activity occurs at

times that decrease pelagic egg durations and therefore increase

retention in and around Smith Sound.

Oceanographic conditions in Trinity Bay may enhance the

retention of eggs and larvae near the sound. Upwelling and other

oceanographic features, such as gyres, have been shown to impact

spatial patterns of pelagic propagules of a variety of species

including Atlantic cod [56]. In Trinity Bay, persistent upwelling

[20,23,38] and a gyre spanning the width of the bay [21,23], near

the mouth of Smith Sound, may influence dispersal trajectories of

propagules originating from the sound as suggested by Dalley et al.

[55] for larval capelin (Mallotus villosus). Large-scale modelling of

Atlantic cod dispersal on the Norwegian coast demonstrated

Table 1. Results for General Linear Model Analysis of Variance
comparing physical and biological parameters between
stations within (those within 10 km of Bonaventure Head) and
outside the upwelling zone.

Variable Factor df F-value p-value

Fluorescence Upwelling zone 2 5.836 0.0037

Survey 6 35.037 ,0.001

Interaction 7 0.939 0.4788

Mixed-Layer
Temperature

Upwelling zone 2 3.701 0.0272

Survey 6 35.037 ,0.001

Interaction 7 0.166 0.9914

Zooplankton* Upwelling zone 1 6.377 0.0162

Survey 1 3.925 0.0501

Interaction 1 0.957 0.3347

*zooplankton data only available for 2006 surveys
doi:10.1371/journal.pone.0075889.t001

Figure 9. Model fit results for varying spawning scenarios,
temperatures and estimated daily net mortality. Data presented
show the overall mean of the model fits produced in 1000
randomizations of Smith Sound data.
doi:10.1371/journal.pone.0075889.g009
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similar patterns, where coastal retention of eggs and larvae was

attributed to small-scale and localized eddies found between

islands along the coast [57]. Our data demonstrated a general

association of all stages of eggs and larvae with the western side of

Trinity Bay. The transition time from stage 1 to stage 4 is 26–33

days based on observed mixed layer temperatures (equations 3–6)

[8]. Mean passive flow conditions estimated from flow modelling

[20,21], ADCP data [23], and particle tracking (Fig. 3a) could

move eggs beyond the sampling spatial window in as few as 20

days, based on observed mean flow estimates of roughly

10 cmNs21and Euclidean movement. Passive flow rates inferred

from ichthyoplankton concentrations are 0.32 kmNday21 for

Figure 10. Model results for explained variance (r2) for each egg stage with varying net mortality. Also plotted is the overall model fit
(mean minus variance in r2 among stages).
doi:10.1371/journal.pone.0075889.g010

Figure 11. Estimates of percent daily advection of CHW eggs from Smith Sound (± 1 s.d.) during spring and early summer 2004–
2006. Error bars are estimated from 1000 randomizations of western Trinity Bay survey data. Dashed line represents the estimated 27% net daily
mortality from the Sound.
doi:10.1371/journal.pone.0075889.g011
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mixed-layer temperatures and 0.43 kmNday21 for surface temper-

atures represent less than 5% of estimated mean flow in Trinity

Bay, further suggesting a strong role for the upwelling and gyre

features. Even if the estimation of ,5% of expected flow rates is

extremely conservative, the concurrent observation of spatial

patterns is inconsistent with dispersal at the mean current rates

estimated in the area. In addition, no consistent relationship

between egg numbers and distance from Smith Sound was

observed, despite an expected decrease in number as a result of

diffusion and cumulative mortality from the expected source. This

result supports our conclusion that spawning is protracted and

dispersion and mixing of eggs from the Sound. Spatially, stage 1

eggs were consistently associated with the assumed natal source,

Smith Sound, whereas stage 4 eggs varied among surveys, further

negating a simple Euclidian dispersal interpretation.

Ichthyoplankton data collected in this study show that Smith

Sound represents the major source of CHW eggs in the Trinity

Bay system. The highest abundance of stage 1 CHW eggs is

consistently associated with the western side of Trinity Bay near

the mouth of Smith Sound from spring through summer and from

year to year (Figs 5, 6, 7). Only during one survey in mid-July 2004

was there any significant progression of egg stage concentrations

towards outer stations near the mouth of Trinity Bay (Fig. 6,

survey 3). Given the size of the Smith Sound stock relative to

potential neighboring inshore sources at the time of sampling,

detecting any outside recruitment input would be difficult, because

any signal would be drowned by output from Smith Sound.

Spatial analysis alone clearly illustrates the importance of the

Smith Sound spawning aggregation to the Trinity Bay system, but

suggests little movement of early life history stages outside Trinity

Bay relative to local retention.

Model simulations indicate a ,27% daily net mortality in Smith

Sound very close to the rate of 28% estimated for silver hake

(Merluccius bininearis) on the Scotian shelf using a variational

numerical modelling simulation [36]. Our model simulations

indicate that daily advective loss from the Smith Sound system

varies between 2–15% with a mean of 13% for 2004 and ,9% for

all surveys combined. These results also show an increase in

advective loss with day of year. The seasonal variation in estimated

loss rate might reflect differences in spawning output during the

protracted spawning season. A four-fold increase in spawning

(estimated from Smith Sound surveys) in July within a two to three

week period would spike the relative frequency of stage 1 eggs,

driving the seasonal model of loss rates. Trinity Bay ichthyo-

plankton data demonstrate an increase in the relative frequency of

stage 1 eggs near the peak July spawning activity relative to May

surveys, consistent with model predictions. The 13% daily loss

estimate from 2004 represents the best estimate because it

incorporates seasonal differences in spawning and temperature.

This estimate of loss represents the first empirical calculation of

output of progeny from a discrete inshore population component

of Atlantic cod, namely Smith Sound, providing a foundation for

determinations of source-sink dynamics relevant to the species.

Summary
The data and model simulations presented suggest that timing

of spawning in Atlantic cod acts in concert with oceanographic

features to retain larvae locally where food conditions are generally

favourable and may be detectable by spawning adults. Contrary to

studies in other systems [8], there is little evidence for seasonal

differences in propagule retention. Analysis of spatiotemporal

patterns of early life history stages suggests that connectivity

potential from spawning decreases with distance from the

spawning source, Smith Sound. Daily loss estimates for Smith

Sound range between 8–13% daily. Overall, our data suggest high

retention of egg and larval stages within the Smith Sound-Trinity

Bay system. Although the data to fully explore the effects of wind

forcing and circulation are lacking, the parameters and observa-

tions presented in this study are consistent with, and build on,

existing data on early life history dispersal and connectivity in

Trinity Bay and elsewhere.

Acoustic tracking data from adults in spawning conditions

suggests that cod undergo migrations from Smith Sound into

Trinity Bay and adjacent large bays [12]. Recent analysis suggests

that since 2009 a considerable portion of the Smith Sound stock

may have dispersed to the Bonavista corridor [12]. Currently the

contribution of this spawning behaviour to population connectivity

remains unresolved. It has been proposed that inshore spawners

may eventually contribute significantly to the recovery of offshore

stocks [43,58] after density-dependent inshore-offshore spillover

occurs among adults. Not surprisingly, our observations of a highly

retentive system appear to corroborate this suggestion but only

minimally; further quantification is required before the full

influence of inshore spawning on offshore populations can be

determined. Connectivity from the early life history of Atlantic cod

arising from Smith Sound, and potentially additional coastal

analogues may be low, likely playing a significant structuring role

only on small spatial scales (e.g., 10’s of kilometres).
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