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With increasing pressure for a more ecological approach to marine fisheries and
environmental management, there is a growing need to understand and predict changes
in marine ecosystems. Biogeochemical and physical oceanographic models are well
developed, but extending these further up the food web to include zooplankton and fish
is a major challenge. The difficulty arises because organisms at higher trophic levels are
longer lived, with important variability in abundance and distribution at basin and
decadal scales. Those organisms at higher trophic levels also have complex life histories
compared to microbes, further complicating their coupling to lower trophic levels and
the physical system. We discuss a strategy that builds on recent advances in modeling
and observations and suggest a way forward that includes approaches to coupling across
trophic levels and the inclusion of uncertainty.

Our perception of the importance of
interannual and decadal variability in
the oceans has grown with an ever-

expanding body of physical, chemical, and
biological data (1, 2) and numerical modeling
(3, 4). Reported correlations between time
series of annual indices of biological constit-
uents and climate are routine in the literature
but often turn out to be ephemeral. For ex-
ample, the annual average abundance of the
copepod Calanus finmarchicus in the North
Sea was highly correlated with the North
Atlantic Oscillation (NAO) index between
1960 and 1996, but subsequently the relation-
ship broke down (5). Correlations do not
prove direct causal links, and their lack of
persistence makes them unreliable. For high-
er trophic level taxa, which live for one or
more years, annual abundance indices will be
autocorrelated, potentially generating mis-
leading cross-correlations with other vari-
ables that have different time scales. Never-
theless, when we see parallel changes in time
series of climate indices, physical oceano-
graphic properties, and chemical and biolog-
ical components of an ecosystem, one is
forced to accept that there must be strong
connectivity between decadal variability in
the Earth climate and the structure, function,
and productivity of the marine ecosystem
(Fig. 1). Although our understanding of the

governing processes and our ability to model
interannual variability is emerging for large-
scale climatic events such as El Niño (6),
modeling and prediction at decadal time
scales remains a challenge because of sketchy
understanding of the underlying processes.

Long life cycles of target organisms (7),
their migratory behavior, and the decadal scales
of environmental changes define the ocean ba-
sins as a natural spatial scale (6). Large-scale
circulation features often define the geographi-
cal distributions of species (Fig. 2). Changes in
physical oceanic conditions at basin scales will
affect organism growth and survival directly by
the transport of larvae or prey and by changes in
temperature that affect vital rates, and can affect
them indirectly by changes in nutrient or food
supply (Fig. 2) that result from mixing and
stratification (3, 8).

Continental shelf and marginal sea eco-
systems are affected by basin-scale forcing
on decadal scales and cannot be studied in
isolation (9). Modulations in the circulation
and feeding environments of marginal
seas—imposed by variability in the neigh-
boring ocean basin— can result in increased
connectivity of distinct, previously isolated
populations (10), or they can affect growth
and possibly population recruitment
through changes in the feeding environ-
ment (11). For example, the spatial patterns
in the variability of C. finmarchicus appear
to be related both to the North Atlantic
circulation and climate change (12, 13). In
turn, variations in populations of several
North Sea fisheries target species have
been related to the supply of C. finmarchi-
cus (Fig. 2).

The Rhomboidal Modeling Approach
Advances in modeling marine ecosystems
will require coupling numerical formulations
across trophic levels that have differing de-

grees of resolution and embedding these in a
basin-scale representation of the physics and
biogeochemistry (Fig. 2). We must also adapt
our modeling approaches to account for un-
certainties in the data and in our representa-
tion of processes (14).

There is no single, fully integrated mod-
el that can simulate all possible ocean eco-
system states. The biological resolution of
early attempts at marine trophic modeling
(15 ) was dictated more by the extent of
knowledge rather than by conscious deci-
sion about the structure and function of the
model (16). The biological detail of most
models increases with trophic level, prob-
ably because there is more knowledge of
the larger, more easily handled organisms.
However, this structure is not optimal, and
it risks artifacts arising from competitive
interactions implied by the lack of food
web resolution in the lower trophic levels.
Even a simplified food web, such as for
North Sea herring (fig. S1), cannot be com-
pletely simulated numerically because of
the absence of data and the difficulty of
parameterizing interactions. Some simplifi-
cation of the structure and predator-prey
relations is invariably necessary; however,
the traditional approach of representing tro-
phic or functional groups of species by bulk
biomass variables is not adequate for all
trophic levels (17 ). Taxa such as zooplank-
ton and fish, where juveniles and adults differ
in body size by many orders of magnitude
and there is the potential for long-distance
active migration, require a different approach
that resolves the developmental changes in
diet, physiology, and behavior.

The importance of scale as a structural
issue in ecological model design is well es-
tablished (16). The key steps in representing
extended food webs in complex marine sys-
tems are (i) to concentrate the biological res-
olution, or detail of representation, in the
main target species, and (ii) to make increas-
ing simplifications, or decrease the resolu-
tion, with distance both up and down the
trophic scale from the target species. The
target species of a model might be represent-
ed by developmental stage–structured repre-
sentations in which the key life-history stages
and their links to the environment are explic-
itly formulated. Competitors, prey, and
predators might be represented by less de-
tailed structures, perhaps based on species-
aggregated, bulk biomass properties or on
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empirical representations derived from exter-
nal forcing data, leading to a rhomboid-
shaped representation of detail (Fig. 3). The
coupling between levels of differing biolog-
ical resolution or representation requires
special consideration. Different classes of
model will be required, depending on the
temporal, spatial, and biological focus. The
physical model, in which the biological
representation is embedded, should have
resolution and complexity appropriate to
the biological models.

Processes that occur below the resolution
of models, either in time or space, require
implicit representation. Fluid dynamics mod-
els routinely include “sub–grid scale” pro-
cesses, but such represen-
tations are less well devel-
oped for biological models
(17), as evidenced in the
increased primary produc-
tivity in a North Atlantic
model (18) obtained with
an increase in spatial reso-
lution. To ensure that
the dynamics of simulated
populations are as inde-
pendent of grid resolution
as possible, parameteriza-
tion of the sub–grid scale
processes needs to be such
that the mean fluxes are
correct even if the detailed
spatial structure is not
fully resolved.

How Can We Apply
the Rhomboid
Approach to Develop
Models?
We have outlined some
principles for simplifying
the food web structure that
make the task of simulating
populations of marine or-
ganisms at the scale of
ocean basins more tractable.
We illustrate this approach
with two examples. In both
cases, biological resolution
has been concentrated at
the level of primary interest
and decreases with distance
both up and down the
trophic scale.

Our first example refers
to simulations of the popu-
lation dynamics of the cope-
pod C. finmarchicus in the
North Atlantic (Fig. 2). We
chose this copepod as a tar-
get species because of its
dominance in the mesozoo-
plankton of the northern
North Atlantic, its impor-

tance in the diet of many fish species, and its
inclusion as an indicator species in climate im-
pact monitoring studies. The target taxon spans
a wide range of relative body sizes, demanding
the application of a structured demographic
model to effectively represent the population
dynamics, with the additional complication that
the species undergoes a diapause resting phase
for up to 6 months of the year (19). During
diapause, development is arrested and the cope-
pods descend to depths of 500 to 2500 m in the
ocean, whereas the reproductive phase is spent
in the upper 100 m. Computational overheads
were simplified by introducing advection and
diffusion terms as separate transition matrices
for an upper layer of the ocean and for a deep

layer that corresponds to the winter diapause
depth. These were computed off-line from the
hydrodynamic data for each time-step of the
population model (20). The gain in computa-
tional speed was needed to permit iterative
fitting of the model to observational data. The
focus of biological resolution in our model of
the North Atlantic Calanus is in the represen-
tation of the target species and less in the
underlying food web. However, previous in-
vestigations have shown that inclusion of
stage development in the life-history repre-
sentation is necessary to capture the essential
diagnostic features of the demography (21).

The second example is a model of skipjack
tuna (Katsuwonus pelamis) population dynamics

in the Pacific Ocean (22)
(figs. S2 and S3). Tuna are
the target species by virtue of
their economic importance.
The resolution of biological
detail reduces with distance
down the trophic scale, the
food of tuna being represent-
ed by a simulated bulk-bio-
mass variable representing all
prey species. The prey model
is driven by a biogeochemi-
cal model of the Pacific
Ocean, which is coupled to a
three-dimensional ocean cir-
culation model that captures
El Niño events and the re-
gime shift in the late 1970s
(8, 22). Preliminary studies
using this same approach
have also been applied at a
longer time scale, showing
possible species distributional
shifts for global warming
caused by anthropogenic
change (23). The strengths of
this strategy are that it simu-
lates skipjack dynamics over
its geographic range in the
Pacific Ocean, and it links
statistically based fishery-
stock assessment models and
biogeochemical modeling.
The food web successfully
retains key elements of
space-time dynamics with
minimal taxonomic resolu-
tion. The clear weaknesses
are the failure to fully close
the life cycle and the absence
of dynamic density-depen-
dent processes of life history.

Modeling with
Uncertainty
Our Calanus and tuna ex-
amples are purely deter-
ministic. An important chal-
lenge in the development of a
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Fig. 1. Although time series do not provide
direct causal links, parallel changes at dec-
adal time scales suggest that there must be
strong connectivity between the factors (5,
7 ). For the Bering Sea, time series shown
include the winter Pacific Decadal Oscillation (PDO); sea surface temperature (SST); a
proxy phytoplankton abundance (Phyto), based on average isotope ratios in long baleen
plates from bowhead whales that feed in the Bering Sea; zooplankton abundance
(Zoop); and western Alaska sockeye salmon abundance. For the northeastern North
Atlantic (55°N to 65°N, 30°W to 10°W), time series include the NAO, winter SST,
phytoplankton abundance, C. finmarchicus abundance (Zoop), and Atlantic salmon
abundance. For the Equatorial South Pacific, time series include the PDO, the Southern
Oscillation Index (SOI), and abundances of skipjack tuna. For the Southern Ocean, time
series are for austral winter SST anomaly (°C), austral winter sea-ice concentration
anomaly (SIA), austral summer log10 of the total krill catch anomaly at South Orkney,
and the austral Gentoo penguin numbers.
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new generation of
ocean basin scale
models is the incorpo-
ration of uncertainty
(24). Uncertainty aris-
es because of limita-
tion in the data, in the
process representa-
tions of the model, and
in the parameteriza-
tions of the model.
Simulations should
be probabilistic rather
than deterministic,
such that our endemic
lack of knowledge of
processes and struc-
ture at these scales can
be acknowledged.
This philosophy has
been adopted in fisher-
ies modeling (25),
because of the man-
agement need for un-
certainty estimates,
and by physical ocean-
ographic climate mod-
elers whose results
also have management
implications. Uncer-
tainty is inherent to
individual-based mod-
eling approaches (26),
but it has not yet been
applied to ecosystems
and carries a high
computational cost.
Monte Carlo, ensem-
ble, and data assimila-
tion modeling are all
well developed, but
their application in
spatially explicit eco-
system models is just beginning (27).

Both physical and ecological models of
marine systems have, until now, been largely
focused on hindcasting past observations in
order to assess the quality of understanding of
processes. Usually, the approach has been to
evaluate, by statistics or judgement, the ex-
tent to which deterministic simulation results
agree with observations (28). More recently,
physical oceanographic models have been de-
veloped for hindcast reconstruction, involv-
ing assimilation of observations to simulate
the most likely visualization of past condi-
tions (29). In contrast, the requirement for
forecast simulations demands a very different
modeling philosophy and a trade-off between
accuracy and precision. There is a high
degree of uncertainty associated with the rep-
resentation of processes and associated pa-
rameters in marine ecological models. The
purely deterministic approaches of the past
imply high precision, but the probability of

an accurate outcome is extremely low, and
such forecasts are of minimal societal value.
Often, sensitivity analyses are conducted
with respect to key parameters to determine
the dependence of the model on parameter-
ization, but this is only achievable for rela-
tively simple systems. The alternative is to
incorporate uncertainty into the forecasting
procedure from the outset, in order to de-
liver probabilistic rather than deterministic
projections that, although less precise, are
more accurate.

There are various possible approaches to
incorporating uncertainty into simulation
projections. The Intergovernmental Panel
on Climate Change forecasts of global tem-
peratures under different carbon dioxide
emission scenarios take the form of a range
of possible outcomes based on results from
an ensemble of independent models, each
having different numerical implementa-
tions of essentially a common set of pro-

cesses (30). Meteorologists now use
ensemble forecasts to improve their predic-
tive skill particularly for medium-range (3-
to 15-day) forecasts (31). The International
Whaling Commission also uses an ensem-
ble approach to identify management pro-
cedures that are least sensitive to uncertain-
ties (32). In contrast, medium-term (5- to
10-year) projections of the state of various
fish stocks are presented as probability
distributions of future spawning stock bio-
mass for different exploitation scenarios
(25 ). In this case, iterative simulations are
performed with interannual variability in
recruitment to the stock represented as a
stochastic process with a statistical distri-
bution parameterized from historical data.
Although there have been some attempts at
incorporating probabilistic processes into
ocean basin–scale physical and biological
simulations (33), the ensemble approach is
difficult to apply to ecological systems,

Fig. 2. Central image: 30-m-deep annual average temperature and velocities from the Ocean Circulation and Climate
Modelling Program global hydrodynamic model, superimposed on the 1950 to 1999 mean abundance of C. finmarchicus
(adults and copepodite stage 5) from Continuous Plankton Recorder (5, 11) and European Union–Trans-Atlantic Study of
Calanus surveys. The main centers of C. finmarchicus abundance are delineated by gyres in the ocean circula-
tion system. A stage-structured life-cycle model of C. finmarchicus (inset, top right) is linked to the circulation model data
to simulate the stage demography in space and time (15). Development rate, mortality, reproduction, and diapause entry are
driven by temperature and food in the upper 100 m of the ocean, but the overwintering diapause stage (shown in red on the
life-cycle inset) is simulated at depths of 500 to 1500 m. In the prototype system (15 ), food is provided by blended SeaWIFS
and bottle data (lower insets), but a full North Atlantic version of this model is linked to output from a global simulation of
phytoplankton and microzooplankton biomass. Finally, we iteratively fit the model system to archived field observations
(upper insets) (23), using maximum likelihood functions to locate the optimum space-time distribution of mortality and
diapause entry/exit parameters. [Photos: A. Mustard]
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because results from models that incorpo-
rate different processes and variables are
not easily comparable (34 ). Similarly, the
iterative stochastic approach is difficult to
conceive for a large, computationally inten-
sive simulation model. Nevertheless, ocean
modeling is clearly at the point where the
issue of uncertainty must be explicitly ad-
dressed, with new initiatives likely involv-
ing a combination of ensemble and stochas-
tic approaches.

Future Challenges
Building models of marine ecosystems that
integrate processes ranging from the biogeo-
chemical, through the multiple stages of sec-
ondary producers, to the life cycles of fish

cannot proceed by simply including more
variables. Some of the main issues follow:

1) Modeling the higher trophic levels re-
quires different approaches than modeling
phytoplankton and microbes. Individual
variability and life-history details be-
come increasingly important with distance
up the food web, necessitating structured-
population and even individual-based
models to produce meaningful simulations
of population dynamics.

2) The challenge for marine ecosystem
modeling is to integrate models of different
types, that is, to couple models across trophic
levels. Even with powerful computers, it is
necessary to simplify the problem so that
parameter richness and biological relevance
are balanced. Rather than model the entire
ecosystem, we should focus on key target
species and develop species-centric models.

3) We can build on deterministic models,
recognizing the growing requirement to de-
velop probabilistic simulations. There is a
pressing need to incorporate uncertainty into
models, because simulations lacking proba-
bility analysis are of rather limited value.

4) For many marine ecosystem forecast-
ing problems, the key issues relate to decadal
variability of taxa that have ocean basin–
scale distributions. Our models must explic-
itly span the relevant spatial and temporal
scales of the target organisms.

5) Forecasting decadal variability will re-
quire more accurate physical models, of both
the atmosphere and the ocean. Although phys-
ical modeling has made great advances, there
remains much to be done to improve our ability
to forecast at decadal periods.
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Fig. 3. Schematic illustrating the relation be-
tween trophic level (vertical axis) and functional
complexity (horizontal axis) within marine eco-
system models. The rhomboids indicate the con-
ceptual characteristics for models with different
species and differing areas of primary focus. The
rhomboid is broadest, i.e., has its greatest func-
tional complexity, at the level of the target or-
ganism of the model. The line separating organ-
isms with and without life history is dashed to
indicate that this boundary is not fixed. The same
organism could be on either side of this boundary,
depending on the target species and the problem
to be addressed. The magenta rhomboid applies
to a model with a primary focus on zooplankton
that go through complex life-history develop-
ment, thus requiring greater fidelity to onto-
genetic development. The green rhomboid
applies to a model with a primary focus on
phytoplankton and biogeochemical cycles,
but which also includes zooplankton with
lower life-history resolution. The blue oval
represents the physical ocean. Few models
represent much of the functional complexity
of predators; hence, the rhomboids only
touch upon the uppermost trophic level.

R E V I E W

4 JUNE 2004 VOL 304 SCIENCE www.sciencemag.org1466


