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Abstract

Past deglacial ice sheet reconstructions have generally relied upon discipline-specific

constraints with no attention given to the determination ofobjective confidence inter-

vals. Reconstructions based on geophysical inversion of relative sea level (RSL) data

have the advantage of large sets of proxy data but lack ice-mechanical constraints.

Conversely reconstructions based on dynamical ice sheet models are glaciologically

self-consistent, but depend on poorly constrained climateforcings and sub-glacial pro-

cesses.

As an example of a much better constrained methodology that computes explicit

error bars, we present a distribution of high-resolution glaciologically-self-consistent

deglacial histories for the North American ice complex calibrated against a large set

of RSL, marine limit, and geodetic data. The history is derived from ensemble-based

analyses using the 3D MUN glacial systems model and a high-resolution ice-margin

chronology derived from geological and geomorphological observations. Isostatic re-

sponse is computed with the VM5a viscosity structure. Bayesian calibration of the

model is carried out using Markov Chain Monte Carlo methods in combination with

artificial neural networks trained to the model results. Thecalibration provides a pos-

terior distribution for model parameters (and thereby modelled glacial histories) given

the observational data sets that takes data uncertainty into account. Final ensemble

results also account for fits between computed and observed strandlines and marine

limits.

Given the model (including choice of calibration parameters), input and constraint
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data sets, and VM5a earth rheology, we find the North Americancontribution to mwp1a

was likely between 9.4 and 13.2 m eustatic over a 500 year interval. This is more

than half of the total 16 to 26 m meltwater pulse over 500 to 700years (with lower

values being more probable) indicated by the Barbados coralrecord (Fairbanks, 1989;

Peltier and Fairbanks, 2006) if one assumes a 5 meter living range for the Acropora

Palmata coral. 20 ka ice volume for North America was likely 70.1±2.0 m eustatic,

or about 60% of the total contribution to eustatic sea level change. We suspect that

the potentially most critical unquantified uncertainties in our analyses are those related

to model structure (especially climate forcing), deglacial ice margin chronology, and

earth rheology.

Keywords:

Laurentide deglaciation, uncertainty, meltwater pulse, model calibration, glacial
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1. Introduction1

Purely geophysical deglacial ice load reconstructions such as ICE5-G (Peltier, 2004)2

can, through hand tuning, obtain close fits to large suites ofRSL1 and present-day3

geodetic observations. However, they lack any inherent glaciological self-consistency.4

Specifically, they lack any constraints concerning consistency with plausible climate5

chronologies, energy conservation within the ice, and the physics of ice deformation6

and streaming. On the other hand, most glaciological model-based reconstructions to7

date have relied on hand-tuning a few model parameters to a small set of constraints8

(e.g., Marshall et al., 2000; Siegert et al., 2001; Charbit et al., 2007). Aside from the se-9

quence of work started with Tarasov and Peltier (2002, 2004), glaciological modelling10

has ignored the large set of constraints available to geophysical models.11

We believe that the most critical deficiency is that no established reconstruction12

has any associated error bars. They do not take into account the uncertainties in the13

constraints they use nor in the models employed in any formalway. Given the large14

changes between the ICE4-G (Peltier, 1994) and ICE5-G (Peltier, 2004) reconstruc-15

tions and the differences between those reconstructions and the geophysical ANU re-16

construction2, it can be inferred that error bars on these reconstructionsare potentially17

1Abbreviations: RSL: relative sea level, ML: marine limit, Rdot: present-dayrate of vertical uplift,

LGM: last glacial maximum, mwp1a: meltwater pulse 1a, mESL: m eustatic sea level equivalent, GSM:

glacial systems model, MCMC: Markov Chain Monte Carlo
2Lambeck, unpublished, comparison with ICE6-G shown at:
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large.18

As a more integrative approach, we treat determination of past ice sheet evolution19

as a Bayesian statistical inference problem. Specifically,we compute a probability20

distribution for past evolution given the physics represented in computational models21

along with the constraints imposed by field observations. The intent is to combine22

modelling and a large set of observations in a statisticallyrigorous manner to generate23

posterior probability distributions for past ice sheet evolution given the model and data.24

Two related issues of current concern can also by addressed by applying this method-25

ology to the last deglaciation of the North American ice complex. The magnitude of the26

contribution from each ice sheet to the meltwater pulse 1a (mwp1a) event has gener-27

ated much controversy with conflicting claims continuing inthe literature (Clark et al.,28

2002; Licht, 2004; Peltier, 2005; Ackert et al., 2007; Carlson, 2009; Bentley et al.,29

2010). This is not only critical for disentangling the impact of such a large fresh water30

flux on the climate system, but also provides some bounds on the dynamical stability31

of the West Antarctic Ice Sheet. This stability can also be partly constrained by better32

constraints on the Last Glacial Maximum (LGM) global distribution of ice.33

In this paper, we briefly present the methodology and constraint data set, along with34

a summary of the probability distribution for the deglaciation of the North American35

ice complex. We focus some attention on confidence intervalsfor the North Ameri-36

can contributions to 20 ka ice volume (i.e. the tail end of the LGM interval) and the37

meltwater pulse 1a (mwp1a) event.38

2. Methods39

The methodology is comprised of four components: the physics based model, the40

set of observational constraints, the metric or measuring stick for quantifying model41

misfit to data, and the calibration methodology for combining the first three compo-42

nents.43

2.1. Model description44

The glacial systems model (GSM) includes a 3D thermo-mechanically coupled ice45

sheet model, visco-elastic bedrock response, fully coupled surface drainage solver, pa-46

rameterized climate forcing, surface mass-balance and calving modules, and gravitationally-47

self-consistent relative sea level (RSL) solver. The ice sheet model uses the shallow-ice48

approximation, with a Weertman type power law (i.e. basal velocity proportional to a49

https://pmip3.lsce.ipsl.fr/wiki/lib/exe/fetch.php/pmip3:design:21k:icesheet:gnh5.pdf
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power of driving stress) for basal sliding (exponent 3) and till-deformation (exponent50

1). Ice-shelves are also represented by a Weertman type relation but with a square root51

dependence on the driving stress to better approximate plugflow and maintain numeri-52

cal stability near the grounding line. The thermodynamic solver for the ice is based on53

conservation of energy, only ignoring horizontal conduction due to the scales involved.54

The bed thermal model computes vertical heat conduction to adepth of 3 km and takes55

into account temperature offsets at exposed ground layers due to seasonal snow cover56

and varying thermal conductivity of thawed and frozen ground as described in Tarasov57

and Peltier (2007). GSM grid resolution for North America is1.0o longitude by 0.5o
58

latitude.59

The visco-elastic solver is asynchronously coupled with the rest of the GSM (bed60

response computed every 100 years), and also takes into account load changes due to61

changes in lake levels as well as an eustatic approximation for marine load changes.62

RSL is computed off-line (i.e. after model runs are complete) and is gravitationally63

self-consistent except for an eustatic correction for marine load changes during transi-64

tions between marine and grounded ice conditions (as detailed in Tarasov and Peltier,65

2004). Taking into account the magnitude of non-eustatic contributions to geoidal66

variations, the change in sign of this component between 12 and 10 ka (which will67

thereby partly cancel errors from the eustatic load correction), and the resultant poten-68

tial impact on bed response, this approximation should result in RSL errors below (and69

generally well-below) 10 m after 10 ka (and diminishing to 0 at present). It is therefore70

relatively minimal given the magnitude of RSL paleo-observations where marine/non-71

marine transition effects are significant (e.g.,marine inundation of Hudson Bay). Ro-72

tational components of RSL are not taken into account. We have found that rotational73

effects are relatively insignificant for near-field RSL determination but can alter com-74

puted RSL for far-field sites by up to about 5 m. The current calibration results use75

the VM5a earth rheology (Peltier and Drummond, 2008), whileprevious calibrations76

were carried out with the VM2L90 (version with 90 km lithospheric thickness) earth77

rheology (Peltier, 1996).78

The GSM is described in detail in Tarasov and Peltier (2002, 2004, 2006, 2007).79

Subsequent improvements and additions include the following. First, the ice calv-80

ing process can now be terminated due to assumed backing up oficebergs when all81

drainage routes are closed. Second, a lacustrine calving module has been added that82

includes a thermodynamic constraint. Specifically, calving is limited to a fraction of83

available heat for melting within adjacent pro-glacial lake grid-cells. This fraction is84

a calibration parameter. Thirdly, a lacustrine refreezingmodule has been added that85
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takes into account heat transfer through surface lake ice incombination with a freezing86

degree-day scheme. Fourth a marine limit diagnostic has been added to the relative87

sea level solver. Fifth, as detailed in the primary supplement, the timing of Heinrich88

events one and two are dynamically facilitated. Unlike Stokes and Tarasov (2010), no89

ad-hoc forcing is imposed to potentially enhance mwp1a. More details about the GSM90

configuration are provided in the supplement.91

For the calibration, each GSM run begins in an Eemian ice-free state for North92

America (122 ka) under isostatic equilibrium and terminates at present day. Unlike any93

other glaciological or geophysical reconstruction to datethat we know of, the model94

does not assume Eemian ground surface topography is identical to that of present-day.95

Instead, every complete calibration starts with an update to the Eemian topography96

based on the present-day topographic discrepancy between the past 3 best runs and the97

input topography.98

2.2. Calibration data99

The calibration data set comprises a large set of RSL, marinelimit (ML), and100

present-day rate of surface uplift data (Rdot) along with anindependently inferred101

deglacial ice margin chronology, and various strandline observations (paleo lake level102

indicators). Only a subset of the constraint data is used in the Markov Chain Monte103

Carlo (MCMC) sampling (described below) but all data is usedin the final ensemble104

scoring.105

RSL data for North America (Dyke, unpublished data) is aggregated into 512 sites106

in the database. To offset calibration bias due to highly variable data density, each site107

is then weighted as a function of the square root of the regional and local data-point108

densities. Specifically, the relative site weight is the square root (number of data-points109

at site)/square root (sum of regional number of data-points). For example, 10 sites110

of 100 data-points within a region will have a total weight of
√

10 times the weight111

of a single site of 1000 data-points in one region. Weightingfor the subset of RSL112

data used in the MCMC sampling are shown in Fig. 1. The weighting was computed113

using 10 degree longitude by 5 degree latitude grid boxes (approximate scale size of114

visco-elastic response). The final weight value was the average of 4 such grid box115

computations subject to 5 degree longitude and 2.5 degree latitude shifts of the grid to116

limit grid dependence of the weighting. As is clear in Fig. 1,RSL data density is far117

from uniform.118

The ML data-set (Dyke et al., 2005) covers 920 sites and is also subject to the119

inverse areal density weighting scheme. None of the ML data is used in the MCMC120
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Figure 1: Selection of calibration data locations. Not included are the marine limit (ML) data and margin

chronology. To avoid clutter, only the spatially separatedhigher quality subset of RSL and present day

geodetic data are shown. Colour key indicates relative weighting of RSL sites (shaded crosses) for MCMC

sampling. The 2 Southeast Hudson Bay sites (1638,1639) were given a further factor of three weighting due

to their quality.

sampling. We were unable to adequately emulate model predictions for ML, likely due121

to the high sensitivity of ML to ice margin location. Model fits to marine limit data are122

therefore only part of the final ensemble scoring.123

The set of data for present-day rates of uplift have also evolved over time. Currently124

we use near-field data from Argus and Peltier (2010). Values for 7 sites (shown in Fig.125

1, chosen on the basis of largest magnitudes, tight error bars, and spatial separation126

from RSL data) are used in the MCMC sampling. These sites along with 7 other sites127

(also shown in Fig. 1) which have the next best fits to the aboveselection criteria, were128

given higher metric weights (of factor 2 except factor 6 for site Yel, factor 4 for Sch,129

and factor 3 for Alg and Val). The whole set of 110 sites is usedin the final ensemble130

scoring.131

The 17 strandline constraint sites are shown in Fig. 1. Values for most of the sites132

are listed in Tarasov and Peltier (2006), with the addition of 5 new sites for glacial133

lakes Barlow and Ojibway from Veillette (1994). Given the lack of dates in the data134

source, maximum strandline elevations from the GSM runs forthese new sites over135

the whole deglacial interval are used. Uncertainty ranges were set to the maximum136

range of nearby strandline values. Similar to the case of ML data, we were unable137

to adequately emulate model predictions for strandline elevation. Therefore strandline138
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data is only used in the final ensemble scoring.139

2.3. ice margin chronology and forcing140

The ice margin chronology is derived from Dyke et al. (2003);Dyke (2004) us-141

ing the INTCAL0414C to calendar year conversion of Reimer et al. (2004) . Given142

the partially lobate structure of the geologically inferred ice margin, as well as the high143

sensitivity of ice margin location to what will invariably be a poorly constrained climate144

forcing, it is unlikely that any glacial systems model will ever freely approach inferred145

margin chronologies to the degree required for accurate modeling of proglacial lakes146

(required for strandline predictions) and surface drainage. As such, a margin forcing147

is imposed whereby corrections to surface mass-balance components within what we148

judge to be uncertainties in the climate forcing are imposeddynamically when com-149

puted ice margin locations are beyond specified bounds. Originally a±80 to 100 km150

uncertainty interval was imposed on each isochrone. As the largest source of uncer-151

tainty is in the margin dating, a more appropriate uncertainty interval should be based152

on temporal uncertainty. This has now been implemented as asa±250 to 1000 year153

uncertainty. Two chronologies are used, the weighting of which is under calibration154

control. For the chronology with wider uncertainty, time-slices for radiocarbon ages 9155

ka and before (unless otherwise specified, ages are calendaryears before present) have156

error bars corresponding to± 1 kyr 14C time-slices, subsequent time-slices mostly have157

±500 year14C uncertainty except where a single time-slice uncertainty is imposed at158

8.27 ka when the final drainage of glacial Lake Agassiz is considered well dated both159

locally and globally. The second narrower uncertainty chronology is as above but with160

a maximum±500 year14C uncertainty.161

For use in the calibration, the margin chronology is transformed to a rasterized162

digital map with 5 values, an example of which is shown in Fig.2. These values163

are determined as follows. Raster zone 0 is for grid cells with no ice in any of the164

associated time-slices within the temporal uncertainty. Raster zone 1 is for grid cells165

with ice in at least one of the associated time slices and thatare within 80 km (i.e. 1166

grid cell) of zone 0. Raster zones 3 and 4 are assigned to grid-cells which have ice in167

all the associated time-slices, and are respectively within and beyond 225 km of zone168

0. The remaining grid-cells are defined as zone 2. Ablation isstrongly enforced in169

region 0, while region 1 has a weaker amount of enforced ablation, controlled by an170

ensemble parameter. Regions 3 and 4 have had a range of forcings, though currently171

the best calibration results are obtained with simple enforcement of non-negative net172

surface mass-balance for region 3 and no ablation for region4. Region 2 has no margin173
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forcing. During a model run, margin zone values are interpolated between time-slices174

of the rasterized margin chronology.175

Figure 2: 14.58 ka margin zone raster map with contours of 4 adjacent ice margins from Dyke (2004). This

is for the version of the ice margin chronology with±1000 year uncertainty.

Given uncertainties regarding the locations of offshore ice margins (Briner et al.,176

2009; England et al., 2009), the zone 2 uncertainty range formarine margins was ex-177

tended to the continental shelf break early in the deglaciation sequence for most regions178

as per discussions from the Meltwater routing and Ocean Cryosphere Atmosphere re-179

sponse (MOCA) network workshop at the CANQUA biennial meeting, 2009. In de-180

tail, from onset of margin forcing to 16.8 ka, it was extended for Mackenzie Delta to181

Banks Island and Grand Banks to the Northeast tip of Newfoundland, to 15.4 ka for182

the Labrador Sea and Baffin Bay, and to 13.9 ka for the rest of the Arctic.183

After each surface mass-balance calculation in the model, grid-cells are checked to184

ensure consistency with the above conditions. Otherwise a correction is applied, one185

that we judge to be within the uncertainty in local climate forcing. The total number186

of grid-cells receiving a correction is summed over space and time, and the final value187

becomes part of the cost-function score value for each ensemble run. This count is dis-188

aggregated into the number of grid-cells receiving a negative mass-balance correction189

and those receiving a positive correction. This count is further disaggregated into three190

adjacent time intervals: at the onset of of margin forcing, LGM in the margin chronol-191

ogy (i.e. the first time slice of 21.35 ka), and over all time-steps after 21.35 ka. As such,192

there are 6 separate margin forcing metric components. Inclusion of these components193

in the metric implies that the calibration endeavors to minimize the amount of margin194

forcing required and therefore select a climate forcing that is as consistent as possible195
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Table 1: Secondary constraints summary, not including the maindata-set constraints displayed in Fig. 1,

nor the margin forcing metric components described in the previous sub-section. The MCMC sampling was

carried out with both weaker and tighter constraint ranges (as compared to those listed here) to ensure better

coverage of the relevant parameter space. Volume ranges were derived from consideration of far-field RSL

records (Fairbanks, 1989; Peltier and Fairbanks, 2006) andfrom the analyses of Waelbroeck et al. (2002),

past hand-tuned glaciological modelling of Greenland ice sheet evolution (Tarasov and Peltier, 2002) along

with past results for ongoing calibrations of the Eurasian and Antarctic deglaciation. Linear misfit metrics

were imposed within the penalty intervals of the acceptance range. Of the constraints below, only the Hudson

Bay deglaciation and Gulf of Mexico discharge acceptance thresholds are applied to the median, cut3, and

cut3M data sieves (described in the results section).

Constraint acceptance range non-penalty range

20 ka ice volume > 69 mESL > 76.5 mESL

26 ka ice volume > 73 mESL > 86 mESL

30 ka ice volume 39-80 mESL 43 to 75 mESL

49 ka ice volume > 19 mESL > 45 mESL

mwp1a contribution > 7 mESL > 9.5 mESL

time of central Hudson Bay deglaciation≥ 8.6 ka > 8.4 ka

time of mid-Hudson Strait deglaciation > 10.1 ka > 9.8 ka

meltwater discharge to Gulf of Mexico > 0.5 dSv > 1.5 dSv

with the ice margin chronology.196

2.4. calibration metric197

The constraint set for the calibration is comprised of four types of observational198

data subject to Gaussian error models (RSL, marine limit, Rdot, and strandlines) along199

with a number of other components listed in Table 1. Specifically, these are the timing200

of the final collapse of Hudson Strait and Hudson Bay ice (between 8.6 and 8.2 ka),201

significant meltwater outflow into the Mississippi system (during the 14.4 to 13.7 ka202

time interval as indicated in the Orca Basin records) and transgression of glacial Lake203

Agassiz to its southern outlet at times inferred by the paleolake level records. As well,204

bracketing values for ice volume at 49, 30, 26, and 20 ka alongwith mwp1a contribu-205

tions are imposed in the metrics. Finally, as described above, the margin chronology is206

both an input data set and a constraint in that the integratedamount of margin forcing207

enters into the misfit metric.208

The RSL misfit metric assumes a modified Gaussian probabilitydistribution with209

standard deviation given by the values in the RSL database. Computed errors are fur-210

ther multiplied by a factor of 10 if they are two or more metersbeyond the wrong211

side of a one-way error bar (e.g., if computed RSL is more than two meters below a212
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non-intertidal mollusc or two meters above a stump in livingposition). Errors are also213

multiplied by a factor of two for computed values outside of the given error ranges in214

the data-base. Finally, one-way error bars are given a default value of 50 m. The metric215

also computes the lowest misfit score within the temporal uncertainty of the data. This216

scheme has evolved over time to handle the noise in the RSL data while providing a217

reasonable match between subjective judgement of RSL misfits and the metric score.218

Unlike RSL data, ML elevations are usually much more clearlyindicated in the219

observational records and therefore a straightforward Gaussian error model is assumed.220

Pure Gaussian error models are also applied to the Rdot and strandline data-sets.221

A key and poorly constrained question is the choice of the calibration metric. There222

is no simple objective criteria for deciding what constitutes a good ice sheet chronology223

when models are not able to fit all the data. The inverse areal density weightings,224

described in a previous subsection, address spatial density variations. The temporal225

correlations of data are partially addressed by aggregation into sites. By also taking226

into account the characteristic time-scales of bedrock response to surface load changes,227

one can generate order of magnitude weighting factors for the relative weights of Rdot228

versus RSL data. Especially problematic are global versus local data, for instance229

the relative weight assigned to the amount of margin forcingversus that assigned to230

RSL data fits. The non-linearity of the system also precludesthe conceptually simple231

(though computationally challenging) solution of using the complete correlation matrix232

for model-data fits over some subset of past model ensembles.233

Another major challenge is that the only direct ice volume constraints for paleo234

ice sheets are global, and contributions from the other ice sheets are also uncertain.235

The calibration of all ice sheets is ongoing, and given the complexity of each ice sheet,236

each is being calibrated individually. Global constraintsalong with periodically revised237

confidence intervals for the contributions from other ice sheets are taken into account238

in setting the ice volume constraints for the North Americancalibration. Current values239

for the ice volume constraints are given in Table 1.240

One way to partially address the above issues is to calibrateagainst a range of241

metrics. The MCMC sampling is generally carried out using metrics with different242

acceptance thresholds. Specifically, the thresholds are varied between weak and strong243

bounds as compared to the median bounds listed in Table 1. Whengenerating final244

ensemble mean and variance fields, sensitivities to metric choices are then examined.245

Increased confidence arises from results that are relatively insensitive to the detailed246

weighting within the metric.247

When computing final results under the full metric (as opposedto data sieving248
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analyses further below), ensembles are first sieved with respect to minimal acceptance249

range constraints given in Table 1. Model runs that do not pass these constraints are re-250

jected. The surviving ensemble score components are then normalized to unit variance251

across the whole ensemble (i.e. each of total RSL score, ML score, volume, strandline252

fits, Rdot score,etc., , are renormalized across the surviving ensemble). Normalized253

scores are then re-weighted to chosen ratios (the standard metric uses a 20:10:4:3:4:3254

relative weighting for RSL:ML:Rdot:strandlines:margin forcing:remainder). Finally,255

ensemble results (weighted means and variances) are generated assuming a Gaussian256

distribution with noise parameter chosen to ensure that at least 100 runs are required to257

capture 90% of the total weight.258

2.5. Calibration procedure259

The GSM is presently assigned 39 calibration/ensemble parameters as listed in260

Tables 1 and 2 in the primary supplement. These are varied within the calibration261

to account for uncertainties in the model. The majority of these parameters are related262

to the parameterized climate forcing, the least constrained component of the GSM.263

Each ensemble run is defined by a parameter vector comprised of the 39 calibration264

parameter values for the GSM.265

The calibration has evolved as an embedded series of iterations. Given a set of266

constraint data, ensemble parameters, and a model configuration, a random ensemble267

of order 3000 model runs is first generated. The parameter vectors for this random268

ensemble are generated as a Latin Hypercube with a prior distribution derived from269

previous work (be it calibration or sensitivity studies of model response to parameter270

variation). These model runs are then used to train artificial Bayesian neural networks271

(Neal, 1996), which then emulate the calibration data relevant response of the GSM to272

variations in calibration parameters. For example, there are a set of neural networks273

that predict the RSL chronologies resulting from a GSM run for a given set of calibra-274

tion parameters. The neural networks can be thought of as non-linear regressors for the275

model response given input calibration parameters. Each neural network thereby pre-276

dicts model response for MCMC sampling of model fit to a subsetof the constraints.277

We use the slice sampling (Neal, 2003) algorithm for MCMC sampling. A subset of278

the converged distribution of parameters from this sampling are then used to generate279

a new ensemble with the full GSM. The cumulative set of model results is then used to280

retrain the ANN emulators. This sequence is repeated until convergence (or modeler281

exhaustion), usually taking about three to six iterations.282

After convergence of the MCMC iterations, the full set of GSMresults are scored283
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with the metric against the complete set of calibration constraints, to generate ensemble284

expectations and standard deviations. A full description and validation of the calibra-285

tion procedure will soon be submitted for publication.286

This calibration procedure is further embedded in another iteration. Persistent mis-287

fits and the availability of new and/or revised constraints periodically necessitate a288

reconfiguration of the model and repeat of the whole calibration sequence. This has289

been the most challenging and time consuming component of this calibration, which290

has evolved from an initial set of 20 parameters to the presently used 39 parameters for291

North America as listed in Tables 1 and 2 in the primary supplement. 24 of these pa-292

rameters control the climate forcing, and another 6 controlthe margin forcing, 4 control293

calving, and 5 are related to ice dynamics (fast flow due to sub-glacial till deformation,294

basal sliding, ..).295

3. Results and discussion296

We focus on the “N5a” ensemble which is the final iteration of the current calibra-297

tion and contains ten thousand model runs. Only individual runs are glaciologically298

self-consistent. Ensemble results are, as such, best interpreted as probabilistic descrip-299

tions.300

3.1. RSL fits301

Ensemble RSL chronologies capture the observational record within the two sigma302

error bars indicated for most but not all sites (Figs. 3, 4, and the RSL supplement).303

Unlike non-RSL error bars in this paper, RSL error bars are generated by running the304

two sigma upper and lower magnitude ensemble bounds of the 4Dice chronologies305

through the sea level solver. As such, they do not represent an individual run, only the306

predicted RSL chronology for an ice chronology that is everywhere and at all times307

either the two sigma lower or upper bound of the ensemble. Theice volume of this308

lower bound diagnostic ice chronology is therefore unsurprisingly below the two sigma309

lower bound for the ice volume chronologies of the ensemble members (Fig. 7).310

Given the ambiguities discussed above in defining a calibration metric, the concept311

of a best run is problematic. However, as ensemble means are not glaciologically self-312

consistent, individual runs need examination. The single run (nn9927, with detailed313

plots and tabulated summary characteristics in the tertiary supplement) had the best314

score with any of our standard metrics even when further subject to the requirement315

of having the 4 main metric component values each in the top tertile for the ensemble,316
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Figure 3: Computed relative sea level chronologies for 6 highquality high arctic sites. The older nn454

weighted mean ensemble is from the previous calibration usingthe old spatially-based definition for margin

uncertainty as described in the text. Observed RSL data-points are colour coded according to their uncer-

tainties: two-way (light blue,e.g.,inter-tidal molluscs such as Portlandia), one-way lower-bounding (mauve,

other molluscs), one-way upper bounding (orange,e.g.,peat). Also note that one-way error bars are in fact

generally indeterminate in their non-bounded direction, though not shown as such to avoid clutter.
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Figure 4: Computed relative sea level chronologies for 6 highquality non-high arctic sites as per the previous

figure
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denoted as the “cut3” sieve. The only other conditions this sieve imposes are the ac-317

ceptance thresholds for Hudson Bay deglaciation and Gulf ofMexico discharge given318

in Table 1. Except for the Sch site, its Rdot values are withinthe two sigma range (and319

mostly within the one sigma range) of observed values for the14 higher weighted sites.320

The more complete set of RSL plots in the RSL supplement showsthat the ensemble321

mean RSL is generally close to that of nn9927.322

The difficulties in satisfying the large and diverse set of constraints with even 39323

calibration parameters are evident when examining RSL fits to individual sites. Run324

nn9927 has a tendency to excessive RSL values compared to observations for many325

sites (Figs. 3 and 4). This tendency has been a persistent challenge in both the current326

and past calibrations. As can be seen in the expanded set of RSL chronologies in the327

RSL supplement, the ensemble mean captures the upper bound of most sites aside from328

those in Ellesmere and Axel Heiberg Island. The ensemble twosigma lower bound329

generally brackets the RSL observation envelope and for many sites provides a close330

fit to the envelope.331

Given the subjectivity involved in choosing the metric, an important issue is the332

sensitivity of the probability distribution to the metric choice. In this context, it is worth333

noting that the unweighted average of the 500 best scoring runs produces a generally334

insignificant change to the RSL bounds indicated (not shown).335

Ensemble parameter vectors can be found with much better fitsto the RSL record,336

but at the cost of 26 ka ice volumes that are less than 64 m eustatic sea level equivalent337

(mESL) and as such impossible to fit far-field RSL records (Peltier and Fairbanks,338

2006) given current constraints on the contributions from the other ice sheets. ML fits339

are fairly well correlated with RSL fits, and the best ML fits are also obtained with these340

low volume runs. Intriguingly, some of these best RSL score runs (i.e. with insufficient341

ice volume) attain very good Rdot scores. However all low volume best RSL score342

runs have very poor strandline fits (not shown). This emphasizes the importance of343

imposing the full heterogeneous set of constraints in the calibration.344

Especially disconcerting is the weak fit to the data-rich southeast Hudson Bay sites345

(1638 and 1639). Extrapolating the strong linear trend fromFig. 7 in Tarasov and346

Peltier (2004), regional Hudson Bay RSL error was minimizedfor the model config-347

uration in that work with a regional LGM ice thickness of only1500 m. With open348

water conditions through some of the main high Arctic channels along with a brute349

force limiting of Hudson Bay ice thickness to 1.5 km during 17-16.5ka and down to 1350

km during the 12.5-11.6 ka interval, a much closer fit to Hudson Bay and some of the351

high arctic RSL records was obtained (Tarasov and Peltier, 2004). This is about half352
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of the corresponding mean ice thickness for central Hudson Bay in model run nn9927.353

The previous calibration also obtained a better RSL fit for Hudson Bay (“nn454 old354

mean, VM2” in Figs. 3 and 4), but with complete deglaciation of Hudson Strait by 12355

ka and only a remnant ice shelf over most of Hudson Bay by 9 ka, contrary to geologi-356

cal inferences. 16 ka ice thickness for central Hudson Bay innn454 was about 2400m.357

We have been unable to create a model that can dynamically (i.e. without ad-hoc brute358

force reduction of ice) produce thin enough ice over the Hudson Bay region to fit the359

local RSL record, while retaining adequate grounded ice cover to hold back glacial360

Lakes Agassiz and Ojibway until the 8.2 ka event.361

After over 50000 model runs, we do not believe the persistentRSL misfits are due to362

non-optimal calibration parameters. Instead, we identifyfive major potential sources of363

uncertainty and model error. First, even with 30 climate related calibration parameters,364

the climate forcing must be a far cry from reality. However, given the presence of365

margin forcing, and the inclusion of the amount of margin forcing required in the total366

misfit metric, it is unclear to us how a much more physically based climate forcing367

could significantly improve RSL fits without worsening fits toother components of the368

metric.369

A source of error in the model that could have more impact on RSL fits is the370

use of the shallow ice approximation. This approximation ignores longitudinal and371

horizontal shear stresses which are known to be significant or dominant for ice shelves372

and most ice-streams. Whether inclusion of these stress components can produce the373

large draw-downs apparently required to fit the Hudson Bay RSL records is currently374

under investigation.375

A third source of uncertainty is that the visco-elastic model assumes a linear and376

spherically symmetric visco-elastic structure. The extent to which this simplification377

affects model response and computed RSL chronologies has yet to be quantified. Also378

problematic is the lack of error bars for presently available earth rheologies.379

The model resolution is a fourth source of error. Many of the smaller Arctic ice380

streams are not resolved with the given grid resolution and this likely accounts for381

some of the excessive RSL predictions for those regions.382

Finally, the margin chronology has weak control over many regions. The chosen383

temporally-based uncertainty specification is a more defensible choice than the previ-384

ous spatially-based uncertainty choice. However, what is really needed is a focused385

collaboration among the glacial geological community to create maximum and mini-386

mum bounds for each isochrone and to update the Dyke (2004) margin chronology.387
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Figure 5: Weighted mean basal velocity and surface elevationfor ensemble N5a.

3.2. 20 ka fields and mwp1a contributions388

The ensemble mean basal velocity and topography shown in Fig. 5 is again not389

representative of a single glaciologically self-consistent model run. The weighted av-390

eraging also blurs ice stream locations and magnitudes and smooths ice topography. It391

is simply the expectation value and must be interpreted as such. The mean does capture392

the major ice-streams; an initial comparison of the ice-stream structure from the previ-393

ous calibration against independent geological inferences (Stokes and Tarasov, 2010)394

has shown a reasonable match. The topographic structure also captures most of the key395

features of geologically inferred reconstruction of Dyke and Prest (1987) aside from396

the lack of a distinct Foxe dome for this isochrone. A distinct dome does appear af-397

ter 11 ka in the ensemble mean (Fig. 13. in the primary supplement) and a somewhat398

more penetrative ice stream along Prince Regent Inlet-Lancaster Sound would generate399

a Foxe Dome at LGM.400

An uncertainty estimation for 20 ka ice thickness is shown with the two sigma range401

from the ensemble in Fig. 6. The largest variations indicated are due to inter-model402

variations in ice streaming. The uncertainty map reflects the extent to which the model403

is regionally constrained by the data set and not the complete possible range of error in404

ice thickness. For instance, from the discussion of RSL fit inthe previous subsection,405

the regional Hudson Bay ice thickness from the ensemble is possibly a kilometer too406

thick. However, given that the model is unable to dynamically generate thin ice while407

meeting all hard constraints, the ensemble variance for this region is mostly less than408

600 m. Therefore, the uncertainty map provides a component of the total error but not409
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Figure 6: One-way 2 sigma range for ensemble N5a ice thickness at 20 ka.

the complete error. It does provide a useful guide to determining in what regions (and410

for what time periods when considering the whole chronologyprovided in the primary411

supplement) new constraint data would be most useful.412

The comparison of North American ice volume chronologies shown in Fig. 7413

demonstrates the relative robustness of the ice volume expectation values to metric def-414

inition during the deglacial interval. The fully scored N5aensemble (“N5a”), a variant415

thereof with a full third of the metric weight assigned to margin forcing (not shown),416

and the raw average of the cut3 sieved ensemble (as detailed in the figure caption) have417

nearly indistinguishable chronologies following the onset of margin forcing.418

Confidence intervals for 20 ka North American ice volume can be read directly419

from the ensemble ice volume chronology. A value of 70.1±2.0 mESL captures the420

ranges for the standard metrics with and without additionalcut3 sieving (the latter just421

narrows the uncertainty ranges). This also nearly bracketsthe uncertainty range if no422

mwp1a, 20 ka, and 26 ka ice volume constraints are included inthe metric applied to423

the cut3 sieved data set (69.5±1.6 mESL). The MCMC sampling was biased towards424

higher values (in order to more easily fit far-field constraints), which is evident in the425

higher value of the unweighted (i.e. non-scored) ensemble average for 20 ka ice volume426

(73.9±4.0) when only subject to median sieving (i.e. rejection if any of the RSL, Rdot,427

ML, and strandline scores are below their ensemble median).This demonstrates the428

role of the constraint data set in limiting what many in the sea level research community429

would see as a low value for 20 ka ice volume. Furthermore, thetendency to excessive430

RSL predictions implies that if anything the ensemble results are an upper bound.431
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The critical role of the ice margin chronology in constraining ice volume is evident432

in Fig. 7. Much wider confidence intervals occur prior to the onset of the margin433

forcing especially for the cut3 average chronology (i.e. no application of metric). The434

ensemble is able to obtain a larger 26 ka ice volume (comparedto that of 20 ka) which435

is required in order to fit far-field RSL records (Peltier and Fairbanks, 2006) given436

current constraints on contributions from other ice sheets. However, this larger 26 ka437

ice volume is at least partly due to ice extent penetrating beyond LGM bounds (future438

calibrations will enforce no ice beyond LGM limits throughout the 30 to 21 ka interval).439

The ice volume chronology comparison also documents the evolution of calibra-440

tion results from the initial study of Tarasov and Peltier (2004). The best RSL fitting441

(“RSLfit”) model from that study had an ad-hoc Heinrich Event1 forcing that reduced442

central Hudson Bay ice thickness to 1500m, with an evident large reduction of ice vol-443

ume at that time compared to other runs. That study also lacked any pre-21 ka ice444

volume constraints and only used RSL and a handful of Rdot data. The nn454 (“old445

mean”) chronology from the previous calibration, as described above, had stronger 26446

ka and 21 ka minimum ice volume thresholds imposed.447

With the given margin chronology and climate forcing, the 500 year interval of448

maximum ice loss is 14.6 to 14.1 ka. Mean and two sigma bounds for mwp1a con-449

tributions were extracted from the ensemble over this interval. Ensemble mwp1a con-450

tributions are 11.65± 1.6 m eustatic with the standard metric and 11.63± 1.6 if the451

mwp1a rejection and penalty ranges in Table 1 are ignored. Assuch, reject/penalty452

ranges for mwp1a have insignificant impact on the results. Extending the lower bound453

to 9.4 m eustatic also captures the uncertainty range for thestandard metric (with no454

mwp1a constraint) with the cut3 sieve. Excluding both mwp1aand all ice volume con-455

straints, the range for the standard metric is 11.8±1.2 when subject to the cut3M data456

sieve described in the caption for Fig. 8. The largest contribution to mwp1a is from the457

western Laurentide sector (Keewatin and south there-of, refer to primary supplement).458

This is also one of the regions with the weakest chronological control for the deglacial459

ice margin retreat. As such, the calibrated mwp1a contribution has, to some extent,460

unquantified uncertainties associated with the margin chronology.461

The previous calibration had a mean mwp1a contribution of only 7.0 m eustatic. We462

suspect that this smaller value as compared to that of the present calibration is largely463

due to the older spatially motivated specification of marginuncertainty (the previous464

calibration also had a much smaller set of Rdot constraints which might have also465

played a role). The zone 3 region (margin zone where no net mass-loss is enforced) for466

the western Laurentide sector in the old treatment retreated less over this time interval467
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Figure 7: Deglacial ice volume chronologies in eustatic equivalent meters of sea level (conversion factor

of 25.19m per 1015 m3 of ice. The two chronologies with explicit “avg.” labels areunweighted averages.

N5acut3 only includes ensemble N5a runs that are in the top tertile for each of the four main metric com-

ponents (RSL, ML, Rdot, strandlines), that have final collapse of the Hudson Bay ice dome after 8.6 ka,

and that have at least 0.5 dSv discharge of meltwater into the Gulf of Mexico during the 14.4 ka to 13.7 ka

interval. No ice volume thresholds are imposed on this sieve. The “lower bound for RSL” chronology is the

ice volume of the 2 sigma lower bound ice thickness chronology used to generate the lower bound RSL in

Figs. 3 and 4. sigma confidence intervals for ensemble N5a and N5acut3 are shown).

than that of the new uncertainty specification. The best runsin the new calibrated468

ensemble tended to have the margin forcing chronology heavily (> 90%) weighted469

towards the chronology with a maximum of±500 years temporal uncertainty. Given470

the dating and C14 calibration uncertainties along with uncertainties relating proxy date471

to actual margin position,±500 years represents a lower bound uncertainty for nearly472

all sectors of the ice margin during the whole deglaciation interval (except during the473

well-dated 8.2 ka event).474

To elucidate the extent to which metric threshold values forice volume and mwp1a475

contributions biased their final distributions, one can compare single metric component476

values to 20 ka ice volume and mwp1a contributions without imposing any ice volume477

and mwp1a thresholds. This can also help isolate the role of these metric components in478

constraining these contributions. However, to avoid distortion of the comparison from479

clearly bad model runs, these comparisons are best made withsieved subsets of the en-480
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semble. The clearest tight bound for 20 ka ice volume contribution is from marine limit481

fits (Fig. 8). The given sieves do not include any ice volume nor mwp1a thresholds.482

To present a sense of the response of sub-ensemble ranges to various data-sieves, we483

present results for 3 successively stronger sieves. From examination of individual runs484

and their associated scores, and to enforce minimal self-consistency with the climate485

forcing, we have chosen the strongest sieve, “cut3M”, for determining bounding error486

bars for ensemble values. With the cut3M sieve, a clear aggregation of the lowest ma-487

rine limit misfit values occurs for a range of 20 ka ice volume contributions of 68.7 to488

70.8 mESL. Considering the intersection of best fit ranges under cut3M across the four489

major metric components (RSL, Rdot, marine limits, and strandlines, refer to primary490

supplement for rest of plots), one obtains a range of 69.0 to 70.7 mESL. This is within491

the previously stated range using the full metrics. Given that this sieve-based analysis492

only partially (through the cut3M sieve) takes into simultaneous account the four ma-493

jor metric components, we do not use this intersection rangeto reduce the uncertainty494

estimate with the full metric.495

Mwp1a contributions are most strongly bounded by strandline fits. This is likely496

due to the temporal and spatial proximity of this data to the regions where the margin497

most strongly receded during mwp1a. Again taking the best fitsubset under cut3M498

sieving (Fig. 9), a range of either 9.4 to 13.8 mESL or 9.9 to 10.7 mESL, depending499

on the acceptance threshold. To be cautious, we take the wider range. Again taking500

the intersection of the best-fit ranges under cut3M for each of the four major metric501

components (refer to primary supplement for plots of other components), a range of502

9.4 to 11.4 mESL is obtained. This is within the widest calibrated range (i.e. under503

various versions of the full metric) of 9.4 to 13.2 mESL for the mwp1a contribution.504

4. Conclusions505

We wish to emphasize that model results shown here have evolved from over506

50,000 GSM runs. The associated MCMC sampling has probed hundreds of millions507

of parameter sets. This study incorporates a large and diverse set of constraints. The set508

of constraints is large enough that even the latest model configuration with 39 ensemble509

parameters is not able to properly cover the deglacial phasespace.510

Our results include confidence intervals, but they are necessarily incomplete as they511

lack quantification of structural model errors (i.e. errors due the approximations in the512

model, irrespective of calibration parameters). A Bayesian methodology, based on the513

same ANN emulator approach, has been developed for completeerror specification and514
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Figure 8: Ensemble member 20 ka eustatic equivalent ice volumes versus marine limit misfit index (cost

function value) for 3 sievings of the full ensemble. Note indicated misfit index values are a logarithmic

representation of their contributions to the metric weighting (i.e. in analogy with the relationship between

the square of a statistical residual and the corresponding probabilistic value under a Gaussian distribution).

N5acutm only includes ensemble N5a runs that are better than median for each of the 4 main metric com-

ponents (RSL, ML, Rdot, strandlines), that have final collapse of the Hudson Bay ice dome after 8.6 ka,

and that have at least 0.5 dSv discharge of meltwater into the Gulf of Mexico during the 14.4 ka to 13.7

ka interval. The cut3 sieve is similar except that it only accepts runs in the top tertile for each main metric

component. The cut3M sieve further imposes the filter of requiring lowest two thirds margin forcing (i.e.

relative to the whole ensemble) for each of the 6 margin forcingmetric components. This latter sieve is used

in determining maximal ranges for 20 ka ice volume and mwp1a contributions. None of the sieving filters

impose any ice volume or mwp1a contribution threshold.
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applied to a general circulation climate model (Hauser et al, under review). Application515

of that approach to the deglacial ice sheet evolution is muchmore technically challeng-516

ing due to the indirect nature of paleo-observations. Unlike the climate modeling case,517

ice sheet thickness (except for sparse trim-lines and nunatuks), basal velocity mag-518

nitudes, and ice temperature fields have only an indirect relation to observable data.519

However, given that the majority of RSL sites are covered by the two sigma bounds520

from the ensemble, we believe that the results do offer reasonable though incomplete521

error bars for most regions.522

Two other major sources of uncertainty that have yet to be quantified are that of523

the margin chronology and the earth rheology. As detailed above, the calibration does524

partially account for margin uncertainty, but certain results (such as the North Ameri-525

can contribution to mwp1a) may well be sensitive to improvements in the chronology.526

The revision of the North American deglacial ice margin chronology and more accu-527

rate assessment of its errors is a key goal of the INQUA sponsored Meltwater Ocean528

Cryosphere Atmospheric (MOCA) network. An excellent example is that of the pre-529

liminary DATED deglacial chronology for Eurasia (R. Gyllencreutz, Jan Mangerud,530

John Inge Svendsen and Oystein Lohne, written communication 2010). Examination531

of the impacts of rheological uncertainty on North Americancalibration is a clear next532
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step with consideration of inclusion of the rheological structure within the set of cali-533

bration parameters. Furthermore, the viscoelastic response model currently employed534

is linear and assumes a spherically symmetric earth rheology. Understanding the un-535

certainties arising from these latter assumptions is a longer term challenge for the com-536

munity.537

With these important caveats, the past five years of model calibration have yielded538

some relatively robust conclusions for the North American deglaciation. First, 20 ka539

ice volume is unlikely to be larger than 72 mESL nor (though with weaker confidence540

given the tendency for RSL over-prediction) smaller than 68mESL. Second, North541

American contributions to mwp1a are likely between 9.4 and 13.2 m eustatic equiva-542

lent, with the dominant contribution coming from the western sector of the Laurentide543

ice sheet. Uncertainties due to model limitations are unlikely to significantly increase544

the 20 ka eustatic contribution given the constraint from the deglacial margin chronol-545

ogy and the nature of RSL misfits. Model limitations may have astronger impact546

on the magnitude of the mwp1a contribution. As described earlier, changes in the547

specification of margin chronology uncertainty have had a significant impact on this548

contribution.549

Consideration of the ice thickness uncertainty maps in the primary supplement per-550

mits identification of regions most in need of better constraint. We therefore hope these551

results will aid the field community in guiding future work aswell as act as a stepping552

stone to expose the insights gleaned from years of close up fieldwork and perhaps chal-553

lenge assumptions.554

Next steps for this calibration include 3 major improvements. First, inclusion of a555

more advanced ice dynamics core with shallow-shelf physicsand Schoof constraints556

at the grounding line (Pollard and DeConto, 2009). Second, adoubling of model res-557

olution. Finally a staged evolution of the climate component. The first step will be558

a much more dynamically based representation of the climateexpanding on the work559

of Abe-Ouchi et al. (2007) with the long-term goal of a fully coupled ice and climate560

model calibration of the past glacial cycle561

On the data side, there is a need for a more accurate specification of ice margin562

chronology errors, especially in poorly constrained regions such as Keewatin. Lin-563

eations are another set of possible constraints that can be incorporated into the cali-564

bration. Our general philosophy however is to first compare and document calibrated565

model results against new possible constraints before considering their incorporation566

into the constraint data set. Finally we wish to emphasize a limited number of quality567

data generating tight error bars is of much more value than a large number of noisy568
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data with poorly defined error bars.569
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