ELECTRIC POTENTIAL (Chapter 20)

In mechanics, saw relationship between conservative force and potential energy:

\[F_x = -\frac{dU}{dx} \]

Says: How **scalar quantity** (potential energy) depends on position gives components of a **vector quantity** (force)

Any connection to electric forces? Consider an arrangement of charges:

- Have learned to **directly** calculate electric field at a point by adding (vector sum) contributions (vectors) to field from each charge

- Will now learn to calculate **electric potential** (potential energy per unit charge) at a point by a **scalar sum** and then get **components** of electric field from **derivatives**
 - Avoids vector sum. Scalar sums are easier!

Electric Potential is like landscape. \(\vec{E} \) is a vector pointing down (or up) hill.
1st step: Change in **Potential Energy** of a charge moving in an electric field.

<table>
<thead>
<tr>
<th>Electrostatic force on charge q_0 in field \vec{E} is $\vec{F} = q_0 \vec{E}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>If charge displacement is $d\vec{s}$, then work ON charge BY electric field is:</td>
</tr>
<tr>
<td>$dW = \vec{F} \cdot d\vec{s} = q_0 \vec{E} \cdot d\vec{s}$</td>
</tr>
<tr>
<td>• Notice scalar (dot) product</td>
</tr>
<tr>
<td>But electrostatic force is conservative:</td>
</tr>
<tr>
<td>• Potential energy (U) decreases when conservative force does positive work</td>
</tr>
<tr>
<td>So: $dW = -dU = q_0 \vec{E} \cdot d\vec{s}$</td>
</tr>
<tr>
<td>• dU is the change in potential energy of charge when it is displaced by $d\vec{s}$</td>
</tr>
<tr>
<td>If charge is moved from point A to point B, change in potential energy is:</td>
</tr>
<tr>
<td>$\Delta U = U_B - U_A = -q_0 \int_A^B \vec{E} \cdot d\vec{s}$</td>
</tr>
<tr>
<td>• Important: Force is conservative SO U is independent of path from $A \rightarrow B$</td>
</tr>
</tbody>
</table>
So: U_A is the electric potential energy of q_0 at A. Depends on two things:

- Charges surrounding point A (a property of the space around A)
- The charge q_0 (property of the charge at A)

2nd step: Define Electric Potential V_A:

- Electric Potential at some point A is Electric potential energy per unit charge at point A

\[V_A = \frac{U_A}{q_0} \]

\begin{itemize}
 \item U_A is potential energy of q_0 at point A
 \item V_A is a property of location A due to surrounding charges (but not q_0)
\end{itemize}
ELECTRIC POTENTIAL DIFFERENCE:

Difference in electric potential **between** points A and B is:

\[\Delta V = V_B - V_A = \frac{\Delta U}{q_0} \]

SO:

\[\Delta V = V_B - V_A = -\int_A^B \vec{E} \cdot d\vec{s} \]

- Potential difference between two points depends on electric field
- Note sign and order of integration limits

Can now calculate Electric Potential **Difference**:

- To find Electric Potential, **MUST** specify location (reference) where \(V = 0 \)
 - Will also be location where \(U = 0 \)
 - Choice of reference depends on situation. Need to indicate clearly
TWO CONVENTIONS FOR CHOOSING REFERENCE (where $V = 0$)

- For a POINT IN SPACE, can choose $V = 0$ to be at infinity

 o So electric potential at point P is

 $$V_p = -\int_{\infty}^{P} \vec{E} \cdot d\vec{s}$$

 o This is the work to bring a unit charge test particle from infinity to P

- In an electric circuit can choose a specific circuit point to be $V = 0$

 o Often one terminal of a battery or a point connected to ground.
UNIT FOR ELECTRIC POTENTIAL: VOLT

- Define: 1V = 1J/C
- To move 1C from \(V = 1V \) to \(V = 0V \) (i.e. through \(\Delta V = -1V \)) takes 1J of work

- Gives alternate unit for electric field \(\vec{E} \)
 - Can express electric field in V/m. 1 N/C = 1 V/m

- Also gives alternate unit for energy: electron-volt
 - Define 1 eV as kinetic energy gained by an electron accelerated by an electric field through a 1V potential difference
 - Charge of one electron is \(-1.6 \times 10^{-19} \) C so:
 - 1 eV = \(1.6 \times 10^{-19} \) C x 1 J/C = \(1.6 \times 10^{-19} \) J
ELECTRIC POTENTIAL DIFFERENCE IN A UNIFORM ELECTRIC FIELD

Consider points A, B and B’ in a uniform \vec{E} field:

- A and B separated by displacement \vec{d} parallel to \vec{E}
- B and B’ are placed on a line perpendicular to \vec{E}
- Compare $V_B - V_A$ to $V_{B'} - V_A$

\[
V_B - V_A = -\int_A^B \vec{E} \cdot d\vec{s}_{AB}
= -\vec{E} \cdot \int_A^B ds_{AB}
= -\vec{E} \cdot \Delta \vec{r}_{AB}
= -Ed
\]

\[
V_{B'} - V_A = -\int_A^{B'} \vec{E} \cdot d\vec{s}_{AB'}
= -\vec{E} \cdot \int_A^{B'} ds_{AB'}
= -\vec{E} \cdot \Delta \vec{r}_{AB'}
= -E |\Delta \vec{r}_{AB'}| \cos \theta
= -Ed
\]
So: \[V_B - V_A = V_{B'} - V_A \] which says that \(V_B = V_{B'} \)

Two things to notice:
- **1st: EQUIPOTENTIAL**
 - All points on plane perpendicular to uniform \(\vec{E} \) field have **same electric potential**
 - Plane perpendicular to uniform \(\vec{E} \) is called an **equipotential plane**
 - It requires **no work** to move a charge along an equipotential plane
 - will talk about equipotential for non-uniform \(\vec{E} \) later.
• 2nd: SIGN OF V

 o $\Delta V = V_B - V_A = -Ed$

 ▪ Says that if $A \rightarrow B$ is in same direction as \vec{E}, then $\Delta V = V_B - V_A < 0$

 o change in potential energy of q_0 when moved from $A \rightarrow B$ is

 $\Delta U = q_0\Delta V = -q_0Ed$

Behaviours of positive and negative charges in uniform electric field

 o If path is in the same direction as \vec{E},

 ▪ then potential difference ΔV is negative

 ▪ change in electric potential energy ΔU depends on sign of charge
Positive charge in a uniform field

- For a positive charge moving in direction of \(\vec{E} \)
 - i.e. dir. for which \(\Delta V \) is negative

\[
\Delta U = q_0 \Delta V < 0
\]

- Says that **electric potential energy** of a **positive charge** decreases when it moves in direction of \(\vec{E} \) (charge accelerates)

- Check: positive charge released from rest in uniform \(\vec{E} \)
 - Accelerates in direction of \(\vec{E} \)
 - Kinetic energy \(K \) increases
 - Potential energy \(U \) decreases
 - Mechanical energy \(E = K + U \) stays constant
 - if only force acting is electric
Negative charge in a uniform field

- For a negative charge moving in direction of \vec{E}
 - i.e. dir. for which ΔV is negative

\[\Delta U = q_0 \Delta V > 0 \]

- Says that electric potential energy of a negative charge increases when it moves in direction of \vec{E} (needs to be pushed)

- Check: negative charge released from rest in uniform \vec{E}
 - Accelerates in direction opposite to \vec{E}
 - i.e. direction for which $\Delta U = q_0 \Delta V < 0$
 - for a negative charge
 - Mechanical energy $E=K+U$ stays constant
 - if only force acting is electric
Behaviours of positive and negative charges in uniform electric field