MAGNETIC FIELD AROUND CURRENT-CARRYING WIRES

How will we tackle this? Plan:

1st: Will look at contribution $d\vec{B}$ to the total magnetic field at some point in space due to the current in a small segment $d\vec{s}$ of wire

- Biot-Savart Law

2nd: Will use Biot-Savart Law to find \vec{B} along the axis of a current loop.

3rd: Will use Biot-Savart Law to get result for field around a “long” wire

- $B = \frac{\mu_0 I}{2\pi a}$ dir. by RH-rule, $\mu_0 = 4\pi \times 10^{-7}$ T \cdot m/A

4th: Will look at force between parallel current-carrying wires

5th: Ampere’s Law: another way to get $B = \frac{\mu_0 I}{2\pi a}$ for field around long wire
BIOT-SAVART LAW (22.7)

Expression for contribution $d\vec{B}$ to magnetic field at P due to current I in small segment $d\vec{s}$ of wire

- \hat{r} is UNIT VECTOR pointing $d\vec{s} \rightarrow P$
- r is DISTANCE from $d\vec{s} \rightarrow P$
- θ is the ANGLE between $d\vec{s}$ and \hat{r}

Then contribution to \vec{B} at P from $d\vec{s}$ is

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{I \; ds \times \hat{r}}{r^2}$$

- $\mu_0 = 4\pi \times 10^{-7}$ T \cdot m/A is the permittivity of free space
- Direction of $d\vec{B}$ is from $d\vec{s} \times \hat{r}$ (can also use RH-rule with thumb \rightarrow current)
BIOT-SAVART LAW: understanding

\[d\vec{B} = \frac{\mu_0}{4\pi} \frac{I\,d\vec{s} \times \hat{r}}{r^2} \]

- For drawing, direction of \(d\vec{s} \times \hat{r} \) is out of screen/page
 - Fingers sweep \(d\vec{s} \rightarrow \hat{r} \); thumb shows direction of \(d\vec{s} \times \hat{r} \)
- So \(d\vec{B} \) at \(P \) due to \(d\vec{s} \) points out of screen/page
- Magnitude \(|d\vec{s} \times \hat{r}| = ds \sin \theta \)
 - For a given \(r \), contributions \(d\vec{B} \) from \(d\vec{s} \) are maximum for points on plane perpendicular to \(d\vec{s} \)
 - Current in \(d\vec{s} \) makes **NO** contribution to \(d\vec{B} \) at points along direction \(d\vec{s} \)
- For **TOTAL FIELD** at \(P \), must sum (integrate) contributions from all segments of wire (don’t panic. We will only do special cases)
EXAMPLE: 22.6 in text – Magnetic field on axis of circular current loop

Look at a loop of radius \(r \) located in the \(yz \) plane carrying a current \(I \). What is the magnetic field a distance \(x \) from the centre of the loop along its axis?
MAGNETIC FIELD AROUND A LONG (INFINITE) WIRE

Biot-Savart Law gives contribution \(dB \) at \(P \) due to current \(I \) in segment \(ds \)

\[
dB = \frac{\mu_0}{4\pi} \frac{I ds \times \hat{r}}{r^2}
\]

- \(dB \) points out of screen/page at \(P \) by RH-rule

To get \(\vec{B} \) at \(P \) due to WHOLE wire, must sum contributions from all angles

- Angle between \(ds \) and \(\hat{r} \) changes with position along wire!
 - Will state result and then sketch derivation
MAGNETIC FIELD AROUND A LONG (INFINITE) WIRE

- Result of using Biot-Savart Law:
 - Magnetic field lines circle wire → no component of \vec{B} parallel to wire

- Magnitude of \vec{B} inversely proportional to perpendicular a distance from wire
 \[|\vec{B}| = \frac{\mu_0 I}{2\pi a} \]
 (IMPORTANT RESULT)

- Direction of magnetic field lines:
 - Another Right-Hand Rule: thumb along I; fingers curl in direction of \vec{B}
“Sketch” of how we get $|\vec{B}| = \frac{\mu_0 I}{2\pi a}$ from the Biot-Savart Law

Looking for \vec{B} at a point P located perpendicular distance a from wire

- Start with contribution to field at P due to segment $d\vec{s}$ located distance s along the wire from the point closest to P:

 $$d\vec{B} = \frac{\mu_0}{4\pi} \frac{I \, d\vec{s} \times \hat{r}}{r^2}$$

 - Note that $d\vec{s} \times \hat{r}$ points out of the screen/page and that $|d\vec{s} \times \hat{r}| = ds \sin \theta$

To get total \vec{B} at P from infinite wire, could sum $d\vec{B}$ from $s = -\infty$ to $s = +\infty$.

- Helps to express r and ds in terms of angle θ between $d\vec{s}$ and \hat{r} and then sum from $\theta = 0$ to $\theta = \pi$
“Sketch” of how we get \(\vec{B} = \frac{\mu_0 I}{2\pi a} \) from the Biot-Savart Law (continued)

Changing Variables:

- From \(\sin \theta = \frac{a}{r} \) get \(r = \frac{a}{\sin \theta} \)

- Tricky point: for \(\theta \) as shown, \(s \) is negative so that \(\tan \theta = -\frac{a}{s} \) or \(s = -a \cot \theta \)

- Use derivative to relate \(ds \) to \(d\theta \)

 - From \(\frac{ds}{d\theta} = a \csc^2 \theta = \frac{a}{\sin^2 \theta} \) we get \(ds = \frac{a d\theta}{\sin^2 \theta} \)
“Sketch” of how we get \(\left| \vec{B} \right| = \frac{\mu_0 I}{2\pi a} \) from the Biot-Savart Law (continued)

Doing the integral. So far, we have:

- \(r = \frac{a}{\sin \theta} \)

- \(ds = \frac{ad\theta}{\sin^2 \theta} \) so \(|d\vec{s} \times \hat{r}| = ds \sin \theta = \frac{a \, d\theta}{\sin \theta} \)

So contribution to field at \(P \) from \(d\vec{s} \) is

\[
dB = \frac{\mu_0 I}{4\pi} \frac{d\vec{s} \times \hat{r}}{r^2} = \frac{\mu_0 I}{4\pi a} \sin \theta \, d\theta
\]

Magnitude of total field is:

\[
B = \frac{\mu_0 I}{4\pi a} \int_0^\pi \sin \theta \, d\theta = \left[-\frac{\mu_0 I}{4\pi a} \cos \theta \right]_0^\pi = \frac{\mu_0 I}{2\pi a}
\]

RESULT: field at distance \(a \) from wire with current \(I \):

\[
B = \frac{\mu_0 I}{2\pi a}
\]
USE \[B = \frac{\mu_0 I}{2\pi a} \] TO FIND MAGNETIC FORCE BETWEEN PARALLEL WIRES

• Field at \(I_1 \) due to \(I_2 \) is \(B_2 = \frac{\mu_0 I_2}{2\pi a} \)

 o Exerts a force on length \(l \) of \(I_1 \): \(\vec{F}_1 = I_1 \vec{l} \times \vec{B}_2 \)

 o Magnitude of force on length \(l \) of \(I_1 \) is \(F_1 = I_1 l B_2 = \frac{\mu_0 l I_1 I_2}{2\pi a} \)
MAGNETIC FORCE BETWEEN PARALLEL WIRES

- Force on I_1 per unit length is $\frac{F_1}{l} = \frac{\mu_0 I_1 I_2}{2\pi a}$ toward I_2 (for currents in same dir.)

By Newton's 3rd law,

- Force on I_2 per unit length is $\frac{F_2}{l} = \frac{\mu_0 I_1 I_2}{2\pi a}$ toward I_1 (for currents in same dir.)

In general:
- For parallel conductors, **current in same direction**:
 - Wires **ATTRACT** with force per unit length $\frac{F}{l} = \frac{\mu_0 I_1 I_2}{2\pi a}$

- For parallel conductors, **current in opposite direction**:
 - Wires **REPEL** with force per unit length $\frac{F}{l} = \frac{\mu_0 I_1 I_2}{2\pi a}$

Provides definition of **AMPERE**:
- For 2 wires, 1 m apart, $I_1 = I_2 = 1\, \text{A}$ → force per unit length is $2 \times 10^{-7} \, \text{N/m}$