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ABSTRACT
We consider the thermodynamic behavior of local fluctuations occurring in a stable or metastable bulk phase. For a system with
three or more phases, we present a simple analysis based on classical nucleation theory that predicts thermodynamic conditions
at which small fluctuations resemble the phase having the lowest surface tension with the surrounding bulk phase, even if this
phase does not have a lower chemical potential. We also identify the conditions at which a fluctuation may convert to a different
phase as its size increases, referred to here as a “fluctuation phase transition” (FPT). We demonstrate these phenomena in simu-
lations of a two dimensional lattice model by evaluating the free energy surface that describes the thermodynamic properties of
a fluctuation as a function of its size and phase composition. We show that a FPT can occur in the fluctuations of either a stable
or metastable bulk phase and that the transition is first-order. We also find that the FPT is bracketed by well-defined spinodals,
which place limits on the size of fluctuations of distinct phases. Furthermore, when the FPT occurs in a metastable bulk phase,
we show that the superposition of the FPT on the nucleation process results in two-step nucleation (TSN). We identify distinct
regimes of TSN based on the nucleation pathway in the free energy surface and correlate these regimes to the phase diagram of
the bulk system. Our results clarify the origin of TSN and elucidate a wide variety of phenomena associated with TSN, including
the Ostwald step rule.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5057429

I. INTRODUCTION

Fluctuations play a central role in many liquid state phe-
nomena. For example, it has long been appreciated that fluc-
tuations dominate the physics of critical phenomena and
second-order phase transitions.1 Similarly, in the study of
supercooled liquids and the origin of the glass transition, local
fluctuations that deviate from the average properties of the
bulk liquid phase (e.g., dynamical heterogeneities and locally
favored structures) continue to be the focus of much work
to explain the complex dynamics observed as a liquid trans-
forms to an amorphous solid.2–4 For network-forming liquids
such as water, “two-state” models that assume the occur-
rence of two distinct, transient local structures have been
proposed to explain thermodynamic and dynamic anomalies

occurring in both the stable and supercooled liquids.5 The
central role of fluctuations is perhaps most obvious in nucle-
ation phenomena, where a bulk metastable phase decays to a
stable phase via the formation of a local fluctuation (the criti-
cal nucleus) of sufficient size to be able to grow spontaneously
to a macroscopic scale.6,7

The behavior of local fluctuations is particularly com-
plex in the case of “two-step nucleation” (TSN).8–41 In TSN,
the first step in the phase transformation process consists of
the appearance in the bulk metastable phase of a local fluc-
tuation that resembles an intermediate phase distinct from
the stable phase. In the second step of TSN, this interme-
diate fluctuation undergoes a transition in which the stable
phase emerges from within the intermediate phase. Evidence
for TSN has been observed experimentally in a wide range of

J. Chem. Phys. 150, 074501 (2019); doi: 10.1063/1.5057429 150, 074501-1

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.5057429
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5057429
https://crossmark.crossref.org/dialog/?doi=10.1063/1.5057429&domain=aip.scitation.org&date_stamp=2019-February-20
https://doi.org/10.1063/1.5057429
https://orcid.org/0000-0003-4312-7805
https://orcid.org/0000-0001-7029-8349
https://orcid.org/0000-0002-3945-7003
https://orcid.org/0000-0003-1664-0590
https://orcid.org/0000-0001-5985-0585
https://doi.org/10.1063/1.5057429


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

molecular and colloidal systems,10,18,28,34 including important
cases relevant to understanding protein crystallization39,40

and biomineralization.15,16 Due to the involvement of an inter-
mediate phase, TSN is poorly described by classical nucleation
theory (CNT), in which it is assumed that a nucleus of the
stable phase appears directly from the metastable phase.6,7

Large deviations from CNT predictions are thus associated
with TSN.23 Given these challenges, an understanding of TSN
is required to better control and exploit complex nucleation
phenomena. For example, significant questions remain con-
cerning the nature of long-lived “pre-nucleation clusters” that
have been reported in some TSN processes.15,16,22,27 Control
of polymorph selection during nucleation and the origins of
the Ostwald step rule (OSR)7 are also facilitated by a better
understanding of TSN.26,41,42

A number of theoretical and simulation studies have
investigated TSN.8,9,11–14,17,19–21,24–26,29,31–33,36,37,41 These
studies highlight the role of metastable phase transitions
involving competing bulk phases and their connection to the
transition from the intermediate to the stable fluctuation that
occurs in TSN. In addition, several studies have examined
TSN in terms of the two dimensional (2D) free energy sur-
face (FES) that quantifies the nucleation pathway as a func-
tion of the size of the nucleus and its degree of similarity to
the stable phase.8,17,19–21,29,31,32 For example, Duff and Peters
demonstrated the existence of two distinct regimes of TSN,
in which the transition of the nucleus to the stable phase
occurs either before or after the formation of the critical
nucleus, located at the saddle point of the FES.17 Iwamatsu
further showed that the FES for TSN may contain two dis-
tinct nucleation pathways, each with its own saddle point.21

These studies illustrate the complexity of TSN and help us
to explain the non-classical phenomena attributed to TSN in
experiments.

Despite the insights obtained to date from experiments,
theory, and simulation, our understanding of TSN would ben-
efit from a clearer understanding of the relationship between
a bulk phase transition and the transition that occurs in the
growing nucleus from the intermediate to the stable phase.
This latter transition occurs in a finite-sized system (the fluc-
tuation) and is controlled not only by the chemical potential
difference between the intermediate and stable phases but
also by strong surface effects at the interface with the sur-
rounding bulk metastable phase. In the following, we refer
to the transition that occurs in a finite-sized fluctuation as
a “fluctuation phase transition” (FPT) to distinguish it from a
bulk phase transition, for which surface effects play no role
in determining the thermodynamic conditions of the equilib-
rium transition. It would be particularly useful to know how
to predict the conditions at which a FPT will occur and how
these conditions are related to the thermodynamic conditions
at which bulk phase transitions, both stable and metastable,
occur in the same system.

This paper has two aims: First, we seek to clarify the gen-
eral thermodynamic behavior of local fluctuations, regardless
of whether these fluctuations are involved in a nucleation pro-
cess, to better understand the properties of fluctuations in
their own right. Second, we wish to specifically elucidate TSN

via a detailed examination of the local fluctuations that appear
during TSN and how the behavior of these fluctuations varies
over a wide range of thermodynamic conditions.

To achieve these aims, we first present in Sec. II a sim-
ple theoretical analysis of fluctuations. This analysis uses the
assumptions of classical nucleation theory (CNT) to make
some general predictions on the nature of local fluctuations
in either a stable or a metastable phase when more than one
type of fluctuation is possible. This analysis identifies a num-
ber of distinct thermodynamic scenarios for how fluctuations
behave as a function of their size, including predicting the
conditions at which a FPT will occur.

In Secs. III–VI, we then describe simulations of a 2D lat-
tice model, which provides a case study in which our analytical
predictions can be tested. In particular, the model is simple
enough to provide a complete thermodynamic description of
the fluctuations, in the form of a FES which characterizes the
fluctuations in terms of their size and phase composition. We
locate and characterize the FPT as it is observed in the fea-
tures of the FES for both a stable and metastable phase. Our
lattice model results demonstrate that TSN occurs when a
FPT is superimposed on a nucleation process occurring in a
metastable phase. We are thus able to provide a comprehen-
sive perspective on the origins of TSN, clarify its relationship
to bulk phase behavior, and elucidate the non-classical nature
of TSN.

In Sec. VII, we discuss the connections between our
results and previous studies on TSN, such as Refs. 17 and 21.
Our results reproduce a number of observations made previ-
ously in separate studies, as well as identifying new behavior
that underlies these previous observations, thus unifying our
understanding of the origins of TSN and related phenomena.
At the same time, our results demonstrate that complex ther-
modynamic behavior is an intrinsic property of fluctuations,
independent of metastability and nucleation. As discussed in
Sec. VIII, our findings thus have wider implications for under-
standing liquid state phenomena that are dominated by the
behavior of fluctuations.

II. CNT ANALYSIS OF FLUCTUATIONS
We begin with an idealized analysis of the fluctuations

in a bulk phase when there are two other bulk phases that
may occur in the system. As we will see, this analysis suggests
the existence of several distinct regimes of fluctuation behav-
ior depending on the thermodynamic conditions, including
regimes in which a FPT occurs. Since some of these regimes
also correspond to TSN processes, this analysis provides an
idealized framework for understanding the origins of TSN.
Furthermore, the analysis predicts a regime in which a FPT
occurs in a stable phase where nucleation is not possible,
demonstrating that a FPT and nucleation can be regarded as
independent phenomena.

Consider the free energy cost G to create a fluctuation of
size n molecules within a bulk phase A. We assume that any
such fluctuation can be associated with one of two other bulk
phases B or C and that the temperature of the system is such
that any bulk transition between phases is first order. We also
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assume that the free energy cost to create a fluctuation of B
or C within A is given respectively by the CNT expressions,

GAB = nα φ σAB + n∆µAB,

GAC = nα φ σAC + n∆µAC,
(1)

whereσAB is theAB surface tension and ∆µAB = µB−µA is the
difference in the chemical potential between the bulk phases
B and A and where σAC and ∆µAC are similarly defined.6,7

Here we assume that the surface area of the fluctuation is
nα φ, where α = (D − 1)/D depends on the dimension of
space D and φ is a shape factor. For circular fluctuations in
D = 2, α = 1/2 and φ = (4πv)1/2, where v is the area per
molecule. For spherical fluctuations in D = 3, α = 2/3 and
φ = (36πv2)1/3, where v is the volume per molecule.

Let us now assume that the B phase has a lower surface
tension with A than does C, i.e., σAB < σAC. Six distinct cases
are then possible for the relative behavior of GAB and GAC,
corresponding to the six possible orderings of the chemical
potentials µA, µB, and µC, as illustrated in Fig. 1. When the B
phase is more stable than C [i.e., ∆µCB = µB − µC < 0, corre-
sponding to panels (a)–(c) in Fig. 1], then GAB is always lower
than GAC, and so the most probable fluctuations of A remain
B-like for all n. However, when the C phase is more stable than
B [i.e., ∆µCB > 0, corresponding to panels (d)–(f) in Fig. 1], GAB

FIG. 1: GAB (blue) and GAC (red) versus n for D = 2 in various thermody-
namic regimes. To plot these curves, we scale energies by ε = |∆µAC | and
surface tensions by εv−α . In all panels, σAC = 2σAB = 2εv−α . In the left-
hand side panels, ∆µAC = ε, and in the right-hand side panels ∆µAC = −ε.
From top to bottom within each column, ∆µAB increases: (a) ∆µAB = −ε/2,
(b) ∆µAB = −3ε/2, (c) ∆µAB = ε/2, (d) ∆µAB = −ε/2, (e) ∆µAB = 2ε,
(f) ∆µAB = ε/2. To indicate the relative stability of the three bulk phases in
each panel, the phases are listed vertically according to their value of µ, with µ
increasing from bottom to top in each list.

and GAC will cross at a value of n = nc given by

n1/D
c = φ

σAC − σAB
∆µCB

. (2)

If nc > 1, the minimum size of an observable fluctuation, this
crossing will manifest itself as a FPT. That is, the fluctua-
tion will resemble the B phase when it first appears and then
undergoes a transition to the C phase as it grows.

Notably, in every panel of Fig. 1, the initial fluctuation is B-
like. That is, the most probable small fluctuation observed in
phase A corresponds to the phase that has the lower surface
tension with A, for any ordering of the chemical potentials µA,
µB, and µC. This statement is always true when ∆µCB < 0 and
is true for ∆µCB > 0 when nc > 1. When σAB < σAC, these
conditions are equivalent to the condition,

∆µCB < φ(σAC − σAB), (3)

which is satisfied over a wide range of thermodynamic states
in a three-phase system. Equation (3) is always satisfied when
B is more stable than C (i.e., ∆µCB < 0), where GAB < GAC
for all n and nc is undefined. In the region of the phase dia-
gram where C is more stable than B (i.e., ∆µCB > 0), Eq. (3)
is satisfied in a band of states delimited by two boundaries.
The first boundary corresponds to the BC coexistence line,
where ∆µCB = 0 and nc diverges. The second boundary is
given by ∆µCB = φ(σAC − σAB), beyond which nc < 1. Between
these two boundaries, the FPT will occur at an observable and
well-defined value of nc > 1. Equation (3) is thus satisfied in a
region on both sides of the BC coexistence line. This region
necessarily encompasses the triple point of a three phase sys-
tem, where complex nucleation phenomena, such as TSN, are
commonly observed.

Our analysis thus predicts that whenever Eq. (3) is satis-
fied (e.g., near a triple point) the initial fluctuations of a bulk
phase favor the local structure that has the lowest surface
tension, regardless of whether or not other structures have
a lower bulk chemical potential. In addition, our analysis does
not depend on the value of µA and thus applies to the behav-
ior of the fluctuations of A regardless of whether A is stable
or metastable with respect to either or both of the bulk B and
C phases. Thus in Fig. 1(e) a FPT occurs in the fluctuations of
the stable A phase, while in Figs. 1(d) and 1(f), a FPT occurs in
the fluctuations of the metastable A phase. In these two latter
cases, a nucleation process from A to C occurs in concert with
a FPT from B to C. The cases in Figs. 1(d) and 1(f) may thus be
expected to correspond to TSN.

III. LATTICE MODEL SIMULATIONS
Next we present results obtained from a lattice model

to test and elaborate on the predictions of Sec. II. As shown
below, this model provides a simple example of a system hav-
ing a triple point at which three distinct bulk phases coexist.
Furthermore, within any one phase, fluctuations correspond-
ing to the other two phases are easily identified.

We conduct Monte Carlo (MC) simulations of a 2D Ising
model, with nearest-neighbor (nn) and next-nearest-neighbor
(nnn) interactions, on a square lattice of N = L2 sites with
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periodic boundary conditions. Each site i is assigned an Ising
spin si = ±1. The energy E of a microstate is given by

E
J
=
∑
〈nn〉

sisj −
1
2

∑
〈nnn〉

sisj −H
N∑
i=1

si −Hs

N∑
i=1

σisi, (4)

where J is the magnitude of the nn interaction energy. Interac-
tions between nn sites are antiferromagnetic, while nnn inter-
actions are ferromagnetic. The first (second) sum in Eq. (4)
is carried out over all distinct nn (nnn) pairs of sites i and
j. The third and fourth terms in Eq. (4) specify the influence
of the direct magnetic field H and the staggered field Hs.
We define σi = (−1)xi+yi , where xi and yi are integer hori-
zontal and vertical coordinates of site i so that the sign of
Hsσi alternates in a checkerboard fashion on the lattice. We
sample configurations using Metropolis single-spin-flip MC
dynamics.43

This model has been studied previously to model meta-
magnetic systems exhibiting a tricritical point, for which it
provides a prototypical example in 2D.44–48 At T = 0, four sta-
ble phases are observed, depending on the values of H and Hs.
We label these phases so as to maintain the “ABC” notation
used in Sec. II. There are two ferromagnetic phases which we
label B (all si = 1) and B̄ (all si = −1) and two antiferromagnetic
phases labelled C (all si = σi) and A (all si = −σi). Since the
topology of the phase diagram is unchanged when H → −H,
we only consider H > 0 here. Consequently the B̄ phase will
not appear in our analysis. All our simulations are carried out
at temperature T such that βJ = 1, where β = 1/kT and k is
Boltzmann’s constant. This is well below T for the Néel tran-
sition (kT/J = 3.802) and the tricritical point (kT/J = 1.205).46

Thus the phase diagram in the plane of H and Hs at fixed kT/J
= 1 contains only first-order phase transitions, arranged as
three coexistence lines meeting at a triple point located at Hs
= 0 and H = 3.9876, as shown in Fig. 2. See Secs. S1–S3 of the
supplementary material and Refs. 43, and 49–51 for the details
of our phase diagram calculation.

The phase diagram presented in Fig. 2 also includes
the metastable extensions of the AC, BC, and AB coexis-
tence lines. The phase diagram is thereby divided into six
distinct regions each corresponding to a unique ordering
of the chemical potentials µA, µB, and µC. Furthermore, as
shown in Sec. S4 of the supplementary material, we find that
σAB < σAC throughout the region of the (Hs, H) plane explored
here.50,52–54 Our lattice model thus realizes the relationships
between the surface tensions and chemical potentials consid-
ered in Sec. II: The six regions of the phase diagram in Fig. 2
correspond to the six panels of Fig. 1. If we choose the A phase
of the lattice model to correspond to the A phase of Sec. II,
then the predictions of Sec. II can be tested by examining the
behavior of the fluctuations of A in the lattice model in the
various regions of the model phase diagram.

To explore the scenarios predicted in Sec. II, we must
characterize the fluctuations that appear in the bulk A phase.
Due to the simplicity of our lattice model, we show in Sec. S5 of
the supplementary material that it is straightforward to iden-
tify all local fluctuations as clusters of size n that deviate from
the structure of A. All sites within a given cluster can further

FIG. 2. Phase diagram for kT /J = 1. Solid lines are coexistence lines and dashed
lines are metastable extensions of coexistence lines. In panel (I), the stability field
of each phase is indicated with a solid color, green for A, blue for B, and red for
C. The six regions demarcated by the solid and dashed lines are labelled (a)–(f)
and correspond to the six identically labelled cases shown in Fig. 1. The triangle
locates the state studied in Sec. IV. Squares locate the three states studied in
Sec. V. Circles locate the six states for which the nucleation barriers are presented
in Fig. 14. In panel (II), the dotted-dashed line is the limit of metastability (LOM) of
the bulk B phase for a system of size L = 64. Green circles locate points on the line
Ln at which nc = n∗. Magenta squares locate points on the line at which βG∗ = 20;
below this line βG∗ > 20 and above it, βG∗ < 20. O1 labels the region bounded
by the AB and BC coexistence lines and the LOM of the B phase. O2 labels the
region between the AB and BC coexistence lines and which lies beyond the LOM
of the B phase.

be classified according to their correspondence to either B or
C. We thereby define the phase composition of each cluster as
f = n̄/n, where n̄ is the number of sites in the cluster that are
classified as C. Figure 3 shows example clusters of various n
and f, from mostly B-like (f → 0) to mostly C-like (f → 1).

To quantify the thermodynamic behavior of the fluctua-
tions that occur in A, we measure G(nmax, f), the FES of the
bulk A phase in which the largest non-A cluster in the system
is of size nmax and has composition f.17 We obtain the FES from
umbrella sampling MC simulations at fixed (N, Hs, H, T).51 We
compute G(nmax, f) from

βG(nmax, f) = − log[P(nmax, f)] + C, (5)
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FIG. 3. System configurations containing fluctuations of different sizes and compositions obtained from 2D umbrella sampling simulations carried out at Hs = 0.01, H = 3.981,
and L = 200. As described in Sec. S5 of the supplementary material, green sites have a local structure corresponding to the A phase, blue to the B phase, and red to the
C phase. From left to right, (nmax, f ) = (1393, 0.020), (3476, 0.040), (5474, 0.303), (7492, 0.583), and (9658, 0.633). This sequence of microstates approximately follows the
path of 〈f〉 shown in Fig. 8(b) and illustrates the two-step nature of the nucleation process under these conditions.

where P(nmax, f) is proportional to the probability to observe
a microstate with values nmax and f. The value of the arbitrary
constant C is chosen so that the global minimum of G(nmax, f) is
zero. We estimate P(nmax, f) from 2D umbrella sampling sim-
ulations using a biasing potential that depends on both nmax
and f,

UB = κn(nmax − n∗max)2 + κf (f − f∗)2, (6)

where n∗max and f∗ are the target values of nmax and f to be
sampled in a given umbrella sampling simulation and κn and κf
control the range of sampling around n∗max and f∗. See Sec. S6
of the supplementary material for details of our 2D umbrella
sampling simulations. Results from multiple umbrella sampling
runs conducted at fixed (N, Hs, H, T) are combined using the
weighted histogram analysis method (WHAM) to estimate the
full G(nmax, f) FES at a given state point.51,55,56 Once G(nmax,
f) has been calculated, we can also compute the one dimen-
sional (1D) free energy as a function of nmax alone, defined
as

βG1(nmax) = − log
∫ 1

0
exp[−βG(nmax, f)] df. (7)

In addition to the 2D umbrella sampling simulations
described above, we also conduct 1D umbrella sampling sim-
ulations in which nmax alone is constrained. In this approach,
we directly compute G1(nmax) using

βG1(nmax) = − log[P1(nmax)] + C, (8)

where P1(nmax) is proportional to the probability to observe a
microstate with a given value of nmax and C is chosen so that
the global minimum of G1(nmax) is zero. The details of our 1D
umbrella sampling runs are given in Sec. S7 of the supplemen-
tary material. We obtain the size of the critical nucleus n∗ from
the value of nmax at the maximum of G1(nmax).

Although the maximum in G1(nmax) properly identifies
n∗, it is important to note that the height of the maximum
in G1(nmax) does not correspond to the nucleation barrier
described by CNT. The nucleation barrier is more accurately
estimated by computing,

βḠ(n) = − log
N(n)
N

, (9)

where N(n) is the average number of clusters of size n in a
system of size N.57–59 The height of the nucleation barrier
is then defined as G∗ = Ḡ(n∗). Since we also evaluate N(n)
from our 1D umbrella sampling simulations, we are able to
estimate Ḡ(n) and G∗ for these cases. Examples of our cal-
culations of Ḡ(n) are given in Sec. S8 of the supplementary
material.

IV. FLUCTUATION PHASE TRANSITION
IN A STABLE PHASE

In this section, we analyze the behavior observed in the
fluctuations of A when A is stable and no nucleation pro-
cess is possible. As an example, we focus on the state point
(Hs, H) = (0, 3.9). This point is on the AC coexistence line, and
so the nucleation barrier to convert A to C is infinitely large.
In terms of the analysis of Sec. II, this point is on the boundary
of the regions described by panels (e) and (f) of Fig. 1. We thus
expect that the fluctuations of A are B-like at small nmax and
then undergo a FPT to C at nc.

We present the FES describing the fluctuations of A at
this state point in Fig. 4. Under these conditions, all local fluc-
tuations that induce a deviation from the most probable state
of the A phase increase the system free energy, regardless
of their size or composition. The FES therefore exhibits only
one basin with a minimum in the lower-left corner of Fig. 4(b)
associated with the bulk A phase, and no transition states (i.e.,
saddle points) occur on the surface. However, the FES is not
featureless. It contains two channels, indicated by the red and
blue lines in Fig. 4(b). These lines locate the values of f at which
a local minimum occurs in G(nmax, f) at a fixed value of nmax.
Along the low-f channel, B fluctuations dominate, while the
high-f channel corresponds to fluctuations in which the core
is C, wetted by a surface layer of B. We define fB as the val-
ues of f along the minimum of the low-f channel and fC for the
high-f channel.

It is notable that the two channels are unconnected and
that neither channel is defined for all nmax. At small nmax, only
the B channel exists, while only the C channel exists at large
nmax. This behavior is highlighted in Fig. 5, where we show cuts
through the FES at fixed nmax. For a finite range of nmax, G
versus f exhibits two minima with a maximum in between. At
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FIG. 4. (a) Surface plot and (b) contour plot of G(nmax, f ) for (Hs, H) = (0, 3.9) and
L = 128. Contours are 5kT apart in both (a) and (b). In (b), we also plot fB (blue
line), fC (red line), and 〈f〉 (white line). The black vertical line is located at nmax
= nc .

small nmax, the high-f minimum disappears, and at large nmax,
the low-f minimum disappears.

To quantify the relative free energies associated with
these two channels, we define, for a fixed value of nmax,

βGB = − log
∫ fmax

0
exp[−βG(nmax, f)] df,

βGC = − log
∫ 1

fmax

exp[−βG(nmax, f)] df,
(10)

FIG. 5. Cuts through the G(nmax, f ) surface at fixed nmax for (Hs, H) = (0, 3.9) and
L = 128. nmax changes by 40 from one cut to the next. Several cuts are highlighted:
The red curve is for nmax = 539 and corresponds to the spinodal endpoint of the
C channel. The blue curve is for nmax = 1739 and corresponds to the spinodal
endpoint of the B channel. The thick black curve is for nmax = 659 and corresponds
to the point of coexistence between the B and C channels at nmax = nc .

where fmax is the value of f at which a local maximum occurs
in G(nmax, f) as a function of f at fixed nmax if the maximum
exists. If fB is defined but fC is not, then fmax is set to 1. If fC
is defined but fB is not, then fmax is set to 0. So defined GB
and GC decompose G1 into contributions associated with the
respective B and C channels.

We plot GB, GC, and G1 in Fig. 6. We see that the B chan-
nel makes the dominant contribution to the total free energy
at small nmax, while the C channel dominates at large nmax. A
well-defined FPT is identified by the intersection of GB and GC
and corresponds to a “kink” in the G1 curve. The value of nmax
at this intersection defines nc and identifies the coexistence
condition where distinct B-dominated and C-dominated fluc-
tuations of equal size are equally probable. We further see that
both the channels have metastable extensions beyond nc that
end at well-defined limits of metastability (LOM), occurring at
the values of nmax where the low-f and high-f minima dis-
appear, as highlighted in Fig. 5. In the following, we use the
term “spinodal” to refer to the limit of metastability that ter-
minates a channel in the FES, in analogy to the use of this term
when referring to the limit of metastability of a bulk phase in a
mean-field system. The behavior shown in Fig. 6, where both
coexistence and metastability are observed, demonstrates
that the FPT is a first-order phase transition occurring in a
finite-sized system (the fluctuation) as the system size (nmax)
increases.

An appropriate order parameter for the FPT is f. For a
fixed value of nmax, we define

〈f〉 =
∫

1
0 f exp[−βG(nmax, f)] df

∫
1

0 exp[−βG(nmax, f)] df
. (11)

We plot 〈f〉 in Fig. 4(a). The variation of 〈f〉 is steepest at
nmax = nc. Even though the FPT is first-order, 〈f〉 does not jump
discontinuously at nc because of the finite size of the system.
However, the most probable value of f does have a jump dis-
continuity at nc. We also note that the fluctuations of f at fixed

FIG. 6: GB, GC, and G1 for (Hs, H) = (0, 3.9) and L = 128. The inset shows a
closeup of the same data as in the main panel highlighting the intersection of GB
and GC at nmax = nc .
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nmax can be defined as

χ = 〈f2〉 − 〈f〉2. (12)

As shown in Sec. S9 of the supplementary material, nc can be
accurately estimated as the value of nmax at which a maximum
occurs in χ. This procedure allows nc to be evaluated without
having to separately compute GB and GC.

The spinodal endpoints that terminate the GB and GC
curves are a significant difference between the behavior plot-
ted in Fig. 6 and that predicted in Fig. 1(e). In our lattice model,
a thermodynamic distinction between the B and C fluctu-
ations only exists for nmax between these spinodals, where
both channels are observed. These spinodals have important
physical consequences. At small nmax, the most probable fluc-
tuations are always B-like; C-like fluctuations, although they
may occur, have no local stability relative to changes in f.
This occurs in spite of the fact that C has a lower bulk-phase
chemical potential than B under these conditions. Thus the
prediction made in Sec. II, that the most probable small fluc-
tuation corresponds to the phase with the lowest surface ten-
sion, becomes even stronger in our lattice model: Not only
is this small fluctuation most probable but also it is the only
fluctuation that is stable with respect to changes in compo-
sition. This observation is in line with a similar conclusion
obtained by Harrowell, who predicted that sub-critical clus-
ters in a supercooled liquid are not stable as crystal-like clus-
ters below a threshold size.60 The same is true here for our C
fluctuations.

Conversely, at sufficiently large nmax, only C fluctuations
are stable with respect to changes in composition. That is,
even though a fluctuation is most likely to start out as a B
fluctuation and even if it persists as a B fluctuation in the
metastable portion of the B channel when nmax > nc, it can-
not remain a B fluctuation at arbitrarily large nmax. It must
eventually convert to C.

Most of the features of the FES discussed here, including
the FPT, occur for G � kT. As a consequence, the most com-
monly observed fluctuations of A are entirely dominated by B,
despite the lower bulk chemical potential of C. Nonetheless,
observable effects associated with the FPT can be observed
in this system during non-equilibrium processes. For exam-
ple, consider the case in which a large cluster of the C phase
is inserted into the bulk A phase under the conditions cor-
responding to the FES in Fig. 4 so that the system starts out
close to the C channel at large f and large nmax. If this non-
equilibrium system is then allowed to evolve unconstrained,
the C cluster will spontaneously shrink in size and the system
point will flow “downhill” along the C channel of the FES. So
long as the degrees of freedom associated with changes in
f relax quickly relative to the rate at which the cluster size
decreases, the shrinking cluster will then undergo a FPT from
C to B at some size between nc and the spinodal of the C chan-
nel. The B cluster so formed will then spontaneously shrink
and disappear as the system approaches equilibrium in the
lower left-hand corner of the FES. On the other hand, if a
large cluster of the B phase is inserted into the bulk A phase
under the same conditions so that the system starts out on
the B channel at low f, the system evolution will follow the

B channel downhill towards equilibrium. In this case, the B
cluster will simply shrink and disappear and no FPT will be
observed.

These examples illustrate the differences between the
FPT described here and a conventional first-order phase tran-
sition occurring between bulk phases. The FPT occurs in a
finite-sized system (the fluctuation), which arises as a depar-
ture from the most probable state of the surrounding system
(the homogeneous bulk phase). In a bulk phase transition, the
parameter that drives the system through the phase transition
is usually an externally imposed quantity, such as temperature
or pressure. However, as in the examples above, the parame-
ter that drives the fluctuation through the FPT is the size of
the fluctuation itself. The size of a fluctuation will normally be
subject to strong thermodynamic driving forces that cause it
to spontaneously increase or decrease in size. The dynamics
of the system and its preparation history will therefore have
a significant influence on if and how a FPT is observed in a
particular case.

V. TWO-STEP NUCLEATION: FLUCTUATION PHASE
TRANSITION IN A METASTABLE PHASE

We now focus on state points where A is metastable and
C is stable, i.e., regions (d) and (f) in the phase diagram of Fig. 2.
Based on the predictions of Sec. II, we expect in regions (d)
and (f) that small B fluctuations appear first and then con-
vert to C at larger size via a FPT, just like in region (e). How-
ever, in regions (d) and (f), we should also observe a transition
state in the FES that is absent in region (e). For nmax beyond
this transition state, the fluctuation will grow in size spon-
taneously, leading ultimately to the formation of the bulk C
phase. In this case, C is formed from A via a TSN process, in
which the B fluctuations that occur initially play the role of the
intermediate phase.

Figures 7 and 8 show the FES at fixed Hs = 0.01 for three
values of H within the stability field of C. G1, GB, and GC are
shown for each of these cases in Fig. 9. In Sec. S10 of the sup-
plementary material, we provide additional plots of the FES
for other values of H between 3.960 and 3.985. The free energy
basin in the lower left corner of each surface in Fig. 8 now cor-
responds to the metastable bulk A phase, and the channel in
the upper right corner leads to the stable C phase. In all cases,
we observe a FPT with the same set of features found when
A is stable: There are two distinct, unconnected channels in
the FES. As shown in Fig. 9, the coexistence value of nc is well
defined at the crossing of GB and GC and is coincident with
a kink in G1. The variation of 〈f〉 with nmax is steepest in the
vicinity of nc (Fig. 8). We also observe the lower spinodal limit
for the C channel; the upper spinodal limit for the B channel is
beyond the range of nmax accessible to our simulations for this
system size (L = 200).

In Fig. 10, we show G(nmax = nc, f), the cut through the
G(nmax, f) surface at the point of coexistence between the B
and C channels, for each FES plotted in Figs. 7 and 8. We see
that the height of the free energy barrier between the two
channels at the coexistence condition increases with nc. This
is in line with the expectation for a first-order phase transition
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FIG. 7. Surface plots of G(nmax, f ) for Hs = 0.01 and L = 200. Panels (a), (b), and
(c) correspond to H = {3.96, 3.981, 3.985}, respectively. Contours are 2kT apart.

occurring in a finite-sized system (i.e., the fluctuation).52,53

As the size of the fluctuation increases, the phase transition
within it must surmount a larger barrier because of the larger
interface that must be created between the C-like core and
the wetting layer of B that surrounds the core.

In addition to the FPT, each FES in Figs. 7 and 8 exhibits
features associated with the nucleation process by which the
metastable A phase converts to the stable C phase. Figure 9
shows that G1 in this regime exhibits a maximum at nmax = n∗

corresponding to the size of the critical nucleus. We also
observe that the kink in G1 corresponding to nmax = nc may
occur either before or after n∗. Figures 8(a) and 8(c) thus
typify two distinct regimes of behavior: In Fig. 8(a), nc < n∗

while in Fig. 8(c) nc > n∗. We also see in Figs. 8(a) and 8(c)
that the value of n∗ corresponds closely to nmax at which
a saddle point occurs in the FES. This saddle point locates
the most probable transition state at which the system exits
the basin of the metastable phase. Thus the FPT can occur
either before or after the transition state. We also find that
all the qualitative features of the FPT occur in exactly the
same way regardless of whether the FPT occurs before or
after the transition state. This behavior emphasizes that the
FPT is an independent phenomenon from the nucleation
process.

Our results thus demonstrate that the superposition of
a FPT on the nucleation process generates the characteristic
signatures of TSN. When nc < n∗ [Fig. 8(a)], the FPT occurs in
the sub-critical nucleus. In this case, the most probable small
nucleus resembles the B phase and a small C nucleus is unsta-
ble with respect to fluctuations in f. Then as it grows larger the
most probable nucleus switches to the C phase (via the FPT)
prior to reaching the critical size, and so the structure of the

FIG. 8. Contour plots of G(nmax, f ) for Hs = 0.01 and L = 200. Panels (a), (b), and
(c) correspond to H = {3.96, 3.981, 3.985}, respectively. Contours are 2kT apart.
In each panel, we also plot fB (blue line), fC (red line), and 〈f〉 (white line). The
black vertical line is located at nmax = nc . The white dots locate saddle points in the
FES.

critical nucleus reflects the structure of the bulk stable phase
that will ultimately form.

When nc > n∗ [Fig. 8(c)], the FPT occurs in the post-critical
nucleus. In this regime, the most probable nucleus resembles
the B phase all the way up to and beyond the size of the crit-
ical nucleus. Indeed, in Fig. 8(c), we see that a C nucleus is
unstable at n∗. As a consequence, the structure of the most
probable critical nucleus bears no resemblance to the stable
C phase, and cannot do so, even as a metastable nucleus. The
post-critical B nucleus then grows spontaneously along the B
channel in the FES. The transition of this growing post-critical
B nucleus to the C channel only becomes thermodynami-
cally possible for nmax greater than that of the lower spinodal
for the C channel and is only likely to occur for nmax ≥ nc.
These observations emphasize that the transition state (sad-
dle point) is not necessarily the entrance to the basin of the
stable phase. Rather, it only identifies the exit from the basin
of the metastable phase.

The topology of the FES in Fig. 8(c) exposes the dif-
ference between the first and second “steps” of TSN when
nc > n∗. The first step is a conventional barrier-crossing pro-
cess where the transition state corresponds to a well-defined
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FIG. 9. (a) GB, GC, and G1 for Hs = 0.01 and L = 200. From top to bottom,
H = {3.96, 3.981, 3.985}. (b) G1 for Hs = 0.01 and L = 200. From top to bottom
H = {3.960, 3.965, 3.970, 3.975, 3.980, 3.981, 3.982, 3.983, 3.984, 3.985, 3.990}.

saddle point. The size and composition of the critical nucleus
at this step are defined solely by the thermodynamic features
encoded in the FES. The second step is associated with the

FIG. 10. G(nmax = nc , f ) for Hs = 0.01 and L = 200. The black curve corresponds
to H = 3.96 and nmax = 1779. The red curve corresponds to H = 3.981 and
nmax = 5379. The blue curve corresponds to H = 3.985 and nmax = 8019. Each
curve has been shifted by a constant C so that the minimum value is zero.

FPT and is a process where the system does not pass through
a saddle point but rather crosses over an extended ridge in the
FES.21 Consequently, even though nc is defined by the prop-
erties of the FES, the average size of the post-critical nucleus
when it crosses the ridge may not be determined solely by
the FES. For example, if the degrees of freedom associated
with changes in f relax much faster than those associated with
changes in the size of the nucleus, then we can expect the
FPT to occur close to nc. In this case, the average path of the
system on the FES will follow closely the curve for 〈f〉. How-
ever, if the relaxation of f is comparable to or slower than for
nmax, then it is likely that the growing nucleus will significantly
“overshoot” the coexistence condition at nc and continue to
grow in size along the (now metastable) B channel. In this
case, the average path of the system on the FES will not follow
〈f〉. Thus when nc > n∗, the second step of TSN is qualita-
tively different from the first: The nucleation pathway for the
first step is entirely controlled by thermodynamics, whereas
the pathway for the second step depends on both thermody-
namic and dynamic factors. This distinction can help explain
the wide variety of behavior observed in TSN in different
systems.

Figure 8(b) corresponds to the case when nc ∼ n∗ and
displays complex behavior. We observe two saddle points on
either side of an unusually flat region of the FES. Although nc
and n∗ are close in value, n∗ is not close to the value of nmax of
either saddle point. In this case, the transition state in the FES
by which the system leaves the metastable state is not sharply
defined. As a consequence, we can expect particularly strong
deviations from CNT in this regime.

An example of the unusual behavior occurring when
nc ∼ n∗ is shown in Fig. 11, where we plot nc and n∗ as a func-
tion of H at fixed Hs = 0.01. As shown in Fig. 9, the height of
the nucleation barrier decreases monotonically as H increases.
However, in Fig. 11, we observe that n∗ does not decrease
monotonically with H but rather exhibits a minimum and a
maximum in the vicinity of the value of H at which nc = n∗.

FIG. 11. Plot of nc and n∗ versus H, for Hs = 0.01 and L = 200 as obtained from our
2D umbrella sampling simulations. Also shown are the CNT predictions for n∗AB
and n∗AC computed as described in the text.
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This complex and highly non-classical behavior arises from
the crossover from the nc < n∗ to the nc > n∗ regime as H
increases. To understand this effect, we consider the CNT
expression6,7 for n∗ in D = 2, n∗ = πσ2/(∆µ)2. As described
in the supplementary material, we have obtained approxi-
mate expressions to describe the dependence on H and Hs
of the chemical potentials (see Sec. S3 of the supplementary
material) and surface tensions (see Sec. S4 of the supplemen-
tary material) for all three phases in our lattice model. We use
these expressions to calculate the CNT prediction for the vari-
ation of n∗ with H and compare this with the observed behav-
ior. In Fig. 11, we show that for nc < n∗, the H-dependence
of n∗ approximately follows that expected for the nucleation
of C directly from A, n∗AC = πσ2

AC/(∆µAC)2. While ∆µAC is
constant for all H at fixed Hs, n∗AC decreases gradually with
H due to the approximately linear decrease of σ2

AC with H.
However, when nc > n∗, the H-dependence of n∗ switches
to follow the prediction for the nucleation of B directly from
A, n∗AB = πσ

2
AB/(∆µAB)2. In this expression, σAB is constant

with H, but the magnitude of ∆µAB increases linearly as H
increases at fixed Hs, resulting in a fast decrease of n∗. The
crossover in the behavior of n∗ occurs when the barrier for
the A → B process becomes smaller than that for the A → C
process. Interestingly, at the point of this crossover, the crit-
ical nucleus along the B channel is larger than that on the C
channel, resulting in the maximum in n∗ observed in Fig. 11.

VI. TWO-STEP NUCLEATION AND BULK
PHASE BEHAVIOR

We next seek to identify where in the phase diagram the
different regimes of TSN occur. To do so, we quantify the vari-
ation of nc and n∗ over a wide range of H and Hs within the
stability fields of A and C. We achieve this efficiently by aug-
menting the results obtained from our 2D umbrella sampling
runs with 1D umbrella sampling simulations, as described in
Sec. S7 of the supplementary material. As shown in Fig. 12(a),
we find that the variation of nc with H and Hs is relatively sim-
ple: For fixed Hs, nc grows and diverges as H approaches the
BC coexistence line LBC from below. This behavior is antic-
ipated by the form of Eq. (2) and confirmed in Fig. 13, where
we plot nc as a function of ∆µCB for various values of Hs, both
positive and negative. The data for all values of Hs fall on a sin-
gle master curve. Figure 13 confirms the prediction of Eq. (2)
that nc diverges as ∆µCB → 0 (i.e., approaching LBC) and does
not depend on µA, which changes as Hs changes. That is, the
value of nc is unaffected by the presence or absence of a nucle-
ation process and is an intrinsic property of the fluctuations
of A.

The variation of n∗ for various Hs is shown in Fig. 12(b).
We find that the maximum of n∗ noted in Fig. 11 is sharpest
at small Hs and fades in prominence as Hs increases. For each
Hs, we locate the intersection of nc and n∗ and plot the locus of
points Ln at which nc = n∗ in Fig. 2. For H less than Ln, TSN will
be observed where nc < n∗; for H greater than Ln, TSN with
nc > n∗ will occur.

Notably, we find that Ln is nearly coincident with
the AB coexistence line LAB, especially as Hs → 0. This

FIG. 12. (a) nc versus H for various Hs. Data are obtained from either 1D or 2D
umbrella sampling simulations, as indicated in the legend. For data obtained from
2D umbrella sampling runs at Hs = 0.01, we use a system of size L = 128 for
H < 3.96 and L = 200 for H ≥ 3.96. (b) Lines without symbols plot nc versus H,
for Hs from 0.01 to 0.10 in steps of 0.01, from top to bottom. Lines with dots plot
our data for n∗ versus H, for the same set of Hs values, from top to bottom. Data
for n∗ at Hs = 0.01 are obtained from 2D umbrella sampling runs with L = 200.
Data for n∗ at Hs = {0.02, 0.03, 0.04} are obtained from 1D umbrella sampling runs
with L = 128. All other n∗ data are obtained from 1D umbrella sampling runs with
L = 64.

correspondence occurs in our model due to a combination of
influences. Based on Eq. (1), we would expect that Ln should
occur for H above LAB since ∆µAB < 0 is required to form
a B-like nucleus that grows spontaneously within A. How-
ever, Fig. 11 shows that the intersection of nc and n∗ occurs
at lower H than predicted by our simple CNT analysis due to
the complexity of the FES when nc ∼ n∗. In addition, we see
in Fig. 12(b) that n∗ drops very quickly for H above Ln. Related
to this behavior, we also observe that the height of the nucle-
ation barrier G∗ decreases rapidly for H above Ln. See Sec.
S8 of the supplementary material for an example of our cal-
culation of G∗.57–59 In Fig. 2, we plot the locus along which
βG∗ = 20, which we find lies close to and just above Ln. For
H above the βG∗ = 20 locus, the basin of metastability for A
quickly becomes poorly defined and the TSN process con-
sists of an almost barrierless decay to a spontaneously growing
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FIG. 13. Same data as in Fig. 12(a) but plotted versus ∆µCB instead of H.

nucleus of B, which eventually converts to C via the FPT. As
a result of these effects, Ln is on the one hand unlikely to
occur much below LAB and on the other hand is unlikely to
occur much above it. These factors effectively constrain Ln
to lie very close to LAB. If this behavior proves to be com-
mon in other systems, it provides a simple way to predict the
crossover from the nc < n∗ to the nc > n∗ regime, by locating
the metastable extension of the bulk phase coexistence line
for the two phases involved in the FPT.

We have also assessed the limits of metastability (LOM) of
the bulk B phase, as described in Sec. S2 of the supplemen-
tary material. In practice, the LOM of a homogeneous bulk
phase depends on the system size.53 For a small system, the
LOM for a given bulk phase may occur significantly outside the
stable phase boundary of that phase, but as L → ∞, the LOM
approaches the stable phase boundary. We show an example
in Fig. 2(b), where we plot the LOM for the bulk B phase for
L = 64. The LOM for each of our system sizes with L > 64
lies between the boundary shown in Fig. 2(b) and the AB and
BC coexistence curves. Therefore most of our results for nc
in Fig. 12 are obtained beyond the LOM of the bulk B phase
for the system sizes studied here, demonstrating that the FPT
remains well-defined even when the bulk B phase is unstable.
Furthermore, small fluctuations occurring within the A phase
always resemble the B phase, even when the bulk B phase is
unstable, in both the nc < n∗ and the nc > n∗ regimes. These
observations emphasize that a local structure that is unsta-
ble as a bulk phase can still play a significant role, both as the
dominant small fluctuation and as an “intermediate phase” in
a TSN process.

VII. RELATIONSHIP TO PREVIOUS MODELLING
OF TWO-STEP NUCLEATION

As indicated in the Introduction, a number of pre-
vious simulation and theoretical studies have examined

behavior related to TSN. Previous studies have also demon-
strated that many complex nucleation phenomena can be elu-
cidated by studying lattice models similar to the one employed
here.17,19,20,61–67 Notably, this work reproduces several phe-
nomena first identified by Duff and Peters17 who also used
a lattice model. Their work introduced the FES in the spe-
cific form that we use and showed that the conversion of
the nucleus to the stable phase can occur before or after the
transition state, although in the latter case the conversion of
the nucleus was not explicitly observed. Their simulations also
did not allow the calculation of FES of sufficient resolution to
resolve the first-order character of the FPT as observed here,
and they did not identify the spinodals that bracket the FPT.
Reference 17 presents a CNT-based analysis of TSN, although
the implications for the nature of fluctuations in general was
not explored.

The analytical study of TSN by Iwamatsu21 identified the
thermodynamic conditions for the conversion of the nucleus
to the stable phase, pointed out its first-order character, and
noted that this conversion crosses a ridge in the FES. This
work also showed that the FES may display two distinct sad-
dle points, as observed here. However, Ref. 21 argued that
there were cases where the FES has two independent chan-
nels leading out of the metastable phase, in contrast to our
results, where we find only one. Furthermore, Ref. 21 did not
identify cases in which the conversion of the nucleus to the
stable phase occurs before reaching the transition state, nor
did it identify spinodal endpoints along any channel in the
FES. These differences may arise from fundamental differ-
ences between our modelling and that in Ref. 21. However, it
is also possible that a higher resolution analysis of the cases
presented in Ref. 21 might reveal the same pattern of behavior
observed here. Such a test to see if Ref. 21 can be reconciled
with our results merits investigation as this would clarify the
possible topologies of the nucleation pathway in TSN. As men-
tioned earlier, our observation of spinodals bracketing the FPT
is consistent with the analysis of Harrowell on the stability of
sub-critical crystal nuclei,60 and so it would be useful to assess
the generality of this result by re-examining the features of the
FES as presented in both Refs. 17 and 21.

A recent example consistent with the pattern of behav-
ior shown here is the simulation study by Santra, Singh,
and Bagchi,41 which focusses on the competition between
BCC and FCC crystal nucleation in a hard-core repulsive
Yukawa system. They showed that a post-critical BCC nucleus
forms and grows spontaneously even under conditions where
bulk FCC is the most stable phase. This case corresponds
to the nc > n∗ regime identified here. Reference 41 also
evaluates 1D “cuts” through the FES, which in the termi-
nology of this work correspond approximately to f = 0
(BCC-like) and f = 1 (FCC-like). Although the behavior of the
1D nucleation barriers so obtained is consistent with the 2D
surfaces studied here, it would be useful to confirm this cor-
respondence by computing the full 2D FES for the system
studied in Ref. 41.

While several of the phenomena reported here have been
documented in prior studies, these observations are frag-
mented across separate studies and are also limited in the
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range of thermodynamic conditions examined. The general
pattern of behavior presented here captures the key features
of these earlier studies, clarifies the interrelationships of these
findings, and also reveals important details of the FES not pre-
viously appreciated. We further show how the properties of
the FES evolve over a wide range of thermodynamic condi-
tions and correlate these changes to stable and metastable
coexistence boundaries in the bulk phase diagram. Notably,
no previous work has to our knowledge pointed out that the
FPT is an intrinsic property of fluctuations and is distinct and
independent from nucleation phenomena. Our work thus
broadens, clarifies, and hopefully simplifies the conceptual
framework for understanding the many phenomena associ-
ated with TSN.

VIII. DISCUSSION
In summary, we have attempted to clarify TSN by first dis-

entangling the physics of the FPT from the nucleation process
itself and showing that these are indeed distinct phenomena.
We then examine how these two phenomena combine to pro-
duce TSN via a high-resolution study of the nucleation FES for
a prototypical lattice model, conducted over a wide range of
thermodynamic conditions.

To highlight the correspondence between the theoretical
predictions of Sec. II and the realization of these predictions
in our lattice model, we present in Fig. 14 a figure analogous to
Fig. 1 but where the free energy is given by Ḡ(n) as computed

FIG. 14. Ḡ(n) at the six state points identified by open circles in the upper panel
of Fig. 2 and representative of the six regions of the phase diagram labelled (a)–
(f). The thermodynamic properties of the phases and their interfaces at each state
point are given in Table I. To indicate the relative stability of the three bulk phases
at each state point, the phases are listed vertically according to their value of µ,
with µ increasing from bottom to top in each list. In each panel, Ḡ(n) is rendered
in blue when n < nc and in red when n > nc .

directly from our lattice model under conditions correspond-
ing to each of the six regimes identified in Fig. 1. The six state
points (a)–(f) examined in Fig. 14 are identified by the open cir-
cles in the phase diagram shown in the upper panel of Fig. 2.
The thermodynamic properties of the phases at these state
points, estimated as described in Secs. S3 and S4 of the sup-
plementary material, are given in Table I. In Fig. 14, the curve
for Ḡ(n) is blue when n < nc (where the nucleus is dominated
by B) and red when n > nc (where the nucleus is dominated
by C). In Fig. 1, the observed free energy will be either GAB or
GAC, whichever is lower at a given n. In Fig. 14, the directly
observed curve in each panel qualitatively matches the pre-
diction from the corresponding panel in Fig. 1. The last column
of Table I confirms that the condition in Eq. (3) is satisfied in
all cases and, as predicted in Sec. II, we find that the nucleus
starts out as a B cluster at all six state points. Furthermore,
in regions (d)–(f) of the phase diagram, an FPT occurs as the
nucleus grows, regardless of whether the A phase is sta-
ble [as in (e)] or metastable [as in (d) and (f)]. In region (d),
the FPT occurs beyond the critical size, while in (f) it occurs
before it.

Both our theoretical and simulation results thus demon-
strate that under thermodynamic conditions commonly
encountered in nucleation (e.g., near a triple point), the ini-
tial fluctuation of the system away from its equilibrium state
takes the form of a local structure with the lowest surface ten-
sion with the surrounding phase. In other words, polymorph
selection at the local level is under these conditions controlled
by surface tension. When the lowest-surface-tension struc-
ture does not correspond to the most stable phase and Eq. (3)
is satisfied, then the initial stage of nucleus growth will not
resemble the stable phase and the result is TSN. The conver-
sion of the fluctuation to the stable phase is a first-order FPT,
which occurs by traversing a ridge in the FES. The transition
state by which the system exits the metastable phase occurs
at a saddle point in the FES and may occur before (nc < n∗) or
after (nc > n∗) the FPT.

The Ostwald step rule (OSR) states that the bulk phase
that forms first from a metastable phase is not the most sta-
ble phase but the phase with the chemical potential that is
below but closest to the metastable phase.7,9,26,41 Our find-
ings are consistent with the OSR but also provide a modified
and more general way of understanding it. In our lattice model,
when metastable A transforms to stable C, the B phase always

TABLE I. Chemical potential µ of each phase and surface tension σ of the AB and
AC interfaces, at each state point identified by the open circles in the upper panel of
Fig. 2. These state points are representative of the six regimes of behavior labelled
(a)–(f) in Figs. 1, 2, and 14. The quantity δ = φ(σAC − σAB) − ∆µCB is positive if
the condition in Eq. (3) is satisfied and negative if not.

Label H Hs µA/J µB/J µC/J σAB/J σAC/J δ/J

(a) 4.01 −0.01 −0.0105 −0.0207 0.0087 0.195 0.544 1.265
(b) 4.01 0.01 0.0087 −0.0207 −0.0105 0.195 0.544 1.246
(c) 3.98 −0.02 −0.0189 0.0070 0.0195 0.195 0.662 1.667
(d) 3.98 0.02 0.0195 0.0070 −0.0189 0.195 0.662 1.628
(e) 3.92 −0.02 −0.0164 0.0625 0.0220 0.195 0.850 2.281
(f) 3.92 0.02 0.0220 0.0625 −0.0164 0.195 0.850 2.242
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appears first at the local level, regardless of whether B has a
higher or lower chemical potential. It is the low AB surface
tension that ensures that B forms first within A; their relative
chemical potentials are initially irrelevant. When nc < n∗, the
initial sub-critical nucleus resembles the B phase, but because
the FPT occurs prior to the transition state, there is no indica-
tion in the post-critical nucleus that the B phase was initially
dominant. However, when nc > n∗, the post-critical nucleus
resembles the B phase, creating the conditions in which the
OSR may be realized. The OSR is formally obeyed in our model
phase diagram in the region bounded by LAB, LBC, and the
LOM of the B phase (region “O1” in Fig. 2) because this is the
region in which B is both observable as a bulk metastable
phase and also has a lower chemical potential than A. At
points in the phase diagram between LAB and LBC but beyond
the LOM of the B phase (region “O2” in Fig. 2), the bulk B phase
is unstable. In this region, the post-critical nucleus will resem-
bleB but must convert to the stable C phase at a finite size that
is smaller than the system size. Thus the observation of behav-
ior that obeys the OSR depends on an interplay of system-size
effects (which control the location of the LOM) and the range
of nmax for the growing post-critical nucleus over which the
low-f channel in the FES remains well-defined (which is con-
trolled by the location of the spinodal on the low-f channel).
In this study, we have restricted our evaluation of the FES to
the range of nmax in which the largest fluctuation does not
approach the system size. It would be useful for future work
to extend the FES to larger nmax to further clarify the behavior
related to the OSR.

As noted, the two steps in TSN are qualitatively different.
One crosses a saddle point in the FES, and the other crosses a
ridge. As such, both steps are activated processes. At the same
time, the process that takes the system over the saddle point
is similar to that in conventional (i.e., one-step) nucleation,
while the ridge-crossing process of the FPT is more complex.
The FPT occurs in a system (the fluctuation) the size of which
is spontaneously increasing or decreasing, depending on the
shape of the FES. Furthermore, there is a well-defined criti-
cal size for the nucleus of the stable phase to form inside the
fluctuation, and until the fluctuation itself reaches this size,
the stable phase will not be observed. This interplay of size
effects is consistent with the existence of the spinodal limit
of the high-f channel on the FES that prevents a C-like fluc-
tuation from being stable at small nmax and suggests that this
phenomenon is indeed general.60 In addition, the existence of
a spinodal limit at large nmax along the low-f channel means
that if the growing B nucleus does not cross the ridge to the C
phase, then it will ultimately do so via a barrierless process
at the spinodal. That is, the activated nature of the ridge-
crossing FPT process is lost if the B nucleus grows sufficiently
large.

We also emphasize that this work explicitly considers only
the thermodynamic aspects of TSN and that our conclusions
apply to a system in which all degrees of freedom are sam-
pled in equilibrium. We have not modelled kinetic effects,
which are well known to play an important role in phase
transitions generally. For example, in a bulk phase transition
from a supercooled liquid to a crystal, sluggish kinetics may

completely prevent the formation of the thermodynamically-
favored crystal phase on laboratory time scales, resulting in
glass formation. Similarly, if the relaxation time for variations
in f near a FPT greatly exceed the time scale for changes in
the size of a fluctuation, the FPT may never be observed. In
the case of our lattice model when nc > n∗ [e.g., Fig. 8(c)],
this effect would cause the system to be kinetically trapped in
the low-f channel of the FES, resulting in the formation of the
metastable B phase, despite the greater thermodynamic sta-
bility of the C phase. Previous simulation studies have demon-
strated the existence of such kinetic effects during nucleation.
For example, Ref. 68 presents the case of a binary mixture of
charged colloids where the nucleation of a charge-disordered
fcc bulk phase is observed under conditions where a charge-
ordered bcc phase is both more stable and has a lower nucle-
ation barrier. In this case, the relaxation of the local structure
from disordered-fcc to ordered-bcc is too slow to occur on
the time scale of nucleation, preventing the observation of
the bcc phase. In a simulation study of diamond nucleation,69

conditions were identified where the initial fluctuations of the
melt were found to be similar to those of graphite rather than
the more-stable diamond phase. This effect was attributed
to the lower surface tension of the graphite-melt interface,
compared to the diamond-melt interface, an observation in
line with the predictions of this work. Furthermore, small
graphite-like fluctuations were never observed to convert to
the diamond structure, perhaps, because the kinetics for this
process is too slow or perhaps because the most stable bulk
structure (diamond) is thermodynamically unstable as a small
fluctuation, as suggested by our lattice model results. These
examples demonstrate both that dramatic kinetics effects
are to be expected in TSN and also that a clearer under-
standing of the thermodynamic landscape underlying the
nucleation process is critical for interpreting these kinetics
effects.

We note further that all of our analysis concerning TSN
assumes that the intermediate phase (B) completely wets the
stable phase (A), a condition realized in our lattice model.
An important direction for future work is to generalize these
considerations to cases in which incomplete wetting occurs.
In addition, the lattice model results presented here are all
obtained at fixed T. While this constraint has simplified our
analysis, now that the characteristics of the model FES have
been described in detail, it will be interesting in subsequent
studies to explore the T dependence of these features, espe-
cially for the FPT itself.

Our work also has a number of practical implications for
simulation studies of nucleation. It is widely appreciated that
care must be taken when choosing a local order parameter to
define the nucleus, the size of which serves as the reaction
coordinate in many studies which evaluate the nucleation bar-
rier.57,58,70,71 Our results show that when this order param-
eter recognizes both the intermediate and the stable phase
contributions to the nucleus, the “kink” in G1 is a character-
istic signature of TSN, which also locates nc. Such a kink may
be discerned in previous studies; see, e.g., Fig. 2 of Ref. 32.
Conversely, caution must be exercised when conducting 1D
umbrella sampling with respect to nmax: If nc is large, then

J. Chem. Phys. 150, 074501 (2019); doi: 10.1063/1.5057429 150, 074501-13

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

the barrier between the low-f and high-f channels will also
be large, and so a series of simulations of progressively larger
nmax may become trapped in the low-f channel even when
nmax > nc. When practical, 2D umbrella sampling to compute
the full FES should be carried out, to ensure that the complete
nucleation pathway is observed. It is also common to choose a
local order parameter which only detects a nucleus of the sta-
ble phase. Our work demonstrates that when TSN occurs, the
initial nuclei generated by this approach will not correspond to
the most probable initial nuclei, resulting in a distortion in the
shape of G1 at small n. Where possible, a local order parame-
ter should be chosen that identifies all structures that deviate
from the metastable phase, not just those that resemble the
stable phase. Recent work suggests that such an approach
is feasible in molecular systems.72 Finally, we note the chal-
lenges that will be associated with estimating the nucleation
rate from transition state theory when the transition state is
not sharply defined in the FES, as in Fig. 8(b).58 This difficulty
may help explain the large deviations between estimated and
observed nucleation rates noted for many systems exhibiting
complex nucleation processes.7,23

In addition, it is notable that in our lattice model we
observe conditions where the most probable fluctuation of a
given size does not correspond to a stable bulk phase under
the same conditions, i.e., conditions beyond the LOM of the
bulk phase. Sear noted a similar effect in a simulation study of
heterogeneous nucleation.66 It is therefore conceivable that,
in other systems, a local fluctuation that never corresponds
to a bulk phase might play an important role in the growth
of the nucleus. Such fluctuations might include amorphous
solid clusters or spatially limited structures such as icosohe-
dra.3 This possibility, combined with the activated nature of
the FPT, could account for long-lived metastable “prenucle-
ation clusters” that grow to mesoscopic size before conversion
to the stable phase, as has been reported, e.g., in crystallization
of CaCO3.15,16,22,27

We have shown that the dominant contribution of the
surface tension to the free energy of small fluctuations under-
lies and explains the complexities of TSN observed near the
triple point of our model system. Recent work on the com-
petition between glass and crystal formation in supercooled
liquids also points to the central role of low-surface-tension
fluctuations,73 which if different from the stable crystal can
promote glass formation. The controlling influence of the sur-
face tension in determining the most probable initial devia-
tion from equilibrium may therefore be a principle with wide
ranging implications for the behavior of metastable systems.

SUPPLEMENTARY MATERIAL

See supplementary material for a description of the
details of our simulation methods and for additional plots of
the free energy surface G(nmax, f).
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