
THE JOURNAL OF CHEMICAL PHYSICS 135, 124506 (2011)

Nucleation barriers in tetrahedral liquids spanning glassy
and crystallizing regimes

Ivan Saika-Voivod,1,a) Flavio Romano,2 and Francesco Sciortino3

1Department of Physics and Physical Oceanography, Memorial University of Newfoundland,
St. John’s, Newfoundland A1B 3X7, Canada
2Dipartimento di Fisica, Sapienza – Università di Roma, P.le A. Moro 5, 00185 Roma, Italy
3Dipartimento di Fisica and CNR–ISC, Sapienza – Università di Roma, P.le A. Moro 5, 00185 Roma, Italy

(Received 20 June 2011; accepted 24 August 2011; published online 27 September 2011)

Crystallization and vitrification of tetrahedral liquids are important both from a fundamental and a
technological point of view. Here, we study via extensive umbrella sampling Monte Carlo computer
simulations the nucleation barriers for a simple model for tetrahedral patchy particles in the regime
where open tetrahedral crystal structures (namely, cubic and hexagonal diamond and their stacking
hybrids) are thermodynamically stable. We show that by changing the angular bond width, it is
possible to move from a glass-forming model to a readily crystallizing model. From the shape of the
barrier we infer the role of surface tension in the formation of the crystalline clusters. Studying the
trends of the nucleation barriers with the temperature and the patch width, we are able to identify
an optimal value of the patch size that leads to easy nucleation. Finally, we find that the nucleation
barrier is the same, within our numerical precision, for both diamond crystals and for their stacking
forms. © 2011 American Institute of Physics. [doi:10.1063/1.3638046]

I. INTRODUCTION

Crystallization is central to several fields, from materials
research to biological science, not to mention its technological
relevance.1, 2 Several human pathologies are also caused by
crystal nucleation in protein solutions.3 Understanding crystal
nucleation requires both the evaluation of the stability fields of
the fluid and crystal phases (i.e., knowledge of the chemical
potentials of all possible phases), as well as the evaluation
of the thermodynamic barriers controlling the formation of
the stable phase from the metastable one and of the kinetic
prefactors fixing the time scale of the diffusional processes,
all key quantities on which the nucleation rate depends.

In recent years, several numerical methodologies have
been developed for accurately evaluating phase diagrams
from the free energies of the fluid and crystal phases. We re-
fer the reader to the review by Vega and co-workers.4 Also
for crystallization, various methods are now available for cal-
culating free energy barriers and nucleation rates,5–9 making
it possible to generate accurate data for model potentials and,
more importantly, to compare the nucleation rate obtained nu-
merically with theoretical predictions, mostly based on classi-
cal nucleation theory (CNT),10–15 as well as with experimental
data when possible.

One of the main motivations for the development of the
special methods for studying nucleation is the proper sam-
pling of the equilibrium cluster size distribution N (n) within
the metastable liquid, i.e., the number of crystal-like clusters
composed of n particles. The work of forming a cluster of size
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n from the liquid is given in terms of N (n) by8

β�G(n) = − ln

[
N (n)

Np

]
, (1)

where Np is the number of particles in the system and β

≡ (kBT )−1, where T is the temperature and kB is the Boltz-
mann constant. Below the melting temperature, β�G(n) has
a maximum value β�G∗ at a critical nucleus size n∗. β�G∗

enters into the expression for the rate of nucleation exponen-
tially, and is therefore the main consideration in determining
the rate from a thermodynamic perspective. Very generally,
the larger the difference in chemical potential between liquid
and crystal �μ, often referred to as the driving force for crys-
tallization, the smaller β�G∗ is. Conversely, the surface ten-
sion γ between crystallite and surrounding liquid always acts
against the growth of crystallites, and so β�G∗ increases with
γ . Hence, the ability of a system to crystallize is governed by
the interplay between �μ and γ . Within CNT, this relation-
ship is captured through �G∗ ∝ γ 3/(ρx |�μ|)2, where ρx is
the number density of the cluster and the proportionality con-
stant depends on its shape.

Recently, simulation studies have begun to address crys-
tallization of tetrahedral liquids.16–21 This class of interest-
ing liquids includes biological and technologically important
molecular and atomic materials, such as water, silica, silicon,
and carbon. One common feature in these systems is the for-
mation of open, low density structures such as the diamond
cubic (DC) crystal. For carbon, simulations have shown the
importance of the liquid structure in governing nucleation
barriers.22, 23 In a generalized form of the Stillinger-Weber
model for silicon,24 the degree of tetrahedrality was shown
to have a strong impact on DC nucleation and its interrela-
tion with the appearance of a metastable liquid– liquid critical
point.25 Further, for silicon and germanium, the lower density
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of the DC crystal with respect to the liquid was shown to give
rise to a preference for nucleation near the surface, with sim-
ilar implications for water.26 The self-assembly of a DC col-
loidal crystal is also of interest in the field of photonics, since
such an ordered structure of dielectric spheres is expected to
exhibit a band structure with a large gap within the visible
wavelengths of light.27

Tetrahedral liquids are interesting from another perspec-
tive as well. Often, in these systems crystal formation is in-
hibited by the onset of a glassy behavior which dramatically
slows down the microscopic dynamics, thus preventing the
transition to the ordered structure. The glass forming ability
of silica and the ease with which water crystallizes stand in
stark contrast to each other.

Motivated by these issues of scientific and technological
interest, recently, some of us28 have thoroughly investigated
the question of how to best design tetrahedral patchy col-
loidal particles that spontaneously assemble into open crystal
structures through computer simulations of the Kern-Frenkel
model.29 It was shown that the angular width of the patch
plays a key role in determining if the system, at low tem-
peratures, forms a disordered glass structure or a crystal, a
result which may also be of interest for interpreting the glass-
forming ability of atomic and molecular systems. When the
patch width is small, the crystal coexists with a fluid and
β|�μ| (the driving force for crystallization) increases quickly
with undercooling, while when the patch width is large, the
crystal coexists with a fully bonded liquid state and β|�μ|
grows only moderately with undercooling. It was also shown
that the model spontaneously forms a crystal composed of a
mixture of two open tetrahedral structures, the DC and the
diamond hexagonal (DH) crystals, and that the chemical po-
tentials for the two polymorphs were indistinguishable within
the precision of the calculations.

In this article we proceed one step further by investigat-
ing, for the same tetrahedral model, the patch width depen-
dence of the free energy barrier to nucleating the DC and/or
DH crystals. Interestingly, we find that, at comparable under-
cooling, the barrier height β�G∗ does not monotonically de-
crease with the increasing patch width as one would expect
from a consideration of β|�μ| alone. Indeed, comparing the
barrier shape with CNT predictions, we find that the surface
tension γ increases on decreasing the patch width, a result
that we tentatively connect to the larger structural and density
difference between fluid and crystal. We do find that for nar-
row patches, β�G∗ generally shows a strong T dependence,
rapidly decreasing to a homogenous nucleation limit, while
for wide patches, β�G∗ decreases more slowly with decreas-
ing T , allowing the system to reach the glassy regime. Addi-
tionally, at the widest patch studied, the barriers remain very
large (of the order of 50 kBT ) even for significant undercool-
ing. This confirms that despite the benefit of a lower surface
tension, the lack of a buildup of a large difference in chemical
potential is mainly responsible for disfavoring crystallization
of particles with wide patches. The presented results confirm
that DC/DH will spontaneously form when the angular width
of the patch is sufficiently small.

The remainder of this article is organized as follows. In
Sec. II, we outline our criteria for defining crystal-like clus-

ters and the umbrella sampling Monte Carlo (MC) procedure
for calculating nucleation barriers. In Sec. III, we present our
results, including a fairly detailed examination of the robust-
ness of β�G∗ to varying the cluster-defining criteria and the
dependence of n∗ and cluster composition (e.g., percentage
of DC particles) on them. We then present our summary and
conclusions in Sec. IV.

II. METHODS

We perform biased Monte Carlo simulations33 at con-
stant T and pressure P of the Kern-Frenkel model29 with
Np = 1000 particles, each with hard sphere diameter σ , and
each having four tetrahedrally arranged attractive patches of
the range δ = 0.24σ , strength u0, and angular width 2θ .28, 34

We report T and P as dimensionless quantities, after rescaling
by u0/kB and u0/σ

3, respectively. We investigate four differ-
ent values of θ , namely, those corresponding to cos θ = 0.98,
0.96, 0.94, and 0.92 (θ = 11.5◦, 16.3◦, 19.9◦, and 23.1◦). For
the value of δ we use the condition cos θ > 0.9151 which
guarantees that a patch can only accommodate a single bond,
and therefore the maximum number of bonds per particle is
restricted to four.34

Figure 1 shows the phase diagrams for the Kern-Frenkel
models we study here, obtained either directly from Ref. 28
[panels (a) and (d)] or by extending the calculations to cases
not reported in that work. The phase diagrams show high and
low density fully bonded crystal phases, in which each parti-
cle is bonded with four neighbors (i.e., the energy per particle
is −2u0). The low density crystal is an open tetrahedral struc-
ture and it can exist in two polymorphs, DC and DH. As noted
in Ref. 28, the chemical potentials for the DH and DC struc-
tures are largely indistinguishable, and indeed it has been ob-
served that when the liquid crystallizes spontaneously to the
open tetrahedral structure, it does so by forming a stacking
of DC and DH planes.28 Indeed, DH and DC crystalline lay-
ers can stack in an analogous way to the fcc/hcp stacking in
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FIG. 1. Equilibrium phase diagrams for all the models studied in the low P ,
low T region, where the open crystal structures are stable. The short blue lines
correspond to the temperatures for which the nucleation barriers have been
investigated. The circles mark the gas–liquid critical point. For the narrow
patch models [(a) and (b)], nucleation is so effective that the location of the
critical point cannot be properly estimated. However, we have checked that
the studied isobar is located significantly above the critical pressure. Phase
diagrams in (a) and (d) are taken from Ref. 28.
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hard-spheres. The dense phase, composed of two interpene-
trating fully bonded DC structures, is a body centered cubic
(bcc) crystal. The fluid separates into gas and liquid phases
below the critical temperature. Since the range of the poten-
tial is short compared to the particle size, the critical point is
almost always metastable with respect to the crystal phase.

In the following, we study the crystallization barriers to
the DC/DH crystal at one selected pressure. Specifically, we
choose P = 0.03 in order to avoid interference with gas–
liquid phase separation. For all the models studied, with
the exception of cos θ = 0.98, the most stable phase at that
pressure is the open tetrahedral crystal. In the case of cos θ

= 0.98, bcc is the stable phase at this pressure, but as pre-
vious studies have shown, spontaneous crystallization results
always in the open structure,28 an example of the Ostwald step
rule.30–32

The nucleation to tetrahedral crystals has been studied
previously in simulations22, 23, 26 and we follow the established
methodology to evaluate the free energy barriers. A novel is-
sue arises from the presence of two crystals with different
symmetries in the same stability field, as we discuss in the
following.

We use Steinhardt bond order parameters35 based on
spherical harmonics of order l = 3. For each particle we de-
fine the complex vector

qlm(i) = 1

Nb(i)

Nb(i)∑
j=1

Ylm(r̂ij ), (2)

where the sum is over the Nb(i) neighbors of particle i, de-
fined as those particles within a distance of (1 + δ)σ = 1.24σ

of particle i. The dot product

cij =
l∑

m=−l

q̂lm(i)q̂∗
lm(j ), (3)

where

q̂lm(i) = qlm(i)

/ (
l∑

m=−l

|qlm(i)|2
)1/2

(4)

and q̂∗
lm(i) is its complex conjugate, determines the degree of

orientational correlation between neighboring particles i and
j . Figure 2 shows the cij distributions for the fluid and the
DC and DH crystals. The DC distribution is peaked around
cij = −1 only, while the DH crystal also shows a peak near
cij = −0.1. In the DH crystal, each particle has three neigh-
bors with cij ≈ −1 and one with cij ≈ −0.1, while in the DC
crystal, all four bonded neighbors have cij ≈ −1. This pro-
vides a local basis for distinguishing particles as being DC
or DH. The fluid distributions are very wide and show sharp
peaks for large values of cos θ (small bonding angles). The
peaks become more intense on heating, which we attribute
to a lower density and higher energy; we identify the peaks as
signals of specific geometrical assemblies in the fluid with un-
filled bonds. For example, a dimer has cij = −1, while both
bonds in a trimer have cij = −0.82.

The possibility of separating the cij ranges in which
crystal-like or fluid-like particles are mostly contributing
offers a way of associating a value of cij with a local
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FIG. 2. Probability distributions of the dot product cij in the liquid and crys-
tal structures. The distribution for DC, shown only in panel (a), is a single
peak near −1 and is nearly indistinguishable from the DH peak at −1 on the
scale of the plots. The distributions for the crystals do not vary significantly
over our T range.

structure (crystal or fluid). Usually, a threshold number of
crystal-like connections is selected to distinguish particles as
being fluid-like or crystal-like. In the following, we start by
defining a crystal-like connection between neighbors as the
one with cij < qu, with qu = −0.87, and a crystal-like par-
ticle as the one which has three or more crystal-like con-
nections. This definition does not allow one to discriminate
between DC and DH, and hence appears to be a reasonable
first step in the investigation of the nucleation barriers.22, 23, 26

We complement this study with an additional investigation
where we differentiate between DC and DH by requiring that
a solid-like particle has four neighbors with cij < −0.87 in
the DC case or three neighbors with cij < −0.87 and one with
−0.3 < cij < 0.1 in the DH case. For completeness, we probe
three cases: (i) the case where the growing crystal is com-
posed only of DC particles; (ii) the case where the growing
crystal is composed only of DH particles; (iii) the case where
the growing crystal is composed of DC or DH particles.

We follow the standard methodology for defining a bias-
ing potential which helps the formation of crystalline clusters.
To this aim we add to the Kern-Frenkel potential a perturba-
tion given by

φ = κ(nmax − n0)2, (5)

where κ is a suitably chosen constant that controls the range of
sampled crystal cluster sizes, centered near n0, and nmax is the
size of the largest crystalline cluster in the system. Depending
on the steepness of �G(n), we adjust the value of κ to ob-
tain good sampling, but for almost all simulations, κ = 0.075.
To define a crystal-like cluster, we state that two neighboring
crystal-like particles are part of the same cluster.

New configurations in the umbrella sampling (US)
MC chains are generated as follows. Given a starting
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configuration with largest cluster n0
max, we perform a trajec-

tory of 20 Metropolis MC steps, where one such step is on av-
erage Np − 1 particle translations and rotations and one vol-
ume change, in order to arrive at a configuration with largest
cluster n1

max. The new configuration is accepted with proba-
bility min(1, exp {−β[φ(n1

max) − φ(n0
max)]}). If the new con-

figuration is accepted, it becomes the starting point for the
next MC trajectory. If it is rejected, the entire trajectory is
discarded and the n0

max configuration is kept and used as the
starting point for generating another MC trajectory. For the
slowest state points, we perform 107 US attempts. We per-
form several US simulations for different values of n0. Gen-
erally, two adjacent US windows are spaced by �n0 = 3 to
ensure good sampling of the reaction path. For each US win-
dow we then evaluate the solid cluster size distribution Ñ (n)
and Pmax(n), the probability that the largest cluster in the sys-
tem is of size n.

The cluster size distribution N (n) in the NPT ensemble
for each window is worked back from the biased ensemble as
in Ref. 8 with

N (n) = 〈exp [βφ(nmax)]Ñ (n)〉biased (6)

up to a multiplicative constant, where 〈. . .〉 indicates an en-
semble average. Portions of β�G(n) are determined from
simulations at different values of n0 up to additive constants,
in agreement with Eq. (1). These pieces are matched by mini-
mizing the difference between overlapping portions after dis-
carding data for which Pmax(n) is less than 0.01 (to ensure
good sampling). Alternatively, we find the free energy dif-
ference �G(n) − �G(n − 1) as a weighted average of the
values obtained with simulations at different n0 in which
clusters of size n and n − 1 have been sampled, where the
weight is given by exp[−2k(n − n0)]. As a result �G(n)
= ∑n

j=1[�G(j ) − �G(j − 1)]. The two procedures give
equivalent results. We then shift the curves so that �G(0)
= 0. While this is not formally correct, since the number of
liquid-like particles [N (0)] is not precisely equal to Np, the
error is negligible (of the order of 0.01 kBT or less). We stress
here that at this stage we do not differentiate between DH and
DC particles. We have checked that indeed the largest crys-
talline cluster is a mixture of the two crystal local structures.
We will address this point in more detail later on.

To ensure independence of the initial conditions, we con-
struct our barriers starting from two different sets of data. In
the first set we use the biasing potential to grow clusters in the
fluid, starting the US simulation at n0 from a configuration
extracted from the previous windows. In the second set, we
seed the biased simulations at cos θ = 0.98 with crystallite-
containing configurations from homogeneously nucleating
unbiased MC runs at cos θ = 0.98. Configurations from equi-
librated runs at cos θ = 0.98 are then used to seed simulations
at cos θ = 0.96 at high T , with the idea that on increasing
the width of the patch, the bonds present in the cos θ = 0.98
configurations will be at least initially maintained at cos θ

= 0.96. Thus, we hope to never stray too far out of equilib-
rium. Equilibrated configurations from cos θ = 0.96 are then
used to seed simulations at cos θ = 0.94, and then similarly
for cos θ = 0.92.

III. RESULTS

A. Barrier profiles

In Fig. 3 we show our results for the �G(n) profiles for
the four models of different patch widths at various T . The
range of T where the barrier can be calculated with the present
methodology is restricted both from above and below for dif-
ferent reasons. At large T (small supercooling), the critical
nucleus is large compared to the system size. At low T , differ-
ent reasons conspire against a proper evaluation of the barrier
height. For example, in the case cos θ = 0.92, the slow kinet-
ics associated with the proximity of a glass transition prevent
proper equilibration already at temperatures where the critical
nucleus is of comparable size to the studied system. In this
same case, it has been suggested on the basis of the explicit
evaluation of the difference in chemical potential between the
crystal and the fluid that, at odds with the standard behavior,
barriers do not grow with further supercooling.28 The diffi-
culty of evaluating barriers for the wide patch model is con-
sistent with this proposition. In the case of narrow patches,
cos θ = 0.98, we are limited to a barrier height of the or-
der of 30 kBT . For lower T , despite slow dynamics not be-
ing an issue, the results of the calculations become more and
more affected by the presence of secondary crystal clusters.
While in theory the presence of more than one cluster is not
a problem, in our opinion this effect highlights an incorrect
definition of crystallinity at the local level, which artificially
breaks a single cluster into two (or more) pieces. Hence, at
the lowest T , the barrier calculations become difficult owing
to the appearance of clusters of comparable size to the largest
one in the system. A visual inspection of configurations con-
firms the formation of secondary clusters occurring next to the
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primary one, separated by particles that fall outside the cutoffs
defining crystal-like particles.

This problem, most noticeable for cos θ = 0.98 but oc-
curring for other models at low enough T , does depend on the
choice of qu. A closer examination of Fig. 2 reveals that the cij

value at which the liquid and crystal distributions cross moves
progressively toward more positive values as cos θ decreases,
attaining a value of −0.87 only at cos θ = 0.92. However,
rather than changing qu for each model, we keep the same
value for uniformity, but then separately explore the effects of
varying qu below, at least for cos θ = 0.98.

We recall that for a proper evaluation of the barriers in the
low T limit, where homogeneous nucleation is taking place,
one can apply the methodology based on mean first-passage
times.36–40 We note that we have checked the quality of our
calculations for state points where the barrier is of the order
of 20 kBT by comparing the US results with N (n) evaluated
in unconstrained simulations.

While we will discuss the role of β|�μ| on our barriers
below, we stress that only partial insight into the T depen-
dence of the barriers can be gained by considering the behav-
ior of β�μ for the different models, shown in Fig. 7.

Although we do not perform any quantitative analysis of
the shape of the clusters, we can say that they are generally
compact and isotropic, with fairly obvious facets. This assess-
ment is based on a visual survey spanning the range in cos θ

of several configurations containing clusters 60–150 particles
in size.

B. Fits

Within the phenomenological framework of CNT, the
work of forming an n-sized cluster can be written as

β�G(n) = −β|�μ|n + βγA, (7)

where A is the surface area of the cluster. We therefore fit our
profiles to

β�G(n) = −a n + b n2/3, (8)

where a = β|�μ| and b ∼ βγ and we have assumed
a compact cluster. Below, we compare our results for
a against β|�μ|, as some studies suggest a very good
correspondence,8, 9, 41 and justify our assumption that b is
equal to βγ up to a constant factor which depends on the
shape and density of the crystallites. Recently, it has been
shown for a soft-core colloidal model that the procedure we
follow here for determining n may not be sufficient for de-
scribing crystal-like structures, but that the scaling repre-
sented by Eq. (8) may still hold, i.e., changing the parameters
used to define a crystalline cluster will change the numerical
values of a and b.42 We explore this in some detail below.

We show two representative β�G(n) curves along with
fits to Eq. (8) in Fig. 4. While there is a deviation between the
data and fits at small n, the overall description is rather good.
Moreover, the values for n∗ and �G∗ extracted from the fits
coincide with those obtained directly from the barriers. Im-
provement of the small n description could be accomplished
along the lines suggested in Ref. 43 but it is outside the scope
of the present work.
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FIG. 4. Fits of two of the barrier profiles studied to the CNT form (Eq. (8)).
For the cos θ = 0.98 curve, a = 1.47 and b = 9.64, and for cos θ = 0.92,
a = 0.405 and b = 4.10. While there is a deviation at small n, the overall
representation of the curve is fairly good, especially in terms of the barrier
height �G∗ and size of the critical nucleus n∗. Inset: low-n region of the
same data, highlighting the deviation from the CNT form.

The fits allow us to plausibly extrapolate our �G(n) pro-
files to values of n larger than what we can simulate in our
Np = 1000 system, allowing us to estimate n∗ and β�G∗ for
all the T that we study. While we do not rely strongly on
the accuracy of the extrapolations, they do provide a stronger
sense of the trends in the data.

The numerical values of the fit parameters require fur-
ther exploration to understand, as we do below. For exam-
ple, for the cos θ = 0.98 curve shown in Fig. 4, the parame-
ter a = 1.47, while β|�μ| = 0.790, a sizable discrepancy for
two quantities that are the same, in principle.

C. T dependence of �G∗ and n∗

Figure 5(a) shows β�G∗ as a function of T/Tm, where
Tm is the melting temperature for the four models45 [(cos θ ,
Tm): (0.98, 0.153), (0.96, 0.169), (0.94, 0.172), (0.92, 0.174)].
For small angles, the T dependence of β�G∗ is significant,
and can be modeled rather well in the present range of barri-
ers with an exponential function. The fast decrease of β�G∗

provides evidence for the inevitability of crystallization. For
larger angles, we observe both a significant change in slope,
i.e., a much slower decrease of the barrier height with super-
cooling, as well as a progressive increase of the barrier height
at fixed supercooling with increasing angle. The trend is ac-
counted for by the results reported in Ref. 28, namely, that
β|�μ| becomes a weaker function of temperature as θ in-
creases. On the basis of the results presented in Fig. 5(a), the
model with cos θ = 0.96 appears to be the optimal candidate
for crystallization from a thermodynamic perspective, since
modest supercooling is sufficient to induce barriers of height
of the order of 10 kBT .

Figure 5(b) shows n∗ as a function of T/Tm, showing
similar trends as for β�G∗(T ). The cos θ = 0.98 and 0.96
models are similar, attaining small n∗ for a relatively small
degree of supercooling, while the models with wider patches
seem to require larger sizes of critical nuclei as T decreases.
The T dependence of n∗ is much flatter, suggesting that the
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FIG. 5. (a) Barrier height β�G∗ as a function of T/Tm. For high values of
cos θ , the barrier decreases significantly with decreasing temperature, while
the slope is much more shallow for low values of cos θ . The two points at low-
est T for cos θ = 0.98 are obtained from US simulations employing a more
relaxed cij cutoff of qu = −0.65 after checking for consistency at higher T .
(b) Critical cluster size n∗ as a function of the reduced temperature. Also in
this case, the trend with T is stronger in narrow-patch models than in wide-
patch models.

critical nucleus remains significantly large even under deep
supercooling.

D. Surface tension

To illustrate the dependence of the surface tension on the
patch width, motivated by the relation 3β�G∗ = bn∗2/3 that
follows from Eq. (8), we plot in Fig. 6(a) β�G∗ as a func-
tion of n∗2/3. For all models, a reasonable linear dependence
is observed, with a slope that progressively increases with
cos θ beyond 0.94. This results in a larger critical size for a
given barrier height as the patch width increases. The near
linearity also suggests that the surface tension does not have
a strong dependence on supercooling. In Fig. 6(b) we show b

as a function of T/Tm as obtained from the fitting procedure
for the different state points studied. The surface tension in-
creases significantly on decreasing the angular patch width.
Once again, however, the two models with the largest patches
are quite similar in their behavior.

It is worthwhile noting that the densities at our simulated
P for these two wide patch models (at our lowest T ) are very
similar with values near ρσ 3 = 0.47, almost matching the
crystal density (where ρ is the number density). The density is
smaller for cos θ = 0.96, and smallest for cos θ = 0.98. Thus,
the values of b for the different models appear to reflect the
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FIG. 6. (a) Barrier height as a function of n2/3 (proportional to the surface
area of the cluster). All models show a linear behavior. (b) Surface coefficient
b of the CNT fit as a function of the reduced temperature. The surface term
does not change significantly with T , as compared to the barrier height [see
Fig. 5(a)]. (c) Reduced number density ρσ 3 as a function of T at P = 0.03
for the models studied. For all panels, open symbols correspond to the same
state points for which the barriers in Fig. 3 are calculated. Curves are a guide
to the eye.

differences in density, with a better match in density between
fluid and crystal giving rise to a smaller surface tension. How-
ever, a plot of the T dependence of the densities in Fig. 6(c)
shows that density does not solely determine b, as indicated
by the variation of density without a correspondingly large
variation in b within each model.

E. a vs β�μ

In Fig. 7 we plot β|�μ| (Ref. 45) and a (obtained from
the CNT fits) as functions of T . For comparison purposes, all
the values of a appearing in the figure have been multiplied
by a factor of 0.4, i.e., the values of a are significantly higher
than those expected from independent calculation of β|�μ|.
However, it is quite comforting that the rescaled a matches
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FIG. 7. CNT bulk fit parameter a as a function of temperature (points) com-
pared with the difference in chemical potential β|�μ| (lines). While the two
quantities show similar trends, to achieve quantitative agreement we multiply
values of a in the plot by a universal scaling factor of 0.4.

β�μ quite well across T and θ , as this strengthens our as-
sumption that the fit parameter b is proportional to βγ with
the same proportionality constant across all the models.

On the other hand, it is somewhat perplexing that such
a large rescaling is required at all. In a few previous stud-
ies, comparison between a and β�μ has shown that in some
cases a close correspondence is observed,8, 9, 41 while, in prin-
ciple, the value of a should vary with the definition crystal-
like particles. There are several potential reasons why such
a disagreement can be found. First of all, the assumption
of CNT may not be fully satisfied, including those concern-
ing the structure of the crystallites and the sharpness of the
interface.42 Second, an imperfect classification of particles as
solid-like leads to an imperfect evaluation of the cluster size
and a classification-dependence of a and b.

As a test of this second hypothesis and to illustrate the
effect of the parameters chosen to define crystalline clusters,
we plot in Fig. 8 sets of barrier profiles obtained for cos θ
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FIG. 8. Comparison of the nucleation barriers obtained with two different
order parameters, qu = −0.65 (dashed lines) and qu = −0.87 for the cos θ =
0.98 model. As expected, the barrier heights are consistent (see Ref. 44), but
the critical cluster sizes differ significantly. The more relaxed order parameter
leads to a larger critical cluster, possibly due to the fact that it includes more
particles on the surface. In the inset we also show the dependence of the bulk
CNT term a as a function of the order parameter, showing that it increases by
making the order parameters more strict.

= 0.98 using qu = −0.65 compared against using qu

= −0.87. While �G∗ remains invariant to within error with
respect to qu, at all investigated T , n∗ increases, as expected,
for smaller values of qu. Estimates for n∗, with an uncertainty
of roughly ±10 or less unless otherwise indicated, for the
T = 0.140, 0.142, 0.144, and 0.146 curves shown in Fig. 8
are 27, 61, 121, and 244, respectively, for qu = −0.87, while
they are 55, 93, 177, and 428 ± 80 for qu = −0.65. In other
words, the size of the critical nucleus is strongly dependent
on the criteria chosen to define solid-like particles. It is not
a surprise that �G∗ is a much more robust value, since the
work required to produce the critical nucleus is independent
on how the cluster is described. In other words, the “real”
critical nucleus (i.e., configurations which 50% of the time
will crystallize and 50% will melt again into a fluid state) is
what needs to be sampled in the simulation. The number of
particles that compose this cluster depends on the definition,
affecting the perceived size, but not the barrier height. These
conclusions are in agreement with the work of Filion et al.44

on spherical particles.
In the inset of Fig. 8, we show a as a function of qu

for T = 0.146 and cos θ = 0.98, and we see that a varies
by roughly a factor of 2 for the reasonable range of qu we
have explored. Coincidentally, the value for β|�μ| for this
state point is 0.56. Thus, for an appropriate choice of qu,
Eqs. (7) and (8) describe the nucleation barrier profiles both in
scaling and in the numerical value of �μ, but how to choose
the appropriate qu a priori is not clear.

The more inclusive choice of qu = −0.65 allows one to
more easily explore the regime of low barrier heights, less
hampered by the formation of secondary clusters. Using qu

= −0.65, we are able to add two additional points to the curve
for cos θ = 0.98 in Fig. 5(a).

F. DH vs DC

As we have alluded to before, the clusters are formed by
a mixture of local DC and DH particles. Indeed, the crite-
rion of having at least three connected neighbors (cij < qu)
for defining solid-like particles, accepts either a locally DC or
DH particle as solid. However, this definition is more likely
to misidentify a DH-like particle as liquid-like, since particles
in the DC crystal have four such connections, while DH parti-
cles only have three. The biasing potential may therefore tend
to grow clusters richer in DC than would occur naturally. In
the following, we therefore compare this criterion with other
criteria which enforce the growth of pure DC, pure DH, or
an unbiased mixture of the two. We do this at cos θ = 0.98,
where the calculations are the fastest.

For pure DC, we retain qu = −0.87 and simply require
that the number of connections be exactly four (as opposed to
at least three). With this more restrictive criterion, the solid-
like particles must have a DC environment. For pure DH, we
require exactly three connections with cij < qu = −0.87 and
one connection with −0.3 < cij < 0.1. In this way, DC par-
ticles are excluded and cannot participate in crystalline clus-
ters. For the mixed DH/DC case, a particle is solid-like if it
is determined again by exactly four connections, but this time
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FIG. 9. Schematic description of the criteria that require four connections
for defining solid-like particles. The values of cij are displayed next to the
bonds that the two central particles form. The particle on the left has three
bonds with cij < −0.87 and one bond with −0.3 < cij < 0.1, registering it
as a DH particle. The particle on the right has four bonds with cij < −0.87,
registering it as a DC particle. In the mixed four-connection case, both parti-
cles would be considered solid-like.

these four connections must satisfy either the criterion for a
DC particle or the criterion for a DH particle. The cartoon
in Fig. 9 provides a graphical explanation of the criteria for
identifying solid-like particles.

In Fig. 10, we show the barrier profile results at T

= 0.144 with cos θ = 0.98 for the four different definitions of
solid-like particles (three-connection, pure DC, pure DH, and
unbiased four-connection mixture), in order to asses if the en-
ergy barriers of the pure crystals are different from that of the
mixture and to ascertain the difference between using three
or four connections in the mixed case. We cannot discern any
real difference in terms of the barrier height between the four
criteria. This interesting observation supports the view for this
short-range model that in addition to the DH and DC free en-
ergies being essentially identical, the surface tensions are also
similar. Even more, if we restrict ourselves to the comparison
of all criteria in which four connections are required, then not
only is the barrier height identical, but (within our numeri-
cal precision) the n dependence of the barrier profile is also
identical. This suggests that the pathways to crystallizing DC
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FIG. 10. Nucleation barriers for pure DC, pure DH, and mixtures of the two.
For T = 0.144 the four-connection curves (pure DC, pure DH, and mixed
DH-DC) are all quite similar to each other and yield the same barrier height
as the three-connection case, but smaller n∗. Barriers at T = 0.142 compare
the mixed three- and four-connection cases and confirm the invariance of
�G∗ and the change in n∗ with different criteria for defining clusters.

and DH are quite similar as well. The pure DH case appears to
produce a slightly larger n∗, but this will also likely depend on
the bounds on cij near −0.1. Comparing the three-connection
criterion with the more restrictive four-connection cases, we
see that the four-connection criterion simply results in an ap-
parently smaller critical cluster size, providing one additional
piece of evidence for the sensitivity of the profile on the solid-
like definition accompanied by the insensitivity of the barrier
height.

We repeat the comparison at the lower T = 0.142. How-
ever, we are unable to construct barriers for the pure DC and
DH cases. At this temperature and even at moderate values of
n0, the presence of a pure DC cluster appears to act as a tem-
plate for the DH growth (and vice versa). Essentially, the DH
particles, which are not counted as solid-like, become part of
the growing crystal, providing a bridge between only appar-
ently different DC crystal clusters. Thus, the system crystal-
lizes while still registering a small largest cluster in the system
and our order parameter no longer describes nucleation.

This issue is greatly reduced for the four-connection
mixed case and we are able to calculate the barrier at T

= 0.142. Again, the barrier height is comparable to the one
calculated for the case of three connections. At lower T , also
for the four-connection mixed case, it becomes impossible to
properly evaluate the barrier, since the overly restrictive crite-
rion will misidentify as liquid-like particles sufficiently crys-
talline to participate in crystal growth.

While the barrier heights are the same across the differ-
ent cluster criteria, the DC/DH composition of the clusters
varies. To quantify this in a basic way, we analyze an ensem-
ble of largest clusters extracted from a set of US simulations
employing the mixed four-connection solid-like criterion in a
wide range of n0 values. We find that 54% of the solid parti-
cles are DC (standard deviation 17), which is the same as the
composition for clusters appearing in spontaneous nucleation
studies as reported in Ref. 28. Performing the same evaluation
starting from US simulations, employing this time the mixed
three-connection solid-like criterion (qu = −0.87), the frac-
tion of DC particles within the largest cluster is 73% (standard
deviation 22). The result is the same for qu = −0.65. This
confirms that the choice of at least three connections with cij

close to −1 does indeed introduce a bias toward the DC struc-
ture. For this model, however, this bias does not measurably
affect the nucleation barrier.

G. Body centered cubic

For all the patch widths considered except cos θ = 0.98
we are working in the stability field for DC/DH. For the
case of cos θ = 0.98, the stable crystal phase at P = 0.03
is the bcc (see Fig. 1), even if spontaneous nucleation in-
dicates that the crystal that forms is the DC/DH mixture.
To verify that the barrier for nucleating the bcc is signif-
icantly larger than the one for nucleating DC or DH or
their mixture for cos θ = 0.98, we evaluate the barrier at T

= 0.142 using the same procedure described for the tetrahe-
dral crystals. The definition of solid-like bcc particle is based
on the l = 6 spherical harmonics,8 defining neighbors to be
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FIG. 11. Estimates of homogeneous nucleation temperature T 10
X (crosses)

and T 20
X (circles) as functions of cos θ . The solid vertical line indicates the

value of cos θ = 0.9151 at which more than one bond per patch becomes pos-
sible for δ = 0.24. The upper horizontal dashed line marks the approximate
value of Tg/Tm = 0.8 for silica, while the lower one indicates the general
value of Tg = 2Tm/3. Inset shows the determination of T 10

X and T 20
X from the

crossing of exponential fits to the four lowest T points for each value of cos θ

with β�G∗ = 10 and 20, respectively.

connected when the scalar product of the l = 6 spherical har-
monics is greater than 0.5. A particle is classified as solid-like
if it has at least six connections. We note that Ref. 8 does
not use normalized qlm(i) vectors for calculating cij , so we
have determined cutoffs based on our distributions of cij and
of the subsequent number of connections a particle has in the
liquid and in the crystal. For this state point β|�μ| = 0.866,
while the corresponding quantity for the liquid to bcc transi-
tion is 1.05. Despite this larger thermodynamic driving force,
we find that the barrier to nucleating bcc is at least 70 kBT

larger than that for tetrahedral crystals, supporting the lack of
observation of spontaneous bcc nucleation at the pressure we
consider here.

IV. SUMMARY AND CONCLUSIONS

Previous work for this tetrahedral patchy model showed
that the driving force for nucleation (quantified as the differ-
ence in the crystal and fluid chemical potentials) decreases as
the patch width increases. Figure 7 summarizes this result by
showing β|�μ| increasing rapidly to large values as T de-
creases below Tm for narrow patches, while increasing only
slowly and remaining fairly small for wide patches.

We find that despite this reduced driving force, the bar-
riers to nucleation actually are smallest for the cos θ = 0.96
[as shown in Fig. 5(a)], in the sense that this model reaches
the homogeneous nucleation limit, marked, for example, by
the barrier reaching a value of β�G∗ = 10, at the highest
T/Tm amongst the studied models. The increased similarity
between liquid and crystal in terms of energy and density
as patch width increases not only brings the chemical poten-
tials of liquid and crystal closer in value (tending to increase
the nucleation barrier), but also reduces the surface tension
(tending to lower the barrier). Thus, in the range of narrow
angles where crystallization is readily observed, competition
between |�μ| and γ leads to optimal nucleation, from a ther-
modynamic perspective, at an intermediate patch width.

Increasing the patch width beyond cos θ = 0.94 no
longer significantly reduces γ , while |�μ| continues to de-
crease, causing an increase in nucleation barrier heights. For
cos θ = 0.92, this resulting increase is quite large, with β�G∗

estimated to be of the order of 50 at the lowest T that we can
simulate. Moreover, the rate of decrease of β�G∗ with T ap-
pears to be quite slow, requiring significant supercooling to
reach accessible nucleation barrier heights.

The evaluation of the barriers requires a definition of
solid-like particles. We have checked that the barrier height is
essentially insensitive to the exact choice of the cutoff used to
define solid-like connections, consistent with the observation
in Ref. 44 for hard-spheres. The size of the critical nucleus is
instead significantly dependent on the definition of solid-like
particles, again in agreement with the conclusions in Ref. 44.
We have also compared several definitions of solid-like parti-
cles to probe the crystallization of a pure DC, a pure DH, and a
mixed DC-DH structure. Interestingly, we find the same value
of β�G∗ for all structures and, in this case, similar n∗. The
fact that the entropy gain in creating a mixed structure does
not appreciably lower the work of forming a critical nucleus,
but is sufficient to generate a prevalence of mixed structures
when spontaneous nucleation takes place,28 warrants further
investigation.

At this point, we would be remiss if we were not to
comment on the interplay between dynamics and thermo-
dynamics in controlling the rate of nucleation, and indeed
governing the glass-forming abilities of the system. We al-
ready see an example of this within our data. The barriers at
the lowest T studied for cos θ = 0.98 and cos θ = 0.94 are
the same within error, and have a value of β�G∗ ≈ 17. How-
ever, the dynamics (in terms of the diffusion coefficient) are
40 times slower for the wider patch case. The slow decrease
in β�G∗ with T , combined with the expected further slow-
down in dynamics, suggests that a search for spontaneous nu-
cleation in unconstrained simulations would target T not far
from the lowest T for which we have calculated the barrier.
The case of cos θ = 0.92 is more obvious since its dynamics
are even slower at a given T than those of cos θ = 0.94: there
is no hope of seeing nucleation in this model, which for all
intents and purposes is a glass-former.

To place these results in slightly broader context, that
may be illuminating for molecular tetrahedral liquids that are
quite different in their glass-forming and crystallizing proper-
ties, we use the nearly exponential behavior of β�G∗ to find
estimates for the temperature at which the homogeneous nu-
cleation limit is reached, TX. We define two such estimates
using β�G(T 10

X ) = 10 and β�G(T 20
X ) = 20, and determine

them by fitting the lowest four points in T from Fig. 5(a)
for each model to exponentials and extrapolate where nec-
essary. In Fig. 11 we present the resulting estimates of TX

alongside a vertical line showing the widest patch that guar-
antees a single bond per patch, i.e., four bonds per particle.
Also shown are two horizontal lines indicating the approx-
imate value of Tg/Tm = 0.80 for silica46 (where Tg is the
glass transition temperature), as well as the general rule of
thumb Tg/Tm = 2/3 (Ref. 47) which has been shown to be
valid for a large class of molecular48 and polymeric systems.49

For TX/Tm below Tg/Tm = 2/3, a model may be considered a
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glass-former; our estimates suggest that we may be approach-
ing this regime with our widest patch model. The presence of
a maximum in TX confirms that decreasing the angular range
for bonding favors glass formation. Tetrahedral colloidal par-
ticles will thus form crystals only if the bonding angular width
is small.

As a final remark, we point out that our findings may
shed some light on the glass-forming and crystallizing abil-
ities of molecular or atomic tetrahedral network-forming liq-
uids, contributing insight as to why, for example, water crys-
tallizes while silica more readily forms a glass.
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