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We examine the metastable liquid phase of a supercooled gold nanocluster by studying the free
energy landscape using the largest solidlike embryo as an order parameter. Just below freezing, the
free energy exhibits a local minimum at small embryo sizes and a maximum at a larger critical
embryo size. At T=660 K the free energy becomes a monotonically decreasing function of the order
parameter as the liquid phase becomes unstable, indicating that we have reached a limit of stability.
In contrast to the mean-field theory predictions for a spinodal, the size of the critical embryo remains
finite as the limit of stability is approached. We also calculate the rate of nucleation, independently
from our free energy calculations, and observe a rapid increase in its temperature dependence when
the free energy barrier is on the order of kT. We suggest that this supports the idea that freezing
becomes a barrierless process at low temperatures. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2779875�

I. INTRODUCTION

When a liquid is cooled below its freezing temperature,
we generally expect the system to crystallize. However, the
nucleation process requires the formation of a small embryo
of the new stable phase that introduces an energetically un-
favorable liquid-solid interface and creates a free energy bar-
rier between the liquid and solid phases. As long as the fluc-
tuations in the liquid only result in the formation of embryos
smaller than the critical size needed to overcome the barrier,
the system will remain fluid. This is the metastable liquid.1

As the liquid is cooled further, the free energy barrier
decreases, making nucleation more likely and shortening the
lifetime of the metastable liquid. The question then arises: Is
there a temperature below which the metastable liquid be-
comes unstable with respect to all fluctuations? Mean-field
theories, such as the gradient theory developed by Cahn and
Hilliard,2 predict such a spinodal, for first order phase tran-
sitions such as the condensation of a gas or liquid-liquid
phase separation in a mixture. They predict that the size of
the critical nucleus diverges as the spinodal is approached as
a result of the divergence in the mean-field isothermal com-
pressibility of the fluid,3 and that the nucleation lifetime
should diverge, despite the fact that the free energy barrier is
in the order of kT, as the dynamics become increasingly
cooperative.4 However, recent experiments of phase separat-
ing polymers5 and simulations of the vapor-liquid transition
in Lennard-Jones model6 suggest that the size of the critical
embryo remains finite as the spinodal is approached.

Whether a deeply supercooled single component liquid
exhibits a spinodal singularity with respect to the crystal re-
mains an open question.1 Trudu et al.7 studied freezing in a
bulk Lennard-Jones fluid and found nucleation becomes a
spatially diffuse and collective phenomenon when the system
is deeply supercooled and suggested this was indicative of
the presence of a mean-field spinodal. Recent nucleation ex-
periments on water show nucleation times become extremely
short when the liquid is highly compressed, thus defining a
practical limit of stability to the liquid state.8 These results
provide strong but indirect evidence for the existence of a
thermodynamic limit of stability for the supercooled liquid
state.

Small liquid clusters represent an increasingly important
class of system that challenges our understanding of the liq-
uid state. In this paper, we address the question of whether or
not liquid clusters have a limit of stability as they are cooled.
We directly locate this limit of stability by calculating the
free energy of the cluster using the largest-sized solid em-
bryo as an order parameter. At temperatures just below freez-
ing, the free energy exhibits a local minimum associated with
the metastable liquid and a free energy barrier that separates
this liquid from the solid phase. The height of the barrier
decreases as the temperature is lowered and eventually dis-
appears so that the free energy becomes a monotonically
decreasing function of the order parameter and the liquid
phase becomes unstable. This provides the first direct mea-
surement of the limit of stability in a simple liquid system.

The remainder of the paper is structured as follows: Sec-
tion II develops our free energy description of the metastable
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fluid and our simulation details are outlined in Sec. III. The
results and discussion are contained in Sec. IV, followed by
our conclusions in Sec. V.

II. A FREE ENERGY DESCRIPTION OF THE
METASTABLE LIQUID

A rigorous molecular theory of a metastable system re-
quires the introduction of constraints that prevent the system
from accessing regions of phase space that will cause the
system to evolve towards the more stable state. In the context
of a supercooled liquid, we need to prevent the appearance of
solidlike embryos above the critical size that would cause the
liquid to freeze, which suggests we should choose the size of
the largest solidlike embryo, nmax, as an order parameter to
describe the state of the cluster.9 Furthermore, nmax seems to
be a particularly appropriate order parameter in small nano-
scale systems where the nucleation volume is sufficiently
small that the appearance of a single postcritical embryo
leads to the termination of the metastable state throughout
the entire system. When nmax=0, all the atoms in the cluster
are liquidlike, but when nmax=N, the total number of atoms
in the cluster, the cluster is a single crystal. The probability
of finding the cluster in a given state is

P�nmax� =
Q�nmax�

�nmax=0
V Q�nmax�

, �1�

where

Q�nmax� =
1

N!�3N�
V

e−�U�rN;nmax�drN, �2�

is the canonical partition function for the system constrained
to contain at least one largest embryo of size nmax,
U�rN ;nmax� is the potential energy of the system under the
constraint, � is the de Broglie wavelength, and �=1/kT,
where k is Boltzmann’s constant and T is the temperature.
P�nmax� can be calculated by simulation and the free energy
obtained from

�F�nmax� = − kT ln P�nmax� , �3�

where �F�nmax� is the work required to take the entire sys-
tem from a state where there is no solidlike embryo present,
to a state where there is at least one largest embryo of size
nmax. Equation �3� closely resembles the intensive free en-
ergy introduced by ten Wolde and Frenkel10,11 to calculate
the conventional free energy barrier associated with nucle-
ation,

�Fc�n� = − kT ln�Pn/N� � − kT ln�Nn/N0� , �4�

where Pn is the probability of observing an n-sized embryo,
Nn is the equilibrium number of embryos, and N0 is the equi-
librium number of liquidlike atoms which is usually taken to
be N. �Fc�n� is the work of forming an n-sized embryo
within the metastable phase. In the limit that embryos are
rare �i.e., under conditions of mild undercooling�, P�nmax� is
approximately equal to the equilibrium number of embryos12

and the two free energies become equivalent, but it should be
stressed that the two free energies are fundamentally differ-

ent and that we would expect them to behave differently in
deeply supercooled systems.

Bhimalapuram et al.6 have recently used Eq. �3� to iden-
tify the liquid-gas spinodal in the supersaturated Lennard-
Jones gas as the point at which �F�nmax� is a monotonically
decreasing function of nmax. They find this occurs at a super-
saturation consistent with previous estimates of the
spinodal13 and that the nucleation mechanism in the deeply
metastable system changes from classical nucleation, charac-
terized by fluctuating growth of a single large embryo, to a
mechanism involving the coalescence of embryos. However,
from the definition of P�nmax�, it should be apparent that the
free energy is an extensive quantity, and it is likely that the
location of the spinodal in a bulk system would shift depend-
ing on the number of particles in the simulation. In a small,
finite-sized system, such as a liquid nanoparticle, the appli-
cability of Eq. �3� is clearer.

III. SIMULATION DETAILS

We have previously calculated �Fc�n� for a gold cluster
with N=456 atoms, for temperatures above T=690 K,14 fo-
cusing on the role of wetting phenomena and the location of
the embryo at the nanoparticle surface. In the present paper,
we calculate both �F�nmax� and �Fc�n� to lower tempera-
tures for the same cluster in search of the limit of stability of
the metastable liquid cluster using the same approach of
combining umbrella Monte Carlo �MC� sampling simulation
techniques with parallel tempering. The application of these
techniques to nucleation are outlined in detail in Ref. 11. We
use the semiempirical embedded-atom method �EAM�
potential15 to describe the atomic interactions and study the
cluster in the NVT ensemble with a simulation cell of V
=1500 Å3 and periodic boundaries. At each temperature, we
run eight parallel simulations or windows, each with a para-
bolic biasing potential w�nmax�=0.0005�nmax−n0�2, which bi-
ases the system to sample states where the largest embryo,
nmax, in the cluster is around n0. We choose n0

=0 ,10,20,30, . . . ,70 and use T=750, 730, 710, 690, 680,
670, 660, and 650 for tempering.

Our embryo criterion has been previously described in
Ref. 14 and closely follows that developed by Auer and
Frenkel11 to study crystal nucleation in hard sphere colloids.
In brief, we determine the local order around a single atom i
using the Steinhardt bond order parameter,16

q6m�i� = �
j=1

nb�i�

Y6m�r̂ij� , �5�

where the sum is over all the neighboring atoms closer than
3.5 Å, Y6m�� ,�� is the sixth order spherical harmonic, and r̂ij

is the unit vector pointing from particle i to a neighbor j.
Furthermore, we characterize the correlation of the order be-
tween two neighbors by

cij = �
m=−6

6

q̂6m�i� · q̂6m
* �j� , �6�

where
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q̂6m�i� =
q6m

��m=−6
6 ��q6m�i��2��1/2 , �7�

and q* is the complex conjugate. If two neighbors are corre-
lated above a threshold value of cij �0.65, we then consider
them to be bonded. This threshold value is obtained by con-
sidering distributions of cij obtained from liquid configura-
tions at T=750 and configurations of the solid taken at T
=700, and selecting the value where these distributions in-
tersect. An atom is finally considered to be solidlike if it is
bonded to, and hence, correlated with, at least half its neigh-
bors. Two neighboring, solidlike atoms are considered to be
in the same embryo if they are connected through a bond.

The embryo criterion is computationally expensive to
apply so we use trajectories that consist of ten normal MC
moves per atom sampling the atomic interaction potential,
followed by a test against w�nmax�. If the final move is re-
jected, the system is returned to the state at the beginning of
the trajectory. We attempt tempering switches every five tra-
jectories, alternating between switches in n0 �T fixed� and T
switches �n0 fixed�. These tempering switches have accep-
tance ratios of about 0.4 and 0.6, respectively. The free en-
ergies in each window differ by an unknown additive con-
stant, so the full free energy curve is constructed by fitting
the curves to a polynomial in nmax �Ref. 11�, and a total of
1.74�106 trajectories are sampled in each window.

IV. RESULTS AND DISCUSSION

Figure 1 shows the free energy calculated using Eq. �3�.
At temperatures just below the freezing temperature for the
cluster, �F�nmax� exhibits a minimum at small values of nmax

before it increases to a maximum at a larger critical embryo
size nmax

* . Fluctuations in the cluster that keep the largest
embryo below its critical size are locally stable and represent
the configuration space available to the metastable liquid,
while larger fluctuations cause the system to freeze. The
critical size identifies the constraint required to keep the liq-
uid in metastable equilibrium.

As the temperature is lowered, nmax
* decreases in size and

the barrier becomes smaller. Eventually we reach a point, at

T=660 K, where the barrier disappears and all fluctuations
which increase the size of the largest cluster lower the free
energy, suggesting we have reached the limit of stability for
the fluid phase. Further decreases in T simply increase the
thermodynamic driving force towards forming the solid as
the free energy curves become steeper.

Figure 2 shows the two free energies calculated from
Eqs. �3� and �4� where �F�nmax� has been shifted vertically
to maximize the overlap between the two curves. At T
=750 K �see insert�, the two free energies are identical for
embryo sizes larger than about 15 since there is generally
just one large embryo in the system and both have the same
critical embryo size. The minimum in �F�nmax� suggests that
the cluster usually contains a largest embryo of nmax�5. On
the other hand, �Fc�n� always has a positive slope at small n,
indicating that there must be a larger equilibrium number of
embryos smaller than nmax. At the limit of stability �T
=660 K�, the two curves are very different and only overlap
at the largest embryo sizes.

If we define the height of the barrier, �F��nmax
* �, as the

difference in free energy between the maximum and the
small embryo minimum of F�nmax�, we can compare this
with the usual nucleation barrier, �Fc�n*�. Figure 3�a� shows
that as �F��nmax

* � goes to zero at the limit of stability,
�Fc�n*� plateaus as a function of temperature at around
10kT. At the same time, the size of the critical embryo for
both free energies decreases as a function of temperature. At
T=660, �F�nmax� exhibits a flat region, where the embryo
sizes in the range nmax=5–25 have approximately the same
free energy, so we can expect considerable fluctuations in the
embryo size. Nevertheless, nmax

* remains finite �Fig. 3�b�� as
the limit of stability is approached from above. This is in
direct contrast to the predictions of mean-field theories ap-
plicable to the vapor-liquid transition.2,3 Our results are con-
sistent with those of Pan et al.5 and Bhimalapuram et al.6

The rate at which clusters freeze can be determined by
considering an ensemble of temperature quenched, molecular
dynamics �MD� simulations.17 The liquid cluster is initially
equilibrated at T=900 K, well above the freezing tempera-

FIG. 1. �F�nmax� as a function of nmax for temperatures in the range T
=750–650. FIG. 2. Comparison of �Fc�n� and �F�nmax� at T=660 K where �F�nmax�

has been shifted upward by 14.9kT. Insert: The same comparison at T
=750 K with �F�nmax� shifted upwards by 10.2kT.
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ture, before the temperature is instantaneously quenched be-
low freezing by rescaling the particle velocities. The MD
trajectory is then followed as the cluster freezes. Assuming
this process is described by a first order rate law, the nucle-
ation rate J can be obtained from the relation

ln�R�t�� = − JVc�t − t0� , �8�

where R�t� is the fraction of un-nucleated clusters at time t,
Vc is the volume of the cluster, and t0 is the nucleation lag
time, which is the time required to reach a steady state of
clusters containing an embryo of a size large enough that we
consider the cluster to have nucleated. In the present study,
we consider a cluster to have nucleated when nmax is greater
than 85 for the last time during the simulation, which runs
for 500 ps. The nucleation size is defined as 85 because it is
larger than the critical embryo size at all temperatures stud-
ied. Since we only follow the largest embryo, our rate calcu-
lation only explicitly accounts for single nucleation events.
In this respect, the MD simulations are consistent with use of
nmax as an order parameter in the free energy calculations.
We do see multiple small embryos appearing in a single clus-
ter during a nucleation run, but we generally only see one
large embryo of size n=85. However, if embryo coalescence
becomes an important factor when the free energy landscape
is flat, this may impact our nucleation rates. A total of 300
quenched simulations are used at each temperature and the
insert to Fig. 4 shows that a single exponential gives a rea-
sonable description of the rate process for the temperatures
studied. The volume of the cluster is determined using a
“rolling sphere” algorithm18 which defines the surface of a
cluster using a hard sphere probe. In our case, the radius of
the probe sphere and the gold atoms was taken to be 1.5 Å.
At T=750 K, Vc=7�103±250 Å3, which is 12% smaller
than would be predicted based on the volume per molecule
of bulk liquid EAM gold.19

The intercept of the linear fits of ln R�t� give lag times in
the range of 14–27 ps with an average over all temperatures
of t0=19.4 ps. The scatter in the data is too large to identify
any temperature dependence in t0. The short lag time sug-

gests that Eq. �8� should be sufficient to determine our nucle-
ation rates. However, at the lowest temperatures, we are en-
tering a regime where a more rigorous analysis20 could be
used to determine how time-dependent features at early
nucleation times impact our rate calculation. Figure 4 shows
that the nucleation rate increases as the cluster is quenched to
lower temperatures. For temperatures above 700 K, our rates
are approximately the same as those obtained by Chushak
and Bartell,17 who used the same technique, but a larger
cluster volume and a different nucleation criterion. Around
T=700 K we see an unexpected increase in the rate with the
slope �J /�T becoming more negative. Classical nucleation
theory expresses the rate of nucleation as

J = K exp�− �Fc�n*�/kT� , �9�

where the kinetic prefactor11 is given by K=24�nZDn*2/3 /	,
D is the diffusion coefficient, �n is the number density of
particles, 	 is the typical distance a particle must diffuse in
order to join the embryo, and Z= ���
� /6�kTn*�1/2 is the
Zeldovich factor. �
 is the difference in chemical potential
between the nucleating stable and metastable phases. The
temperature dependent parameters in the rate should vary
continuously as a function of temperature and cannot ac-
count for the rapid increase in rate, while Fig. 3�a� suggests
that the temperature dependence of �Fc�n*� /kT would cause
the rate to slow, rather than accelerate. However, at T
=700 K, the barrier defined by �F�nmax

* � /kT is on the order
of kT, which suggests that the observed deviation in the tem-
perature dependence of the rate might be associated with a
crossover from a barrier dominated nucleation process to a
barrierless one. Consequently, both our direct barrier calcu-
lations and the independent MD rate calculations point to the
strong possibility of a limit of stability for the fluid phase.

V. CONCLUSION

The main goal of the present work is to investigate the
possibility that the supercooled liquid phase of a nanocluster

FIG. 3. �a� The height of the free energy barrier, �F��nmax
* �, �squares� com-

pared to �Fc�n*� �circles�. See Ref. 14 for details. �b� The size of the critical
embryo obtained using the two methods. Symbols are the same as �a�.

FIG. 4. The nucleation rate as a function of temperature. Insert: −ln�R�t�� as
a function of time for T=610 K �circles�, T=660 K �squares�, T=700 K
�diamonds�, and T=730 K �triangles�. The solid lines represent linear best
fits to the data.
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exhibits a limit of stability. In particular, we obtain a free
energy landscape using the size of the largest embryo in the
system as an order parameter to describe the state the system
and provide a reaction coordinate leading from the liquid to
the solid state. The local free energy minimum that appears
at moderately supercooled temperatures, centered around
small nmax, characterizes the fluctuations available to the
metastable liquid. However, the free energy becomes a
monotonically decreasing function of nmax at lower tempera-
tures, so that it is always thermodynamically more favorable
to increase the size of the largest solid embryo, indicating
that the liquid phase has become unstable. This conclusion is
supported by our MD calculations of the rate. While our
study has focused on a gold nanocluster, where nucleation
occurs on the surface, it seems reasonable to speculate that
this limit of stability for the fluid phase is quite general in
these small liquid systems and it raises the interesting ques-
tion as to weather such a limit of stability is also present in
bulk systems.
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