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We perform molecular dynamics �MD� and Monte Carlo computer simulations to test the ability of
the recently developed formalism of mean first-passage time �MFPT� �J. Wedekind, R. Strey, and D.
Reguera, J. Chem. Phys. 126, 134103 �2007�; J. Wedekind and D. Reguera, J. Phys. Chem. B 112,
11060 �2008�� to characterize crystal nucleation in the Lennard-Jones liquid. We find that the
nucleation rate, critical embryo size, Zeldovich factor, attachment rate, and the nucleation barrier
profile obtained from MFPT all compare very well to the same quantities calculated using other
methods. Furthermore, we find that the nucleation rate obtained directly through MD closely
matches the prediction of classical nucleation theory. © 2009 American Institute of Physics.
�doi:10.1063/1.3216867�

I. INTRODUCTION

Molecular dynamics �MD� and Monte Carlo �MC� com-
puter simulations play an increasingly important role in
studying nucleation and testing classical nucleation theory
�CNT�.1–6 While straightforward atomistic simulations can
provide a great deal of microscopic detail of a system and are
used when achieving equilibrium is not problematic, large
free energy and kinetic barriers often encountered in study-
ing nucleation necessitate the use of special computational
methods to more efficiently sample phase space. To this end,
various techniques such as metadynamics,7 aggregation-
volume-bias MC,8 and transition path sampling9 can be em-
ployed.

Particularly notable in the computational study of nucle-
ation is the work of Frenkel and co-workers,10–15 who devel-
oped techniques to calculate quantities pertinent to nucle-
ation, such as the size of a crystal-like embryo, the work
required to form a critical embryo �the nucleation barrier
height�, embryo composition, and the rate of particle attach-
ment to the critical embryo. The techniques, in part and with
variations, have been applied to several cases, including
nucleation of globular proteins near a metastable critical
point,16 liquids near a wall,17 hard spheres,13,14 sodium
chloride,15 a system near an isostructural phase transition,18

and silica.19

A subset of Frenkel’s techniques used in concert forms
what can be regarded as a standard approach in making a
CNT-based prediction of the rate. A suitable set of criteria is
used to define crystal-like embryos, after which biased sam-
pling MC is used to find the equilibrium number distribution
N�n� of embryos of size n, using the largest embryo size in
the system nmax as the biasing order parameter in order to
sample rare states. To more efficiently establish equilibrium,
parallel tempering, both in temperature T and cluster size, is
often employed. This procedure yields the size of the critical

embryo n�, the work required to form an embryo of size n,
�F�n�, and the Zeldovich factor Z. The attachment rate of
particles to the critical embryo fn�

+ is calculated separately
with MD simulations of systems containing a critically sized
embryo.

Recently, Wedekind et al.20–22 developed a formalism
useful in the regime where nucleation can be observed di-
rectly in MD simulations, namely, the mean first-passage
time �MFPT� method. From an ensemble of nucleating runs,
the MFPT method yields a clear determination of the rate,
the size of the critical embryo, and the Zeldovich factor.
Additionally, the same steady-state MD simulation data can
be used to determine free energy barrier profiles as well as
attachment rates. Thus, in the regime of applicability, i.e.,
where nucleation occurs on simulation time scales, the
MFPT method provides a straightforward way of determin-
ing all the quantities necessary for characterizing the nucle-
ation process.

In developing the MFPT method and applying it to liq-
uid nucleation from the vapor,23 Reguera and co-workers
made use of the probability P�n� of observing the largest
embryo in the system to be of size n. P�n� is not the distri-
bution directly pertinent to CNT, N�n� is. P�n� is extensive,
in that in a larger system, larger embryos are less rare, and
hence the most common size for the largest embryo in the
system increases with increasing system size, eventually
leading to an apparent loss of liquid metastability at suffi-
ciently large system size.24–26 Despite this extensivity, P�n�
is related to N�n�; for sufficiently high barrier, for a given
system size, the two distributions become approximately
equal beyond a sufficiently large embryo size. This enables
us to determine �F�n� from P�n� and other steady-state data.

In this work, we compare the rate of nucleation deter-
mined from the MFPT method to a more conventional
method employing MD simulations. The MFPT method then
allows us to use this same set of data to determine n�, Z,
�F�n�, and fn

+, the attachment rate as a function of embryoa�Electronic mail: saika@mun.ca.
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size. We determine separately �F�n� through biased sam-
pling MC and compare to the MFPT result and to the func-
tional forms commonly used in CNT. Further, we calculate
fn�

+ through size fluctuations of critical embryos and then
compare the rate predicted by CNT to the directly deter-
mined one.

II. NUCLEATION RATE FROM MD SIMULATIONS

We simulate Np=4000 particles of mass m under con-
stant T and volume V at number density �=0.95, using the
Lennard-Jones pair potential ULJ�r�=4���� /r�12− �� /r�6� in
a periodic cubic box of length L=16.147 754 2. This density
was recently used to study nucleation by Wang et al.27 We
report all quantities in dimensionless units, with the length
scale given by �, energy scale by �, and time scale by
�m�2 /�. We truncate interactions at a radius of 2.5 and we
employ a time step of �t=0.001. Temperature is held fixed
with the Nosé–Hoover thermostat, with the mass parameter
chosen so that the large fluctuations in the potential energy
per particle U damp down after 1000 time steps following
quenches from T=1.2 to T=0.58 �Q=20 in Eq. 6.1.26 in Ref.
28�, and no unreasonable fluctuations occur in the steady
state. We confirm that the conserved quantity in the Nosé–
Hoover ensemble exhibits fluctuations much smaller than
those in the potential energy and shows no drift over relevant
time scales for our work.

The system is equilibrated at T=1.2 and subsequently
200 independent configurations are harvested by taking a
snapshot configuration every 20 000 timesteps, a time large
enough for particles to diffuse a few diameters. Each of these
harvested configurations is then used to start a new simula-
tion, a crystallization run, by simply changing the target tem-
perature to 0.58. Each simulation proceeds until well past
nucleation, i.e., well after the significant drop in U associated
with crystallization. At this density, T=1.2 is near the upper
boundary of the liquid-crystal coexistence region for the
Lennard-Jones system with inifinite size and full range of
potential,29 while 0.58 is below the coexistence region, but
above the temperature of 0.54 where stability of the liquid
and the nature of nucleation are called into question.27,30

Figure 1 shows U as a function of time t for a few
crystallization runs. Qualitatively, we see that the system eas-
ily establishes a metastable liquid state prior to crystallizing,
and that crystallization is a fairly sharp event. The time re-
quired for the crystallite to grow to a large fraction of the
system is short compared to the nucleation time and so it is
highly unlikely to encounter multiple nucleation events.

One way to determine the rate J, the number of nucle-
ation events per unit time per unit volume, is to model the
fraction of non-nucleated members of the crystallizing en-
semble as a function of time R�t� with ln R�t�=−JV�t− t0�,
where V=L3=4210.526 35 and t0 is the time lag, or the mini-
mum time to construct a critical embryo.23 In Fig. 2, we plot
R�t� using different criteria for determining the time at which
the system is nucleated. U drops below �6 for the first time,
nmax first reaches 80, and the last time nmax is less than 64.
All three sets of curves yield similar slopes, with JV
= �3.9�0.3��10−4, or J= �9.0�0.7��10−8.

To define crystal-like embryos, we employ the method
developed by Frenkel and co-workers,10 based on Steinhardt
bond-ordering analysis,31 with cutoff criteria taken from Ref.
27. Namely, we define for particle i a 13-component complex
vector q6m�i�=� jY6m�r̂ij�, where Y6m is the spherical har-
monic function of order six, r̂ij is the unit normal giving the
direction of the bond between particle i and its neighbor j,
and the sum is carried out over all neighboring particles, i.e.,
those within a distance of 1.4 of particle i. If the dot product
�m=−6

6 q̂6m�i�q̂6m�j�� between two neighboring particles is
greater than 0.5, where q̂6m�i�=q6m�i� / ��m=−6

6 �q6m�i��2�1/2 and
q� is the complex conjugate of q, then particle j is a con-
nected neighbor of i. If a particle has at least 11 connected
neighbors, then it is considered crystal-like. Finally, and this
definition differs from Refs. 10 and 27, two crystal-like par-
ticles are part of the same crystal-like embryo if they are
connected �and not just neighbors�.

In the MFPT formalism, the average time that an embryo
of size n appears for the first time is given by
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FIG. 1. A sampling of potential energy time series for crystallizing MD
runs. Equilibrium configurations drawn from T=1.2 are quenched to T
=0.58 at t=0 by changing the Nosé–Hoover thermostat setting. For the data
shown here, it is clear that a metastable liquid state is attained prior to
nucleation.
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FIG. 2. Determining J from R�t�, the fraction of non-nucleated runs from an
ensemble of MD simulations. Shown are ln�R�t�� using different criteria for
determining the time at which a system has nucleated: First time nmax�80
�circles�, last time nmax	64 �squares�, and first time U	−6 �diamonds�.
The solid line is a representative line of best fit with JV=3.8�10−4, while
the dashed lines are guides to the eye in estimating uncertainties with JV
=3.6�10−4 and JV=4.2�10−4.
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�n� =
1

2JV
�1 + erf�c�n − n���	 , �1�

where n� is the size of the critical embryo, erf�x� is the error
function, and c=��F���n�� /kBT=Z�� characterizes the
curvature at the top of the nucleation barrier profile
��F��n�=−ln�P�n��+
, where �= �kBT�−1 and kB is
Boltzmann’s constant. We will clarify the meaning of �F��n�
in Sec. III.

For each crystallization run, we determine 
�n� by sav-
ing configurations every 1000 time steps and finding the
largest crystal-like embryo in each saved configuration. Be-
cause of the discrete sampling of configurations, the nature
of embryo growth and decay, and possible amalgamation of
embryos of size greater than one, the time series nmax�t� need
not be monotonic, and often decreases or increases by more
than one.

For example, let us assume that the values of nmax�t� for
the first four sampling times for a particular nucleation run
are nmax�t=1�=0, nmax�2�=2, nmax�3�=4, and nmax�4�=1.
The resulting first-passage times are 
�nmax=0�=1, 
�1�=2,

�2�=2, 
�3�=3, and 
�4�=3, where we filled in entries for
skipped embryo sizes, i.e., when an embryo of a given size is
first observed at a given time, that same time is assigned to
all smaller sizes that have not yet been assigned a time. Sam-
pling more frequently than once every 1000 time steps could
minimize the effects of this “filling in” procedure.

We plot 
�n� averaged over all 200 crystallization runs in
Fig. 3, along with a fit of 
�n� to Eq. �1�. From the fit to 
�n�,
we obtain JMFPTV=4.0�0.1�10−4, or JMFPT=9.4�0.3
�10−8, cMFPT=0.028�0.001 or ZMFPT=0.0158�0.0006,
and nMFPT

� =65�1. The uncertainties in the rate appear to be
larger than what may arise from the bias of at most 1 in 

introduced by the filling in procedure used in getting 
. To
confirm the criticality of n�-sized embryos, we choose 27
configurations containing such embryos, randomize veloci-
ties, and find that 13 of the configurations continue to crys-
tallize, while the other half decays.

III. BARRIER RECONSTRUCTION

In this work, and particularly in this section, we make
use of two distributions, N�n� and P�n�, upon which free
energies �F�n� and �F��n� are based. For clarity, we reiter-

ate their meanings and differences. N�n� is the average num-
ber of embryos of size n in the equilibrium liquid. Generally,
N�0� �the number of liquidlike particles� is only slightly less
than the total number of particles and N�n� decreases mono-
tonically for 0�n�n�. P�n� is the probability that the larg-
est embryo in a configuration taken from the equilibrium
liquid is of size n. When there is a large free energy barrier to
nucleation, larger embryos are rare �when a rare embryo is
present, there is approximately no other embryo of that size
or larger in the system� and for rare embryos sizes N�n� and
P�n� are approximately equal. For not-so-rare smaller clus-
ters, the two distributions are quite different. For example,
we find for our system that most of the time there are some
crystal-like particles present, and so it is rare to find all the
particles in the system to be liquidlike, i.e., P�0� is smaller
than P�1�. In our case we find that P�4� is a maximum, i.e.,
the most common largest embryo size in the system is 4.
Whereas N�n� decreases monotonically from n=0, P�n� need
not do so. For a discussion on how the two distributions are
formally related, see Ref. 26.

Wedekind and Reguera outline their procedure in Refs.
21 and 22 for determining the barrier to nucleation as a func-
tion of an order parameter that characterizes the system. In
particular, they choose the largest embryo in the system as
the appropriate order parameter to track the nucleation pro-
cess and obtain

��FMFPT
� �nmax� = ln�B�nmax�� − 


a�

nmax dx�

B�x��
+ C , �2�

where a� is a formal lower limit of integration the explicit
choice of which is absorbed into C, which is fixed by choos-
ing an appropriate reference state. The function B�x� is given
by

B�x� =
1

Pst�x��
a

x

Pst�x��dx� − JV
�x�� , �3�

where a is the left �reflecting� boundary of the order param-
eter domain, which in our case we take to equal zero, and
Pst�nmax� is the steady-state probability of finding a configu-
ration in the ensemble of crystallization runs with largest
crystal-like embryo size equal to nmax. We obtain Pst�nmax�
by constructing a histogram in nmax, considering configura-
tions from all 200 runs with nmax�h and t�10, and then
dividing by the number of configurations considered. h
=100 is the upper limit on nmax for the purposes of determin-
ing Pst�n�, as well as Nst�n�, the steady-state counterpart of
N�n�, i.e., �n=0

n=hPst�n�=1 and Nst�0�+�n=1
n=hnNst�n�=Np. In this

work, we actually evaluate the integrals in Eqs. �2� and �3� as
discrete sums.22

It is perhaps worth pointing out that the steady state
differs from equilibrium. Steady state refers to the case
where the system is in the process of nucleating �and the
nucleation rate is constant in time�. A nucleating liquid will
not sufficiently sample near-critical states, since it is apt to
quickly slide down the free energy landscape to the crystal
once it reaches the top of the free energy barrier. The equi-
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FIG. 3. Plot of mean first-passage times. Plotted are 
�n� �diamonds�, along
with a fit of 
�n� to Eq. �1�.
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librium liquid can only be obtained if the system is formally
prevented from nucleating, e.g., by some constraint on the
largest embryo.

In equilibrium, ��F��n�=−ln P�n�+
, and it is essen-
tially the goal of the MFPT formalism to obtain P�n� from
Pst�n� available from dynamic simulations without placing
constraints on the system as is done with, e.g., umbrella sam-
pling MC. �F��n2�−�F��n1� can be interpreted as the work
required to change the system from having nmax=n1 to hav-
ing nmax=n2.

Recently, Wedekind and Reguera22 carried out their pro-
cedure in the case of liquid nucleation from the vapor. Here,
we are working with crystal nucleation and there appears to
be an additional subtlety. The central thermodynamic quan-
tity relevant to predicting the rate via CNT is N�n� �again,
the equilibrium number of crystal-like embryos of size n in
the system�. For rare embryo sizes N�n�
 P�n� �provided
both N�n� and P�n� are defined on the same range of n,
otherwise they differ by a normalization constant�. As men-
tioned above, at small n they are different in general. De-
pending on system size �and perhaps to some extent on the
definition of a crystal-like embryo�, it is not surprising to find
it rare for the system to be devoid of crystal-like particles. In
this case P�n� should have a maximum at nmin corresponding
to a most likely largest embryo size for the system �or a
minimum in −ln P�n��.

Despite the differences at small cluster sizes between
P�n� and N�n�, the MFPT formalism recovers the CNT ex-
pression for the rate, in the case that N�n��= P�n�� and
�F��n�� is a pronounced local maximum �so that
exp���F��n�� dominates near n��. In this case, n� is now
also consistent with being defined as the size at which the
work required to form an n-sized embryo from liquid par-
ticles ��F�n�=−ln N�n�+
 has its maximum. The constant

=ln N�0� is a constant chosen so that �F�0�=0 �N�0� is the
number of liquidlike particles�. In this case, we can use Eq.
A4 from Ref. 20, which we rewrite here as

JMFPTV = fn�
+ exp�− ��F��n���

�a=0
n�

dz exp�− ��F��z��
��F���n�

2�kBT
, �4�

and note that the last factor is the Zeldovich factor. The
numerator of the middle factor, given the definition of
�F��n�, is N�n�� /N�0� and the denominator, given the nor-
malization of P�n� and a choice of h to be near n�, equals



a=0

n�

dze−��F��z� =
1

N�0��1 − 

n�

h

dzP�z�� 

1

N�0�
, �5�

since near n�, P�n� is very small. We briefly discuss the h
dependence of this result in Sec. VI. Thus, we recover the
CNT result,

JMFPT = JCNT = fn�
+ Z

N�n��
V

, �6�


�fn�
+ Z exp�−

�F�n��
kBT

� . �7�

Thus, we see that �F��n� can be used to determine the
rate in so far as it can be used to determine N�n��. Although
tempting, it does not appear to be the case that the free en-
ergy barrier �F��n��−�F��nmin� is of immediate value in
determining rates, at least for bulk systems when barriers are
high. For low barriers or small systems the scenario might be
different.24,32

In Fig. 4�a� we show the results of using Eqs. �2� and �3�
to determine �FMFPT

� �n� and compare the results against
those obtained through constrained, parallel tempered MC
simulations for the equilibrium quantity �F��n� �see Sec.
IV�. We find very good agreement notwithstanding some
noise in the MD data.

Consistent with large clusters being rare, we find that
Pst�n� and Nst�n� are practically the same for n�25. More-
over, the n dependence of �FMFPT

� �n� is not appreciably dif-
ferent from that of −kBT ln Pst�n� for nmax�30, i.e., the
steady-state distribution equals the equilibrium one for this
lower range of embryo sizes.
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FIG. 4. Steady-state distributions and free energies at T=0.58. �a� Shown
are negative logarithms of steady-state distributions Pst�n� �thin red line with
diamonds� and Nst�n� �thick black line�, and �FMFPT

� �n� �blue line with
circles�, the free energy obtained from Pst�n� and 
�n� through Eqs. �2� and
�3�. Inset to �a�: comparison of �FMFPT

� �n� and �F��n�, obtained through
MC simulations. �b� Shown are �F��n� �red curve with diamonds� and
�F�n� �black curve�, both obtained through MC simulations, as well as
�FMFPT�n� �blue line with circles�, obtained by splicing the portion of
−ln Nst below n=26 and the portion of ��FMFPT

� �n� for n�26. Inset to �b�:
�F�n� �circles� and fitting functions −a1n+a2n2/3 and −b1n+b2n2/3+b3n1/3,
with best fit parameters a1=0.558, a2=3.242, b1=0.123, b2=0.0275, and
b3=5.733.
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This suggests defining and determining �FMFPT�n� as a
splicing of −kBT ln Nst�n� at small n and �FMFPT

� �n� at larger
n. In particular, we follow −kBT ln�Nst�n� /Nst�0�� for n	26
and then follow �FMFPT

� �n� after shifting it to match
−kBT ln�Pst�n� /Nst�0�� at small n. In Fig. 4�b� we compare
�FMFPT�n� against �F�n� obtained from MC simulations
�see Sec. IV� and find very good agreement.

What is also very encouraging is the excellent agreement
between ��F�n� and −ln�Nst�n� /Nst�0�� at small n. In prin-
ciple, this should not be surprising since for small embryo
sizes the steady-state distribution of embryos should match
the equilibrium one. Nonetheless, here we have MD simula-
tions with a Nosé–Hoover thermostat to get one and MC
simulations to get the other. It seems that the simulations
produce the canonical distribution of embryos.

IV. MC SIMULATIONS

To determine �F�n�, we use biased sampling MC with
parallel tempering in both temperature and cluster size. Our
biasing potential is ��nmax;n0�=k0�nmax−n0�2 /2, with k0

=0.05,27 and n0 is the target size for the largest cluster. We
carry out 22 simulations in parallel using n0 values of 0, 10,
20, …, and 100, each at two temperatures T=0.57 and T
=0.58. The simulations are seeded with configurations taken
from crystallizing MD runs with appropriately sized em-
bryos.

One regular MC step consists of five Metropolis NVT
MC moves per particle to generate a new configuration, fol-
lowed by acceptance of the new configuration with probabil-
ity exp�−���nmax;n0��.27 After nine regular MC steps, we
carry out a “switch” MC step, for which an attempt is made
to switch configurations with nearest-neighbor simulations in
T or n0, alternating between the two kinds of switches, i.e., a
T-switch is attempted every 20 MC steps. A switch of con-
figurations between two simulations running at different T
�but same n0� is accepted with probability min�1,exp���i

−� j��Ui−Uj��	, where �i is the Boltzmann factor for simu-
lation i and Ui is its instantaneous potential energy �including
the contribution form the constraint potential�. For a switch
of configurations between two simulations with different val-
ues of n0 �but same T�, the acceptance probability is
min�1,exp�−��wn−wo��	, where wn=��ni ;n0j�+��nj ;n0i�
and wo=��ni ;n0i�+��nj ;n0j�, ni is the size of the largest
cluster in simulation i. After equilibrating the system, we
collect data for 106 MC steps, over which time the energy for
the state points simulated appears very stable, showing no
appreciable drift.

For each simulation at a given T and n0, we keep track of
the histogram PC�n�, which counts the number of times the
largest embryo in the system is of size n, and the histogram
NC�n�, which counts the number of times an embryo of size
n appears in the system. We transform the histograms in the
constrained ensemble to the unconstrained NVT ensemble
via, N�n�= �NC�n�exp����n ;n0���Cconst, where �¯ �C de-
notes an average in the simulation using the constraining
potential, and P�n�= PC�n�exp����n ;n0��const �see Ref. 14
for details�, thus determining sections of �F and �F� up to
an additive constant for each T and n0. We then trim N�n�

and P�n�, only keeping histogram entries for which PC�n� is
greater than 1.5% of the total number of samples. We make
an exception for the case of n0=0, for which we keep the
n=0 entry in N�n�, even though the nmax=0 state is sampled
less than 1.5% of the time.

To obtain the free energies for all n, we shift each sec-
tion in order minimize the difference between overlapping
parts and then average the overlapping values. Differences in
free energy at overlapping points of adjacent curves prior to
averaging are about 0.05kBT or less. We then shift the curves
so that �F�0�=0 and �F��70�=�F�70�.

We show our results and compare to those obtained
through MFPT at T=0.58 in Fig. 4. We find that the results
of the two methods agree very well. In the inset to Fig. 4�b�,
we show a fit of �F�n� to the usual CNT form −����n
+sn2/3, as well as to a modified form which includes an extra
term to account for curvature effects, kn1/3. The extra param-
eter improves the fit dramatically and the fit parameters seem
to indicate that the curvature term is an important contribu-
tion. This warrants further detailed investigation.

From a quadratic fit to �F�n� near the top of the barrier,
we find n�=71�1, ��F�n��=15.74�0.25, and cMC

=���F��n�� /2=0.031�0.002, or ZMC=0.0175�0.0011.
This value of the curvature is quite close to that obtained
from MFPT.

Comparing our results to Ref. 27, we obtain a similar
value for �F��n��−�F��nmin�, but n� was reported to be
about 40. We have not accounted for the discrepancy but do
note that at least in our case, �F�n� �or equivalently �F��n��
is rather flat, with roughly a size range of n=40 to n=90
corresponding to about a 1kBT difference in free energy. It
could be that the small difference in embryo definition gives
rise to the difference in our value of n�.

V. KINETIC FACTORS AND RATE PREDICTION

To complete the calculation for the CNT prediction of
the rate, we obtain the attachment rate of particles to criti-
cally sized embryo based on the analysis presented in Ref.
14. We take

fn�
+ = slope of ��nmax�t� − nmax�0��2�/2, �8�

where nmax�0� is close to n�.
Specifically, we harvest 50 configurations from our crys-

tallizing MD runs at T=0.58 with nmax near n� and use them
as seeds for new MD runs after randomizing velocities. We
define time origins to occur whenever nmax is near n�, i.e.,
63�nmax�0��79 �the barrier is quite flat in this region�, with
a minimal time interval of 1 between origins. Since we wish
to study properties near the top of the barrier, we eliminate
time origins where �nmax�20�−nmax�0���70, as these trajec-
tories do not correspond to fluctuations near the top of the
barrier. The results are not sensitive to the particular size and
time cutoffs. We plot ��nmax�t�−nmax�0��2� in Fig. 5 and ob-
tain from the slope fn�

+ =43�3.
Having calculated all the factors in Eq. �7�, namely, Z

and �F�n�� from MC simulation and fn�
+ from MD simula-

tions of critically sized embryos, we calculate the CNT pre-
diction for the rate to be JCNT= �10�3��10−8. This value of
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the rate agrees quite well with those obtained by direct simu-
lation. The largest source of uncertainty stems from our de-
termination of �F�n��.

Another quantity of interest is the atomic jump distance
� that enters into the expression for the attachment rate,

fn�
+ = 24Dn�2/3/�2,

where D=0.0317 is the diffusion coefficient, evaluated from
the slope of the mean squared displacement in the metastable
liquid at T=0.58 shown in the inset of Fig. 5. We find that
�=0.55�0.03, a physically reasonable value and compa-
rable to that obtained for hard spheres.14

According to Ref. 22, the attachment rates as a function
of n can also be obtained from MFPT and Pst via

fn
+ = B�n�/� �
�n�

�n
� . �9�

Using the fit to 
�n� to calculate the derivative, we plot fn
+ so

obtained in Fig. 6, along with the single point for fn�
+ ob-

tained from Eq. �8�. Although there is some noise stemming
from Pst, the agreement near n� between the two methods is
quite good.

VI. DISCUSSION AND CONCLUSIONS

Our aims in this work are to test the method of mean
first-passage times and to compare the CNT rate prediction
to a direct determination of the rate in fairly deeply super-
cooled Lennard-Jones liquid. We are working in a regime
where the barrier to nucleation is high enough so that meta-
stable equilibrium is readily achieved, but low enough so
that nucleation is readily observable through unbiased MD.
The diffusivity of the liquid is also fairly high, reducing con-
cerns about kinetic barriers to equilibration, although the dy-
namics of the crystal-like embryos are likely much slower
than that of the liquid.

Our main results are that there is generally very good
agreement between quantities calculated through MFPT and
other methods, and that the CNT rate prediction holds very
well for the system studied in the sense that putting in values
for the barrier height, Zeldovich factor, and attachment rate
yields a rate equal to the directly determined one within er-
ror.

Table I gives a summary of some of the quantities cal-
culated. The uncertainty estimates on n� and nMFPT

� come
from using different subsets of data to perform the fits. How-
ever, we also see that the barrier curve is quite flat near the
top, and so it is difficult to attribute a significance to the
difference in critical sizes obtained through MC and MFPT.

The barrier obtained from MFPT is based on P�n�,
whereas the CNT barrier comes from the embryo size distri-
bution N�n�. As Nst�n�
N�n� for small n and �F��n�

�F�n� for large �rare� clusters, it is possible to reconstruct
the CNT barrier using Nst�n� and �FMFPT

� �n�. The result
agrees very well with the constrained MC result. If we fit the
top of �FMFPT with a quadratic, even though there is some
noise, we obtain a critical size of 72�2, Zeldovich factor of
0.020�0.006, and barrier height of 15.90�0.05 �for a rate
of 9.9�10−8�. These estimates are all in line with MC re-
sults. It seems, then, that MFPT based on 200 nucleating
runs gives quite good estimates on the properties related to
the barrier, as well as the barrier profile itself. We note that
the determination of �FMFPT�n� does not hinge upon ap-
proximations relating to the height of the barrier, in contrast
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FIG. 5. Determination of fn�
+ at T=0.58 from the time dependence of size

fluctuations of near-critical embryos. Shown is a line of best fit obtained by
fitting the data �circles� starting from t=4. Inset: mean squared displacement
as a function of t for the metastable liquid, also at T=0.58.
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FIG. 6. Attachment rates from the MFPT formalism, Eq. �9�, as well as the
attachment rate at critical size obtained from fluctuations of the critical
embryos, Eq. �8� �filled square�.

TABLE I. Summary of calculated quantities for T=0.58.

Quantity Value

Np 4000
� 0.95
nMFPT

� 65�1
n� 71�1
��F�n�� 15.74�0.25

fn�
+ 43�3

D 0.0317
ZMFPT 0.0158�0.0006
ZMC 0.0175�0.0011
� 0.55�0.03
J �9.0�0.7��10−8

JMFPT �9.4�0.3��10−8

JCNT �10�3��10−8
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with Eq. �1�. So determining quantities from the barrier itself
may provide truer, though perhaps noisier, estimates.

One unsettled point is the choice of the upper bound on
embryo sizes in determining P�n� and the impact this has on
formally connecting JMFPT and JCNT through Eqs. �4�–�6�.
Here, we have chosen h to be near enough to n� so that the
area under P�n� �or Pst�n�� beyond n� is negligible in order to
obtain JMFPT
JCNT. Similarly, the normalization of Pst af-
fects �FMFPT

� �n� through the difference appearing in Eq. �3�.
Interestingly, 
�n� is independent of the normalization of
P�n�; see, e.g., Eq. 2 in Ref. 20. Although we obtain excel-
lent agreement between MFPT and MC simulations in deter-
mining the barrier, we wish to understand this point in the
future.

The barrier �F�n� we calculate is not well described by
the usual phenomenological form typically used in CNT, i.e.,
competing bulk and surface free energy term �−an+bn2/3�.
Adding a curvature correction term �n1/3� improves the fit
and moreover curvature effects seem to be strong. Further-
more, as mentioned earlier, our estimate of n� is larger than
that of Ref. 27, necessarily indicating a different barrier
shape that perhaps arises from a small difference in embryo
criteria. However, the states we identify as containing critical
embryos must not be very far from the truth, since we do get
�albeit for a fairly small sample size� roughly equal probabil-
ity for growth and decay. If the true critical embryo size were
nearer to 40, instead of 70, then the probability of decay
would imply a flat barrier at the top, which we have. Further-
more, the rate determined from considering the energy is
consistent with those obtained by considering embryo sizes
and all are consistent with the CNT prediction. However, this
consistency may not be particularly sensitive to the shape of
the barrier, nor to n�, since the important quantity is N�n��.
Regardless, a more detailed study relating the structure of the
embryos to �F�n� and also one relating the dependence of
the shape of �F�n� on the criteria used to define crystal-like
embryos would be useful.

The attachment rate is also recovered effectively by
MFPT, although we only have one point of comparison, at
n�, with an independent method. In conclusion, we find the
method of mean first-passage times to be an effective com-
putational tool in characterizing crystal nucleation in the re-
gime where nucleation occurs on simulation time scales.
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