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We carry out computer simulations of a simple, two-dimensional off-lattice model that exhibits in-
verse melting. The monodisperse system comprises core-softened disks interacting through a re-
pulsive square shoulder located inside an attractive square well. By systematically varying the po-
tential parameters, we increase the pressure range over which the liquid freezes to a crystal upon
isobaric heating. The effect is largely controlled by the extent of the shoulder. Despite occurring
in two dimensions, the melting transition is first order and to a liquid, rather than to a hexatic
or quasicrystal phase. We also provide comment on a commonly employed correlation function
used to determine the degree of translational ordering in a system. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4870086]

I. INTRODUCTION

Inverse melting is the curious phenomenon in which a
crystal melts upon isobaric cooling, or equivalently, a liquid
freezes upon heating. Only a handful of systems exhibit this
rare behavior.1 While the effect is inherently fascinating, re-
cent theoretical work on DNA-coated colloids points to in-
verse melting as a way to overcome kinetic trapping at low
temperature T, thus providing alternate pathways in the syn-
thesis of novel materials.2, 3

Notable examples of materials exhibiting inverse melt-
ing are 3He4 and 4He,5, 6 for which the liquid is stabilized at
low T by quantum mechanical effects, and polymers poly(4-
methylpentene-1)7–10 and syndiotactic polystyrene.11 Moti-
vated by He and polymers, Feeney et al. devised a model that
successfully recovers inverse melting by coupling internal de-
grees of freedom of a particle with interparticle interactions.12

A lattice model for which the ferromagnetic phase receives
an energetic penalty but is given a higher degeneracy also
recovers inverse melting.13 Other cases of inverse melting
and behavior similar to it are the nematic to smectic-A tran-
sition achieved upon heating the liquid crystal 4-cyano-4′-
octyloxybiphenyl;14 crystallization of micelles of triblock
copolymer PEO-PPO-PEO upon heating, brought about by
an increase in effective packing fraction as T increases;15

the multicomponent solution of a-cyclodextrine, water, and 4-
methylpyridine16–18 in which hydrogen bond rearrangements
play a role; Nb-Cr alloys, which again are multicomponent
solutions; and the melting of the ordered vortex phase in a
high-temperature superconductor.19, 20

The idea of inverse melting is also linked conceptually to
the glass transition. It was pointed out by Kauzmann21 that
in many cases, the behavior of a liquid cooled progressively
below its freezing T extrapolates to the thermodynamically
exotic case of the liquid’s entropy becoming lower than that
of the crystal. Before this point is reached, the glass transi-
tion, a kinetic phenomenon, intervenes, implicating entropy
as a controlling factor in liquid dynamics. Inverse melting,

however, requires that the crystal have a higher entropy than
the liquid’s over a range of thermodynamic conditions, a con-
clusion reached upon considering slopes of melting lines in
the pressure (P)-T plane.1 So while systems exhibiting inverse
melting provide a counter-example to the importance of ex-
cess entropy to dynamics, they do provide the intriguing case
in which a crystal may be quenched into a kinetically trapped
metastable state, an ordered version of a glass.22 Further, one
may wish to explore the possible connection between inverse
melting and glassy dynamics achieved upon heating.23

What would enhance the current body of work on in-
verse melting is a simple off-lattice model that exhibits the
phenomenon and is amenable to simulation. Recently, we re-
ported inverse melting for a double-step potential consisting
of a square shoulder within a square well (SSSW), shown in
Fig. 1, while calculating the phase diagram for the model in
two dimensions [Fig. 2(a)].24 The difficulty is that the effect is
very weak, and we did not provide direct evidence for the ex-
istence of the phenomenon to confirm the Monte Carlo-based
free energy calculations used to determine phase boundaries.

In our present study, we tune the parameters of the model
in a systematic way in order to greatly expand the region in the
P-T plane over which inverse melting takes place. Having en-
larged the effect, we probe it with complementary techniques,
including event-driven molecular dynamics (EDMD) simula-
tions, to confirm its existence. Since in two dimensions there
is the possibility of continuous melting through a hexatic-
type phase we further provide evidence that the transition is
first order between a liquid and crystal. Further, a quasicrystal
phase for a similar potential has been reported,25 but we do
not see such a phase.

The SSSW potential we study here falls into the cat-
egory of core-softend potentials introduced by Stell and
Hemmer26, 27 as model systems exhibiting multiple fluid or
iso-structural solid transitions and critical points.28, 29 Such
potentials were used to study liquid metals,30–35 for which
experimental evidence exists for novel critical behavior.36

Research into explaining the many anomalous properties of
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FIG. 1. Square-shoulder square-well potential with hard-core diameter σ

and bond energy ε as a function of particle separation r. The original model
parameters48 are soft-core distance b = √

2σ , shoulder depth ε1 = ε/2, and
limit of attraction c = √

3σ .

water,37–40 particularly through a hypothesized second critical
point in the deeply metastable state,41 has also drawn benefit
from studies of core-softened potentials.42–56

The particular model (in two dimensions) we use here
was introduced in Ref. 48 and further studied in Ref. 49. The
model parameters were originally chosen so that a low den-
sity triangular crystal (LDT) and a higher density square crys-
tal (S) would have the same energy. The competition between
these two structures within the liquid gives rise to anomalous
properties, e.g., a line of density maxima. A liquid-liquid criti-
cal point is not observed in this 2D system, perhaps because of
lack of strong metastability of the liquid below the LDT and S
melting lines near the triple point.24 Given that the model ex-
hibits several anomalies, including two crystals that are less
dense than the melt,24 it is perhaps fitting that it also exhibits
inverse melting.

This paper is organized as follows. In Sec. II, we discuss
the model and the free energy and computer simulation tech-
niques used in carrying out this work. In Sec. III, we give our
results, including how potential parameters affect the melting
line of the S crystal, an estimate of the surface tension be-
tween liquid and crystal at low T coexistence, direct MD sim-
ulations showing both metastability and nucleation of S and
the liquid, as well as structural measures that provide evidence
against the existence of a hexatic-type phase or quasicrystals
near the point of inverse melting. In Sec. IV we provide a dis-
cussion and our conclusions.

II. METHODS

A. Model and simulations

The SSSW interaction potential U(r) that we consider in
this study is a double-step potential consisting of a square
shoulder and a square well as shown in Fig. 1. We study
the potential in two dimensions, in which it describes disks
with a hard-core diameter σ followed by a square shoulder of
interaction energy −ε1 for σ < r < b. The shoulder is fol-
lowed by a square well of energy −ε for b < r < c. As in
Ref. 48, we start with potential parameters ε1 = ε/2,

b = √
2σ , and c = √

3σ . The three parameters were origi-
nally assigned these values in order to bestow two crystals of
different density, LDT and S, the same potential energy per
particle of −3ε, i.e., to create two energetically degenerate
phases of well separated densities.49 The idea behind this is to
allow for distinct liquid states, one based on square packing
and the other on the more open triangular lattice, in analogy
to what is thought to be the case for water.

In Ref. 24, we used various Monte Carlo simulation tech-
niques to calculate the phase diagram for the same interaction
potential over a wide range of temperature and pressure, as
shown in Fig. 2(a), for the liquid (L), gas (G), and five crystal
phases: the close-packed high-density triangular (HDT) crys-
tal, LDT, S, and two low-T crystals A and Z. Apart from the
case of the L-HDT transition at high T, the methods used
to calculate phase boundaries required metastability of the
phases concerned, and therefore provided evidence that the
transitions are first order.

We also found that the S-L melting line exhibits a max-
imum temperature, as well as a maximum pressure that

0 0.2 0.4 0.6 0.8
k

B
T/ε

-2

0

2

4

6

8

10

12

P
 σ

2 /ε

S

LAZ

LDT
G

L

HDT

(a)

0.40 0.45 0.50
k

B
T/ε

7.90

7.95

8.00

8.05

P
 σ

2 /ε LL S

C
1

C
2

(b)

FIG. 2. Panel (a) shows the phase diagram of the SSSW potential model
with potential parameters ε1 = ε/2, b = √

2σ , and c = √
3σ (adapted from

Ref. 24). Panel (b) is a close-up of the maximum pressure of the L-S line. C1
is the lower melting point along Pσ 2/ε = 7.94, from which Gibbs-Duhem in-
tegration is carried out to determine the coexistence line to the higher melting
point at the same pressure (blue dashed curve). The red dashed coexistence
curve results from integrating from the higher melting T back to C1. The
error bar indicates shifting of coexistence conditions arising chiefly from un-
certainty in μL. Both C1 and C2 are points on the coexistence line from which
Hamiltonian Gibbs-Duhem integration is carried out to explore the effect of
changing model parameters.
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implied inverse melting over a very small range in pressure.
We did not, however, provide any strong direct evidence that
the model exhibits inverse melting. Our goal in the present
study is to find potential parameters ε1, b, and c that signifi-
cantly increase the range of pressure over which inverse melt-
ing occurs, so that it can be observed more easily.

In this study, our calculations are based on free energy
techniques that employ standard Metropolis MC simulations
performed at constant number of particles N, P, and T, i.e., in
the NPT ensemble.57 We simulate 1024 particles in a square
box with periodic boundary conditions and we change the box
size isotropically to maintain its square shape. To observe the
liquid freeze after increasing T and the crystal melt upon de-
creasing T with an independent method, we carry out EDMD
simulations58–61 of up to 65 536 particles.

B. Square crystal-liquid coexistence

Although we calculated the S melting line for the SSSW
model with its original parameters in Ref. 24 and found good
consistency between traces of the coexistence curve starting
at independent initial coexistence points, we wish to recal-
culate the curve since the inverse melting effect is so small.
Our present approach is to calculate the chemical potential
for both S (μS) and L (μL) as a function of T along Pσ 2/ε
= 7.94, a pressure at which μL(T) and μS(T) should cross
twice, since this pressure should be in the middle of the nar-
row inverse melting pressure range, as shown in Fig. 2(b), and
there should be two melting temperatures.

For the S crystal, we calculate a reference excess chemi-
cal potential to be βμex

S = 7.3699 ± 0.0005 at Pσ 2/ε = 7.94
and kBT/ε = 0.45 [and where β = (kBT)−1], a T which should
fall between the two melting temperatures, using the Frenkel-
Ladd method.24, 62 This method requires simulations at con-
stant N and ρ, which we find to be ρ σ 2 = 0.907 at this state
point, with an uncertainty of ±0.002. The ideal gas contribu-
tion to the chemical potential is βμid = ln �2ρ, where � is
the de Broglie wavelength.

For the liquid, we determine μL at Pσ 2/ε = 7.94 and
kBT/ε = 0.7 using two thermodynamic paths. First, as in
Ref. 24, we integrate the equation of state along the kBT/ε
= 0.7 supercritical isotherm after fitting it to a phenomeno-
logical fitting model.63, 64 Second, as a check and to have a
more independent estimate of the uncertainty, we determine
the enthalpy difference between our system and the hard disk
system as modeled by the equation of state,65, 66

P

ρkT
= 1 + η2/8

(1 − η)2 , (1)

where η = ρπσ 2/4 is the area packing fraction. It is some-
what straightforward to obtain at arbitrary state points both
the hard-disk enthalpy HHD = NP/ρ + NkBT and chemical
potential,

μHD(ρ) = fid + P/ρ + kBT

∫ ρ

0

(
P

ρkBT
− 1

)
dρ

ρ
, (2)

where fid = kBT(ln �2ρ − 1) is the ideal gas Helmholtz free
energy per particle.
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FIG. 3. The absolute value of the integrand of Eq. (3), where the quantity
h(T) = H(T)/(NkBT2) × ε/kB at Pσ 2/ε = 7.94, and hHD(T) is the analogous
quantity for the hard disk model. Circles indicate points for which the calcu-
lated enthalpy difference is negative, and indicate the T at which the integrand
is essentially noise.

The chemical potential for our system can then be written
as

μL(T0)

kBT0
= μHD(T0)

kBT0
+

∫ T∞

T0

(HHD(T ) − H (T ))

NkBT 2
dT , (3)

where we have assumed that HHD(T∞) = H(T∞) and used the
relation,

μ(T2, P )

kBT2
= μ(T1, P )

kBT1
−

∫ T2

T1

H (P, T )

NkBT 2
dT . (4)

The integrand in Eq. (3) is plotted in Fig. 3 and we see that
beyond kBT/ε ≈ 200, the integrand is essentially noise. We
evaluate the integral both directly and with a change in vari-
able of τ = ln T using different interpolation orders to values
of kBT∞/ε ranging from 200 to 2000. For the hard disks at
kBT0/ε = 0.7 and P0σ

2/ε = 7.94, βμex
HD = 12.855287 (excess

chemical potential).
Combining results from the two different thermodynamic

routes, we obtain the excess chemical potential for our liquid
at T0 and P0, where the liquid density is ρσ 2 = 0.893 ± 0.003,
to be βμex

L = 13.323 ± 0.006. The uncertainty arises chiefly
from integrations such as the one in Eq. (3).

Having obtained a value of the chemical potential at ref-
erence temperatures at Pσ 2/ε = 7.94 for both L and S, we
use Eq. (4) to determine the difference in chemical potential,
β
μ ≡ βμL(T) − βμS(T) as a function of T, which we plot
in Fig. 4(a). The figure shows two T at which crossing of zero
occurs, which is required for inverse melting to occur. How-
ever, given the uncertainties in calculating the chemical po-
tential and the small value of β
μ, it is entirely possible that
the liquid does not crystallize along this pressure at all. There-
fore, when we amplify the inverse melting effect below, it is
necessary to check the effect by complementary methods.

Fig. 4(b) shows the entropy of the crystal becoming in-
creasingly larger than that of the liquid for T decreasing below
kBT/ε ≈ 0.45, which is required for crystallization upon heat-
ing past the lower of the two coexistence T. Fig. 4(c) shows
that the volume contribution to the enthalpy of the crystal in
this range also becomes increasingly larger than the liquid’s
as T decreases, which tends to destabilize the crystal with
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FIG. 4. Differences in thermodynamic quantities between the L and S phases as a function of T at Pσ 2/ε = 7.94, where 
q ≡ qL − qS for a per particle quantity
q. Quantities considered are (a) chemical potential 
μ, where a negative value indicates that the liquid is the stable phase, (b) entropy 
s, (c) the mechanical
contribution to the enthalpy P 
v, and (d) potential energy 
u. Below T ≈ 0.39, the S phase no longer shows appreciable metastability.

respect to the liquid. Fig. 4(d) shows that the energetic driving
force for phase transformation does not change with T.

Having obtained at P0 two coexistence temperatures Tm1

= 0.400345ε/kB and TmHigh = 0.490054ε/kB, we carry out a
Gibbs-Duhem integration,67, 68 as in Ref. 24, of the Clausius-
Clapeyron equation that describes the slope in the P-T plane
of the coexistence line,

dP

dT
= 
s


v
= 
h

T 
v
, (5)

where 
s is the molar entropy difference, 
h is the molar en-
thalpy difference, and 
v is the molar volume (area in 2D)
difference between the two coexisting phases. To test the ac-
curacy of the integration, we carry it out twice, starting from
the state point (P0, Tm1), labelled C1 in Fig. 2(b), and increas-
ing T until TmHigh, and again from (P0, TmHigh) down in tem-
perature. The overlapping results for the coexistence line are
shown in Fig. 2(b). The uncertainty in the position of the line
is predominantly due to the uncertainty in calculating the ref-
erence entropy of the liquid. An upward shift of 0.006 (the
uncertainty in βμL) in the β
μ curve shown in Fig. 4(a) re-
sults in a certain shift in the melting temperatures along P0.
This in turn produces a shift in the coexistence curve, the ex-
tent of which is indicated by the error bar in Fig. 2(b). It is
not surprising that there is a small discrepancy between the
present results and those of Ref. 24, given that different ther-
modynamic paths are used to calculate initial coexistence con-

ditions and that small values of β
μ make the calculations
quite sensitive.

C. Hamiltonian Gibbs-Duhem integration

After determining the coexistence curve that exhibits in-
verse melting, we use Hamiltonian Gibbs-Duhem integration
to find the potential parameters (ε1, b, c) that increase the
range of inverse melting. This technique allows one to find
a coexistence point for a system governed by a potential en-
ergy UB starting from a known coexistence point for the sys-
tem defined by potential energy UA. The starting point is to
introduce a potential that depends on a coupling parameter λ,
which we choose to be69, 70

U (λ) = λUB + (1 − λ)UA. (6)

As λ changes from zero to one, the potential continuously
transforms from UA to UB. In our case, UA is determined by
the SSSW pair potential using the original parameters, while
UB is given by the SSSW potential with a different set of
parameters.

Singer and Mumaugh71 have shown that the general-
ized Clapeyron equations for two coexisting phases I and
II at constant pressure and temperature can be written as,
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respectively,

dT

dλ

∣∣∣∣
P

= T
〈∂uII /∂λ〉NPT λ − 〈∂uI /∂λ〉NPT λ

hII − hI

, (7)

dP

dλ

∣∣∣∣
T

= −〈∂uII /∂λ〉NPT λ − 〈∂uI /∂λ〉NPT λ

vII − vI

, (8)

where ∂uI/∂λ, given in Eq. (6), is the quantity UB − UA per
particle for phase I, hI is its per particle enthalpy and vI its
per particle volume. Similarly for phase II. 〈 · 〉 NPTλ indicates
an average in the NPT ensemble when the system is governed
by U(λ). In principle, by applying this technique to many co-
existence points, one can obtain the phase diagram of a new
model potential starting from a known phase diagram of an-
other model.

To simplify finding the optimized parameters that can
increase the inverse melting, we implement the Hamilto-
nian Gibbs-Duhem integration at constant temperature, given
in Eq. (8), first for only two coexistence points on the in-
verse melting curve, labelled C1 and C2 in Fig. 2(b). As
a convenient measure of the effectiveness with which a
change in the pair potential increases the region in the P-T
plane over which inverse melting occurs, we use the slope
M = (PC2 − PC1 )/(TC2 − TC1 ). For example, if changing the
potential causes M to increase, then the pressure range of in-
verse melting increases. We vary ε1, b, and c independently
to determine which parameter most effectively increases M.
The two original coexistence points that we use to study
M as a function of potential parameters are C1 = {kBTm1/ε
= 0.400345, P0 σ 2/ε = 7.94} and C2 = {kBTm2/ε = 0.425345,
Pm2 σ 2/ε = 7.98906}. As a potential parameter is varied, the
coexistence P will change, causing M to increase or decrease.

D. Biased Monte Carlo simulations

Once the coexistence line has been recalculated for a new
set of model parameters, we choose a P-T state point on the
coexistence line to evaluate the distribution of density fluctua-
tions. This calculation is necessary to compute the free energy
barrier between L and S, and to verify a coexistence point by a
different method. The probability distribution function for the
density, determined at conditions of constant T and P, defines
the conditional (or Landau) Gibbs free energy,


G(T , P ; ρ) = G(T , P ; ρ) − G0 = −kBT ln[Pr (ρ)], (9)

where Pr(ρ) dρ is the probability of finding the system with
density between ρ and ρ + dρ and G0 is a constant that en-
sures that the average of G(T, P; ρ) gives the equilibrium
Gibbs free energy G(T, P). For a finite system at a first order
coexistence point, there should be two peaks of equal areas in
Pr(ρ). If the shapes of the peaks are similar, the two resulting
minima in 
G(T, P; ρ) will have the same value. The barrier
between these minima arises from the work required to form
the transition state, which for a large enough periodic system
amounts to creating two interfaces that span the width of the
simulation box.

To ensure good sampling of ρ, we use the umbrella sam-
pling MC simulation57 carried out by NPT simulations to cal-
culate G(T, P; ρ). To implement umbrella sampling, we add

the following constraint potential Uc,

Uc(ρ) = k

2
(ρ − ρ0)2, (10)

to the system potential energy. The biasing potential will force
a given simulation to sample densities in the vicinity of ρ0.
k is a constant that controls the range of sampled densities.
We use simulation windows with equally spaced values of
ρ0, and perform two sets of simulations with N = 2082 in
a rectangular (two squares) simulation box (using isotropic
scaling to maintain P), one with k = 640000ε/σ 4 and again
with k = 1280000ε/σ 4. We convert the probability distribu-
tion from the constrained ensemble Prc(ρ) to the NPT ensem-
ble via Pr(ρ) ∝ exp [βUc(ρ)]Prc(ρ). The pieces of 
G(T, P;
ρ) determined near each ρ0 can be combined by essentially
shifting each to produce a smooth 
G(T, P; ρ) for the entire
density range. We use MBAR72 to accomplish this.

There will necessarily be some error in calculating co-
existence conditions at which we perform umbrella sam-
pling. To more precisely locate the coexistence pressure, we
reweight the 
G(T, P; ρ) curve by applying a pressure shift,

βG(T , P ′; ρ) = βG(T , P0; ρ) + Nβ
P

ρ
+ c, (11)

where c is a constant related to normalization. The corrected
coexistence pressure is then P′ = P0 + 
P, where P0 is the
original coexistence pressure at which the constrained simu-
lations are performed and 
P is the pressure shift that brings
the two minima in 
G(T, P0; ρ) to the same level.

To distinguish the S and L phases in a visualization of
the configurations produced, we make used of the Steinhardt
bond order parameters based on spherical harmonics73 as was
done in Ref. 24.

E. Analysis of long range correlations

In order to distinguish the liquid, crystal, and hexatic
phases in two dimensions, one typically measures or calcu-
lates translational and orientational correlation functions.74

For translations, in addition to the radial distribution function
g(r), we calculate

G
g(r) = 〈exp (i 
g · 
rj )〉, (12)

where we average the result over reciprocal lattice vectors

g = x̂ 2π/a and 
g = ŷ 2π/a, a is the expected lattice spacing
in the S phase for the density studied, 
rj with magnitude r is
the position of particle j relative to an origin taken to be one of
the particle positions, and 〈 · 〉 indicates an ensemble average
over configurations, origins and particles j. For orientational
order, we use

G4(r) = 〈q4(
r) q∗
4 (
0)〉, (13)

q4(
rj ) = 1

Nj

Nj∑
k=1

exp (4iθjk), (14)

where q∗
4 is the complex conjugate of q4, θ jk is the angle made

by the bond with respect to an arbitrary but fixed axis between
particle j and neighbor k, neighbors being those particles that
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FIG. 5. The slope M between two S-L coexistence points, labelled C1 and C2 for the original parameters in Fig. 2(b), changes as a function of (a) ε1, (b) b, and
(c) c. A larger value of M implies inverse melting occurring over a larger range of P. Filled (red) circles indicate M for the original parameter values.

are closer together than a distance of 1.24σ , and the sum is
over the Nj neighbors of particle j.

The expectation based on the KTHNY theory of
melting50, 74, 75 in two dimensions for these functions is that
both G4(r) and G
g(r) decay exponentially in the liquid phase,
that G4(r) decays as a power law with a small exponent (≤1/4)
and G
g(r) decays exponentially in the hexatic phase, and that
G4(r) tends to a constant and G
g(r) decays slowly as a power
law with a small exponent (≤1/3) in the crystal.

To detect the presence of a quasicrystal phase, we calcu-
late the structure factor

S(
q ) = 1

N

〈
ρ
q ρ∗


q
〉
, (15)

where

ρ
q =
N∑

i=1

exp (−i 
q · 
ri), (16)

and 〈 · 〉 indicates an ensemble average and ρ* is the complex
conjugate of ρ. In our periodic system, the allowed reciprocal
vectors are 
q = 2π (nx, ny)/L, where L is the length of the
simulation box and nx, y are integers.

III. RESULTS

A. Expanding the range in inverse melting

Each panel in Fig. 5 shows how the slope M between
two selected points on the original S-L coexistence curve, C1

and C2 [Fig. 2(b)] changes when each of ε1, b, and c is var-
ied with the other two parameters held fixed. A larger value

of M compared with the original parameters indicates an ex-
panded range of pressures over which inverse melting should
be observed. The filled red circle in each panel represents
the value of M when using the original potential parameters:
ε1 = ε/2, b = √

2σ , and c = √
3σ . From Fig. 5(a), we con-

clude that M is already near the maximum for the original
value of ε1, and therefore changing this parameter will not
help increase the range of inverse melting. On the other hand,
Fig. 5(b) shows that M increases by a factor of three when b is
increased, greatly expanding the range of inverse melting. In-
creasing the parameter c beyond the values shown in Fig. 5(c)
results in losing the L phase in favor of HDT. Thus it appears
that in this case, L-S inverse melting becomes metastable with
respect to HDT.

Given that b alone is the important parameter in increas-
ing the range of inverse melting, we proceed with a more de-
tailed look at how the S-L coexistence curve changes with b.
To begin, we perform a Gibbs-Duhem integration for the orig-
inal interaction parameters starting from the coexistence point
(kBT/ε = 0.490345, Pσ 2/ε = 7.94) to obtain the full curve.
For roughly 20 points on this curve, we carry out Hamilto-
nian Gibbs-Duhem integration for b/σ = 1.40, 1.42, 1.44,
1.46, 1.48, and 1.50. The results are represented by open sym-
bols in Fig. 6(a). To check the accuracy of determining these
points, we perform Gibbs-Duhem integration for each value
of b, starting from TmHigh, as represented by the solid lines in
Fig. 6(a). The results obtained by the two integration methods
shows a high degree of agreement. From Fig. 6(a), it becomes
obvious that as the potential parameter b increases, the range
of pressure of the inverse melting increases. Concurrent with
this change is the reduction of the S stability field.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

134.153.141.209 On: Thu, 10 Apr 2014 14:19:04



144505-7 Almudallal, Buldyrev, and Saika-Voivod J. Chem. Phys. 140, 144505 (2014)

0.2 0.3 0.4 0.5 0.6 0.7
k

B
T/ε

0

2

4

6

8
P

σ2 /ε

LSL
increasing 

b

(a)

b=1.40
b=1.42
b=1.44
b=1.46
b=1.48
b=1.50

0.6 0.7 0.8 0.9 1

ρσ2

0.2

0.3

0.4

0.5

0.6

0.7

k B
T

/ε

b=1.42
b=1.46
b=1.50

(b)

L
L

S L L+
S +

S

FIG. 6. Panel (a) shows the S-L coexistence curve in the P-T plane for b/σ
ranging from 1.40 to 1.50, calculated by Gibbs-Duhem (curves) and Hamilto-
nian Gibbs-Duhem (symbols) integration. The large filled circle indicates the
coexistence point at which biased Monte Carlo simulations explicitly show
a free energy barrier between the S and L phases. Panel (b) shows Gibbs-
Duhem results in the ρ-T plane. The curves reach their maximum at the point
when the phase boundary in the P-T plane has a vertical slope. To the left
of the maximum the liquid is less dense than the solid, corresponding to a
positive slope of the melting line at lower P in the P-T plane. To the right
of the maximum, the solid is less dense than the liquid; in the P-T plane this
corresponds to the portion of the melting line with negative slope and the
high-P-low-T inverse melting portion. Partial inverse melting at constant vol-
ume corresponds to decreasing T from within the region of S phase stability
along a vertical line into the L+S region, for which liquid and solid coexist.
Such paths are possible for b = 1.46σ and b = 1.50σ and are indicated by
dashed arrows; for b = 1.42σ , such a path is not possible. Complete inverse
melting at constant volume, corresponding to a vertical line descending from
region S to region L (stable liquid), is not possible for our range of data even
for b = 1.50σ .

Fig. 6(b) shows the S-L melting line projected on to the
ρ-T plane for a selection of b values. The curves demarcate
boundaries between regions of single phase stability and of
phase coexistence. These regions are labelled for b/σ = 1.50.
For b/σ = 1.42, inverse melting is observed weakly in the
P-T plane but not at all in the ρ-T plane. For larger b, only
partial melting on isochoric cooling is indicated in the phase
diagram. Even for b/σ = 1.50, at least for the T studied, there
is no density at which cooling a completely crystalline system
results in a system that is completely liquid. Thus, although
inverse melting is present in the ρ-T plane, it is a weaker
effect.

For the analysis that follows, we focus on the SSSW po-
tential for which b/σ = 1.46 while ε1 and c are kept at their
original values. Already at this value of b, the range in P over
which the coexistence line exhibits inverse melting is con-
siderable. This allows more direct methods to confirm the
phenomenon.

B. Interfacial tension between S and L

To confirm inverse melting, we report the G(T, P; ρ) from
a histogram of the densities sampled by a series of biased
NPT simulations with 2082 particles at the coexistence point
(kBT/ε = 0.340345, Pσ 2/ε = 5.5331) for the SSSW model for
which b/σ = 1.46. This coexistence point is indicated by the
large filled circle in Fig. 6(a).

The results are shown in Fig. 7, where we use Eq. (11)
to bring the free energy minima to the same level. The pres-
sure shifts required in this reweighting are small, 
Pσ 2/ε
= −0.0261 for the simulations with kσ 4/ε = 6.4 × 105 and

Pσ 2/ε = −0.0295 for the simulations with kσ 4/ε = 12.8
× 105, indicating that the errors built up during the several
steps in determining the coexistence line is indeed small. The
curves show a barrier of approximately 5 kBT separating the
lower density S phase from the higher density liquid.

The shape of the barrier, generally flat with overshoots
at either end, is consistent with the morphology of the sep-
arated phases. Despite the rather diffuse interface between S
and L, as noted in Ref. 24, the system is large enough to ac-
commodate an isolated liquid droplet within the S phase. This
we show in Fig. 8(a), which shows a snapshot from the biased
NPT simulation with ρ0σ

2 = 0.8862, i.e., near the overshoot
occurring as the density of the system is constrained to the
high density side of the S basin in G(T, P; ρ). At higher den-
sity, Fig. 8(b), the L phase spans the width of the periodic
simulation cell. If the width of the strip is sufficiently wide to
accommodate two well formed S-L interfaces, then increas-
ing the density further will not change the free energy, as both
phases are at the same chemical potential. In our case, the
system may not be large enough to accomplish this, as we can
only claim a broad minimum near ρσ 2 = 0.89 and not a truly

0.87 0.88 0.89 0.90 0.91 0.92

ρ σ2

0

5
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ΔG
/k

B
T

kσ4/ε=640000
kσ4/ε=1280000

S L

S+L

FIG. 7. Conditional Gibbs free energy as a function of ρ calculated at tem-
perature kBT/ε = 0.340345 and reweighted by Eq. (11). The black curve is
calculated for kσ 4/ε = 640 000 and red for 1280 000.
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(a) (b)

(c) (d)

FIG. 8. Snapshot of configurations taken from different windows of umbrella sampling for N = 2082 particles. (a) shows a liquid bubble at ρ0σ
2

= 0.8862, (b) shows a liquid strip at ρ0σ
2 = 0.8887, (c) shows a square-crystal strip at ρ0σ

2 = 0.8975 and (d) shows a square-crystal bubble at ρ0σ
2

= 0.9000.

flat region in the barrier, and so we can only estimate an up-
per bound on the interfacial tension. Taking the minimum of
the barrier to be β
G(T, P; ρ*) = 5.1 ± 0.2, we determine
the interfacial tension to be γ σ/ε = 
G(T , P ; ρ∗)/(2w)
= 0.025 ± 0.001, where w/σ = 34.160 is the box width and
βε = 0.340345−1, or βγ σ = 0.075 ± 0.003. Increasing the
density further results first in a strip of the S phase within the
liquid [Fig. 8(c)] and then a bubble of S [Fig. 8(d)] before
reaching the homogeneous liquid.

C. Direct simulation of freezing and melting

As a rough check on the portion of the S-L coexistence
curve that exhibits inverse melting and to determine the ex-
tent of metastability, we perform a set of NPT simulations for
the potential parameters ε1 = 0.5, b = 1.46σ , and c = √

3σ

to map out the range of metastability of L and S. For both
phases, we use 1024 particles in a square box, scaling the box
size isotropically to maintain P. We initialize the L simula-
tions with a liquid configuration and the S simulations with a
square crystal, and we run each state point for 4 × 108 MC
steps per particle. We indicate with a blue x sign in Fig. 9 the
state points for which simulations either retain the L phase or
melt to the L phase, and with a red open square symbol the
state points for which simulations either retain the S phase or
crystallize to S.

From Fig. 9, we see that the L phase is obtained well
above the coexistence curve and the S crystal is obtained
for state points well within its predicted stability field. At
and near the coexistence curve, we see both phases at every
state point, indicating the stability or metastability of the two
phases. We also see the tendency for points exhibiting either
liquid or S metastability to track the curvature of the S-L melt-
ing line. For this system size, inverse melting is directly con-
firmed at Pσ 2/ε = 6.0: at low T, only the liquid survives; at
kBT/ε ≈ 0.46 only S survives; and by kBT/ε ≈ 0.60, only the
liquid is stable.

To independently confirm these findings, we carry out
EDMD simulations of 1024 and 65 536 particles along the

Pσ 2/ε = 5.6 isobar. In Fig. 10 we plot the density as a func-
tion of time for a few T, chosen to illustrate the behavior of
both phases when they are stable, metastable, and undergoing
a phase transformation. The most dramatic and direct illustra-
tion of melting of S at low T is for the N = 1024 simulation
at kBT/ε = 0.30, which started from a perfect S crystal, where
the density exhibits a sudden increase as the system trans-
forms from S to L. Such a jump is typical of first order tran-
sitions when the crystallization of the system is dominated by
nucleation. Note that time for this smaller system is reduced
by a factor of 50 for plotting purposes in order to compare
with the time scales of the N = 65 536 simulations.

To observe melting of S for the larger system on a
reasonable time scale, we reduce the temperature to kBT/ε
= 0.29. Here, the slow, rather continuous increase in ρ arises
from crystallization being dominated by growth. In Fig. 11(a)
we plot dots representing the rather uniformly distributed

0.30 0.35 0.40 0.45 0.50 0.55 0.60
k

B
T/ε
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5.0
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σ2 /ε
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FIG. 9. The solid line is the S-L coexistence curve for the potential param-
eters ε1 = 0.5, b = 1.46σ, and c = √

3σ and the grid of points is obtained
from two sets of NPT MC simulations, one beginning from a perfect S config-
uration and the other from a liquid. A blue x symbol represents a simulation
that ended in the L phase, while a red open square represents a simulation
that ended in the S phase. A state point with both symbols indicates that each
simulation retained its starting phase.
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FIG. 10. Density as a function of time from EDMD simulations at Pσ 2/ε
= 5.6. Here reduced time τ = t

√
ε/(σ 2m). Legend gives initial phase, T and

system size. For the N = 1024 simulation, time is reduced by a factor of 50
for ease of comparison (i.e., its simulation time is roughly 50 times longer
than the longest simulation for N = 65 536).

locations of L-like particles within the metastable S phase for
a snapshot configuration at kBT/ε = 0.30 and reduced time
τ = t

√
ε/(σ 2m) = 36 741. Fig. 11(b) shows distinct domains

of the L phase appearing as S melts at kBT/ε = 0.29 (snapshot
taken at τ = 74 732), which is consistent with the first order
nature of the transition. The time series for S at kBT/ε = 0.40
is representative of the stable S phase.

Addressing the liquid, we show in Fig. 10 density time
series for three state points: kBT/ε = 0.29, where L is ther-
modynamically stable; kBT/ε = 0.38, where L is unstable and

(a) (b)

(c) (d)

FIG. 11. Snapshot configurations from EDMD simulations showing liquid-
like particles for (a) the metastable S phase at kBT/ε = 0.30 at τ = 36741, and
(b) the S phase melting at kBT/ε = 0.29 at τ = 74 732 and showing several
distinct liquid domains; and configurations showing S-like particles for (c)
the metastable L phase at kBT/ε = 0.35 at τ = 46 459, and (d) crystallizing L
at kBT/ε = 0.38 at τ = 40 000. Density time series for these state points are
shown in Fig. 10.

the time series decays to lower ρ as the S phase forms; and
kBT/ε = 0.35, where the time series is stable and, accord-
ing to our calculated phase boundaries, L is metastable. Snap-
shots from the kBT/ε = 0.35 (τ = 46 459) and kBT/ε = 0.38
(τ = 40 000) simulations showing only S-like particles are
plotted in Figs. 11(c) and 11(d), respectively. Similarly to the
case of crystal melting, we see distinct domains of the stable
phase surrounded by the metastable phase in Fig. 11(d).

Encouraged by these EDMD results, we perform addi-
tional EDMD simulations of N = 65 536 particles for the
model with b = 1.46σ (which exhibits strong inverse melting)
and the original model with b = √

2σ (where inverse melting
is at best very weak), and report the following. For b = 1.46σ ,
and Pσ 2/ε = 5.6 starting from the L phase, simulations for
kBT/ε ≥ 0.56 remain as L, for 0.40 ≤ kBT/ε ≤ 0.55 transform
to S, and for kBT/ε ≤ 0.38 remain as L. Again for b = 1.46σ ,
and Pσ 2/ε = 5.6 but starting from the S phase, simulations for
kBT/ε ≥ 0.58 transform to L, for 0.36 ≤ kBT/ε ≤ 0.56 remain
as S, and for kBT/ε ≤ 0.34 transform to L. We also note that
for kBT/ε ≤ 0.31 the energy of the liquid is lower than that of
S. These results are consistent with the phase diagram calcu-
lations and also point to the role of a lower potential energy
of L with respect to S as a contributing factor in enhancing
inverse melting in the b = 1.46σ model.

For the original b = √
2σ model (again with

N = 65 536), it is more difficult for direct EDMD sim-
ulations to confirm inverse melting and we thus start
simulations with a system that is half S and half L to make
confirmation possible. At Pσ 2/ε = 7.7, the system transforms
to HDT for kBT/ε ≤ 0.37, appears to contain S, HDT, and L
at kBT/ε = 0.38 (which is close to the triple point), converts
to S for 0.39 ≤ kBT/ε ≤ 0.51 and converts to L for kBT/ε
≥ 0.52. At Pσ 2/ε = 7.8 inverse melting is also confirmed.
The system transforms to HDT for kBT/ε ≤ 0.38, converts to
L for 0.39 ≤ kBT/ε ≤ 0.41, converts to S for 0.42 ≤ kBT/ε
≤ 0.48 and converts to L for kBT/ε ≥ 0.50. We note that at
kBT/ε = 0.39, interestingly, we observe the appearance of the
HDT phase prior to full melting. At Pσ 2/ε = 7.9, the S phase
is lost. The system transforms to HDT for kBT/ε ≤ 0.38 and
to L for kBT/ε ≥ 0.39. Similarly, at Pσ 2/ε = 8.0, the system
transforms to HDT for kBT/ε ≤ 0.39 and to L for kBT/ε
≥ 0.40. For all these state points for the original b = √

2σ ,
the potential energy of the liquid is higher than that of S.

D. Ruling out hexatic and quasicrystal phases

In two dimensions, a crystal possesses medium-range
translational order and long-range orientational order. Fur-
thermore, there is the possibility that a crystal melts in two
dimensions via a hexatic phase, which retains medium-range
orientational order before encountering the liquid, at which
point orientational order is only short-range. Additionally, in
Figs. 8 and 11 we see that, based on our bond-order param-
eter criteria for identifying crystal-like and liquid-like parti-
cles, there are a large number of defects within each phase,
i.e., many S-like particles in the L phase and vice versa.

To clarify the range of order, we focus on two state
points for each phase near the low T melting point along
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Pσ 2/ε = 5.6: one for which the phase is thermodynamically
stable and the other for which it is metastable, given our
calculated phase boundaries. We choose S at kBT/ε = 0.30
(metastable), S at kBT/ε = 0.40 (stable), L at kBT/ε = 0.29
(stable), and L at kBT/ε = 0.35 (metastable), all for the N
= 65 536 for which the time series are plotted in Fig. 10. It
is true that we have not quantified the effect of system size
on the location of the phase boundaries, but the EDMD sim-
ulations themselves confirm that what we deem as metastable
is not far from being unstable. For each state point we cal-
culate G4(r), G
g(r), g(r), and also S(
q), which is calculated
from a single configuration taken from the time series. In
Fig. 12(a), we plot the orientational correlation function G4(r)
and see the expected behavior: the L phase decorrelates within
ten particle diameters while S remains correlated at long
range as G4(r) approaches a constant close to unity. Neither
S nor L exhibit behavior in G4(r) that can be interpreted as
hexatic-like.

From the translational correlation functions plotted in
Fig. 12(b) we see that for the S phase, G
g(r) decays as a power
law with an exponent of roughly ∼0.1–0.2, which is smaller
in magnitude than 1/3, the value expected for triangular 2D
crystals near the transition to the hexatic phase. For the liquid,
G
g(r) is smaller in magnitude than for S and oscillates about
zero, and the peaks decay as a power law with an exponent
equal to 1/2. While this power-law decay is perhaps at first
surprising, and indeed the same behavior has been observed
in experiments on colloids,76 it is not an indication of quasi-
long-range order. Rather, if one calculates G
g(r) by averaging
over uniformly distributed orientational environments, then
one obtains

G
g(r) = 1

π

∫ π

0
cos

(
2πr

a
cos(φ)

)
dφ = J0

(
2πr

a

)
, (17)

where φ is the angle between 
g and 
rj in Eq. (12), and J0(r)
is the Bessel function of the first kind. The blue open circles
in Fig. 12(b) represent J0(2πr/a) averaged over the a values
of the liquid configurations at T = 0.29 kB/ε used to calcu-
late G
g(r). The result shows a complete agreement with the
G
g(r) of the liquid phase. We note that for the liquid curves
in Fig. 12(b), for clarity, we only plot for r > 10σ points cor-
responding to local peaks in G
g(r) and J0(r). J0(r) decays as
1/

√
r , which accounts for the observed power law. Subtract-

ing J0(2πr/a) from G
g(r) gives essentially noise and a corre-
lation length of zero.

In calculating G
g(r) so far, 
g is constant, i.e., the refer-
ence system is that of the simulation box. This makes sense
for a crystal, but choosing a lattice vector for the liquid must
take into account local ordering. We therefore employ the
method whereby every time we select a particle to be an ori-
gin, we use each of its closest four neighbors, in turn, to define
the x direction, and then average over the four 
g = 2π/a x̂ re-
ciprocal lattice vectors for that origin. Doing so catches local
translational ordering in the absence of a global orientation.
The result is a larger correlation at small r for L, but nonethe-
less G
g(r) rapidly approaches the Bessel function result. To
more clearly see the decay in correlation, we plot in the
inset of Fig. 12(b) the quantity 
G
g(r) ≡ G
g(r) −
J0(2πr/a), where G
g(r) now takes into account local
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FIG. 12. Orientational (a) and translational (b) correlation functions as well
as (c) the peaks of g(r) − 1 for the N = 65 536 system at Pσ 2/ε = 5.6 for
the S phase at kBT/ε = 0.30, S at kBT/ε = 0.40, L at kBT/ε = 0.29, and L
at kBT/ε = 0.35. In panel (a) G4(r) reaches a constant for S, while decaying
exponentially for L. In panel (b) G
g(r) decays as a power law for S. For
L, G
g(r) is described by a Bessel function J0(2πr/a), which is the analytic
result for a random system. For L and J0(2πr/a), we plot only the peaks for r
> 10σ . The inset shows exponential decay in G
g(r) for L once the vector 
g
is chosen to align with local environments and after J0(2πr/a) is subtracted.
In panel (c), g(r) decays exponentially in the liquid, and as a power law with
exponent ∼0.7 for the S phase.

orientation. The exponential decay in this case has a
somewhat smaller length scale than what is seen in the
orientational correlations for L, but at least the exponential
decay is observed.

By contrast, a plot of the peaks of g(r) in Fig. 12(c) dis-
tinguishes in a more straightforward way between the liquid
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FIG. 13. Structure factor for the N = 65 536 system at Pσ 2/ε = 5.6 for the
(a) S phase at kBT/ε = 0.30, (b) S at kBT/ε = 0.40, (c) L at kBT/ε = 0.29,
and (d) L at kBT/ε = 0.35. The gray scale indicates the value of S(
q) and
saturates at a value of 25, which is just above the largest value for the liquid
(large peaks for the S phase appear as white spots with black edges).

and crystal in terms of the range of order. For the liquid, g(r)
shows an exponential decay with a similar length scale present
in G4(r). For S, there is a power-law decay, with an exponent
of approximately 0.7, significantly larger than the exponent
for G
g(r).

As an additional measure of order we plot the struc-
ture factor in Fig. 13 for the same state points considered in
Fig. 12. We use a single configuration for the calculation of
S(
q), i.e., we do not average over many configurations, in or-
der to avoid possible complications arising from rotations of
crystal-like domains in time. The S(
q) for S [panels (a) and
(b)] show peaks characteristic of a square crystal. While there
are small hints of scattering for 
q in between the main points
located at multiplies of ∼2π /σ in either qx or qy, the effect
is rather weak compared to what is seen in other studies of
the hexatic phase.76 For the liquid, panels (c) and (d) show no
hint of crystal-like peaks that might have appeared were there
a hexatic phase. Neither do they show features consistent with
a quasi-crystalline phase, for which the S(
q) plot exhibits ten
equidistant peaks along circles of certain fixed |
q |, indicating
the presence of five-fold symmetry.25

IV. DISCUSSION AND CONCLUSIONS

In this study, we vary the parameters ε1, b, and c of the
SSSW potential and find that increasing b (the extent of the
shoulder) has the greatest impact on increasing the range of
P over which inverse melting takes place. Recalculating the
melting curve for several values of b, we find that the stability
field of the S phase shrinks as a whole while making the effect
of inverse melting more pronounced.

For the b = 1.46σ case, we confirm the melting line pre-
dicted by the combination of several MC free energy methods
now becoming standard in the calculation of phase diagrams
by carrying out biased simulations of a phase-separated sys-
tem. From these simulations, we estimate the interfacial ten-
sion at the inverse melting line (Pσ 2/ε = 5.6, kBT/ε = 0.340)
to be βγ σ = 0.075. This value is rather low compared to
crystallization in three dimensions, e.g., βγ σ 2 = 0.5 for hard
spheres,77 but is consistent with the rather diffuse interface at
coexistence. A small surface tension is also consistent with
our earlier observations of a small range of metastability of
the liquid with respect to crystallization in general for this
model despite only a small difference in chemical potential at
the edge of metastability.24

The large region of inverse melting for b = 1.46σ facili-
tates direct testing by EDMD simulations. For both large and
small systems, we confirm the first-order nature of the transi-
tion as well as the general location of the transition.

Using the large systems, we test for the range of order.
The orientational correlation function as well as g(r) clearly
find the S phase to be a crystal and L phase to be a liquid. No
hexatic phase is apparent at the point along the melting line
where we carry out our analyses. The structure factor likewise
supports these findings. This is consistent with recent work
on a simpler repulsive-shoulder model in 2D that has a sim-
ilar phase diagram to ours, and finds a hexatic phase only at
low density.78 Additionally, the structure factor indicates the
absence of a quasicrystal phase.

As for the translational correlation function [G
g(r)], it
decays as a power law with a small exponent for S as is ex-
pected. For the liquid, some care must be taken before expo-
nential decay is made apparent. First, the orientation of the
local environment of each origin used in averaging should be
taken into consideration when defining lattice vectors. Sec-
ond, one should take into account that the analytical expres-
sion for G
g(r) in the case where orientations are uniformly
distributed is a Bessel function, for which oscillations decay
in amplitude as a power law. Thus a spurious power-law de-
cay in translational correlation arises in a completely random
system.

Inverse melting in this system, because of the simplicity
of the radial pair potential, hopefully will lend itself to analyt-
ical treatment.79 A more theoretical analysis might be benefi-
cial to understanding the impact of other modifications to the
potential on inverse melting, and may thus facilitate produc-
ing inverse melting in other 2D systems that are governed by
similar potentials, such as lipid membranes.80
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