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Simulation of a two-dimensional model for colloids in a uniaxial electric field
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We perform Monte Carlo simulations of a simplified two-dimensional model for colloidal hard spheres in
an external uniaxial ac electric field. Experimentally, the external field induces dipole moments in the colloidal
particles, which in turn form chains. We therefore approximate the system as composed of well-formed chains
of dipolar hard spheres of a uniform length. The dipolar interaction between colloidal spheres gives rise to an
effective interaction between the chains, which we treat as disks in a plane, that includes a short-range attraction
and long-range repulsion. Hence, the system favors finite clustering over bulk phase separation, and indeed we
observe at low temperature and density that the system does form a cluster phase. As the density increases,
percolation is accompanied by a pressure anomaly. The percolated phase, despite being composed of connected,
locally crystalline domains, does not bear the typical signatures of a hexatic phase. At very low densities, we find
no indication of a “void phase” with a cellular structure seen recently in experiments.
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I. INTRODUCTION

Colloidal suspensions, small particles dispersed within a
second medium, are common in everyday life, with examples
ranging from toothpaste to paint, from milk to quicksand [1–4].
An interesting class of suspension is the electrorheological
(ER) fluid [5–11], where the liquid medium and the colloidal
particles have different dielectric constants. An externally
applied electric field polarizes the particles, and hence the
system can be thought of as a system of dipolar particles, the
moments of which are aligned along the field axis.

ER fluids and their phase behavior have been studied ex-
perimentally [12–17], theoretically [7,9], and using computer
simulation [18–22]. In Ref. [18], Hynninen and Dijkstra used
Monte Carlo (MC) simulation to study the phase behavior of
hard and soft dipolar spheres over a broad range of packing
fraction and external field strength. The morphologies they
saw match those seen experimentally. What is observed in
both simulation and experiment is the formation of chains of
particles that in turn form sheets and body-centered tetragonal
(bct) clusters, which have been interpreted at low temperature
T to be the crystal phase coexisting with a gas.

Also very interesting are the experimental reports of a “void
phase,” where at very low particle concentrations and sufficient
external field strength a cell structure appears with relatively
colloid-rich walls forming the border between colloid-poor
voids. The structure has been reported in both the granular
[16] and Brownian [17] regimes, where it appears to be a
stable structure. A similar but transient structure appears as
a result of a Rayleigh-Taylor-like hydrodynamic instability
during sedimentation [23].

The formation of both bct crystallites and the void phase
occurs at higher external field strengths, in the regime where
particles form long chains along the field axis. Our goal is to
gain a simpler understanding of the structures formed in the
system, and so we present a simplified model in which the
system is represented by well-formed (rigid) chains of dipolar
hard spheres of uniform length. In this case, the system is
essentially two dimensional, with disks representing chains as
viewed down the field axis. While this is perhaps not physically
realistic, it should capture the essential features of the real

system at high field strength, at least in terms of packing and
dipolar effects.

Our desire to use this simplified model stems from several
factors. First, we believe that the finite extent of experimental
systems plays a significant role in the phase behavior seen.
Second, the interesting morphologies observed experimentally
are seen at high fields, in the regime where the system is largely
composed of chains. It would be convenient to think of these
morphologies arising from interacting chains of dipolar hard
spheres, but are these morphologies in fact recovered from
interacting chains? If not, what additional ingredients must be
present to recover them?

We believe that a set of chains of uniform length provides
a reasonable starting point for a coarse-grained description of
the experimental systems, in which this length seems to be
between 50 and 100 or so spheres. We note that simply using
hard rods with a uniform dipole moment density would not
result in attraction between chains at short distances. Once the
physics of this simple system is understood, progressive detail
can be added, such as the effect of chain length, chain length
polydispersity (to better simulate a sediment), fluctuations in
chain shape, etc.

The main feature that emerges when the system is reduced
to one of chains is that the effective interaction between chains
as a function of their separation, while depending on chain
length, is generally repulsive at long range and attractive
at short range. This immediately suggests the possibility of
clusters that are finite in size that reduce the likelihood of bulk
phase separation.

The model embeds the finite extent of the system along the
field axis within the chain-chain interactions. It thus provides
a convenient way of approaching the bulk three-dimensional
limit without progressively increasing the number of particles
in the simulation. In this work, as a starting point and for
simplicity, we study a system of chains each composed of
50 particles, motived for example by Ref. [15].

This paper is organized as follows. In Sec. II, we present
the details of our two-dimensional model and the resulting
effective potential. We also discuss the energetics of clustering
and provide details of our Monte Carlo simulations, as well
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as of the descriptive quantities we calculate. In Sec. III we
present our results, and in Sec. IV we discuss them, especially
with regard to phase diagrams pertinent to our system. Finally,
we give our conclusions and thoughts for future work.

II. MODEL AND SIMULATIONS

A. Interacting chains of dipolar particles

Our approach to modeling a system of colloidal particles in
a uniaxial electric field begins with the assumption that the field
induces point dipole moments within otherwise hard spheres
of diameter σ . As the dipole moments are always aligned, the
effective pair interaction becomes

U (r,θ ) = AD

(
σ

r

)3

(1 − 3 cos2 θ ), (1)

where

AD = πσ 3α2εS |Eloc|2
16

(2)

is the energy scale of the dipolar interaction, α = (εP −
εS)/(εP + 2εS) is the polarization, εS and εP are the dielectric
constants of the solution and colloids, respectively, and
| �Eloc| = | �Eext| + | �Edip| is the magnitude of the local electric
field with a dominant contribution from the applied external
field and a negligible contribution from the field from the other
induced dipoles. As shown in Fig. 1(a), θ is the angle formed
between the displacement vector between two particles and
the field axis, which we choose to be along the z axis.

At sufficiently small reduced temperature T ∗ = kBT /AD ,
the dipolar spheres tend to align and form chains along the
field axis as illustrated in Fig. 1(b). Thus, we will model the
system as one comprising chains, each composed of L dipolar
spheres. Colloids within a chain are assumed to be fixed with
respect to each other, while each chain as a whole may interact
with other chains.

Within this approximation, the crystal phase available to the
chains is the body-centered tetragonal (bct) structure, within
which chains are either in a “stacked” configuration, as in
Fig. 2(a), or in a “staggered” configuration, as in Fig. 2(b).
While the staggered configuration is energetically preferred,

FIG. 1. (a) The interaction between two particles of diameter σ

and parallel dipole moments �P1 and �P2 separated by a distance |�r|.
θ is the angle formed between the dipole moment and the separation
vector �r . The external electric field �Eext is parallel to the z axis.
(b) The preferable configuration of the dipoles under a relatively
strong electric field.

FIG. 2. Two chains interacting at closest distance through (a) the
stacked interaction and (b) the staggered interaction.

and indeed is attractive at small chain axis to axis separation d,
basic geometrical frustration prevents all configurations from
being staggered.

For the stacked geometry, the potential energy as a function
of d between two chains is given through Eq. (1) by summing
all interactions between pairs of colloids in different chains,

Uc(d; L)

σ 3AD

=
L∑

n=1

L∑
m=1

d2 − 2(m − n)2σ 2

[d2 + (m − n)2σ 2]5/2
. (3)

As shown in Fig. 3(a), the interaction is always repulsive,
increases at small d as L increases, but seems to become
independent of L for larger d.

For the staggered geometry, the interaction energy is given
by

Ug(d; L)

σ 3AD

=
L∑

n=1

L∑
m=1

d2 − 2
(
m − n + 1

2

)2
σ 2

[
d2 + (

m − n + 1
2

)2
σ 2

]5/2
. (4)

As shown in Fig. 3(b), for small d the staggered interaction is
attractive, increasing in an approximately linear way with L.
While the range of attraction also grows with L, the attractive
part is short ranged with a maximum in Ug(d) at d ≈ 1.75σ

for L = 100. At larger d, the interaction is repulsive and
quickly becomes indistinguishable from that in the stacked
arrangement.

One motivation for modeling the system in the way we
do is to highlight the short-range attraction and long-range
repulsion between the basic constituents of the system in the
regime where chains are well formed.

B. Energetics of clustering

The main impact of the short-range attraction and long-
range repulsion is the emergence of energetically favored
finite-size clusters. This phenomenon has been the topic
of numerous studies on colloidal systems, including studies
pertaining to equilibrium thermal gels.

To illustrate the effect for our system, we compose rectan-
gular bct clusters m chains wide and l chains long and plot for
each m the potential energy of each cluster as a function of l in
Fig. 4. All chains in the cluster have length L = 50 and are in
contact with nearest neighbors, i.e., d/σ = √

3/2 ≈ 0.866. As
the figure illustrates, the potential energy for narrow clusters
(m = 1,2,3) keeps decreasing with length, while for wider
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FIG. 3. (Color online) Chain-chain interaction energy as a func-
tion of distance (d) for different chain lengths (L), for (a) the
stacked dipolar interaction, exhibiting weak repulsion at large d and
strong repulsion at small d; and (b) the staggered dipolar interaction,
exhibiting weak repulsion at large d and strong attraction at small d .
The inset in each figure shows a closeup of the interaction at short
distances.

clusters (m � 4), there appears an energetically favored length.
For square m × m clusters (not shown) the potential energy
increases beyond m = 7.

While this analysis is limited because it neglects interaction
with other clusters (i.e., density effects), as well as entropic
considerations, it does foreshadow the importance of long,
stringlike structures as well as more compact clusters of finite
size.
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FIG. 4. (Color online) The potential energy of an isolated cluster
of size m × l as a function of l.

C. Monte Carlo simulations

The system of interacting chains is essentially two di-
mensional, and as such we represent each chain of colloidal
spheres as a disk in a plane. To capture the short-range
structure, we label disks with either 1 or −1. If the product
of the labels is 1, then the interaction is given by Uc(d; L),
the always repulsive stacked potential. Otherwise, the disks
interact through Ug(d; L), which is deeply attractive at short
range and repulsive for distances beyond 1.64σ . We choose all
chains to be composed of L = 50 particles, and we simulate
Np = 2500 disks.

We follow the usual Metropolis MC algorithm to generate
new configurations at constant area [24]. To model the slight
chain motion in the z direction that can change local packing
(staggered and stacked), we choose between two MC moves,
each with 50% probability: a random displacement of a disk, or
a random displacement of a disk accompanied by a change in
label of that disk. The simulations are done for a broad range
of T ∗ and area fraction Aφ ≡ Npπσ 2/(4L2

B), where LB is
the square simulation box length, and we report quantities for
state points where the mean square displacement of the disks
after an initial equilibration period is at least σ 2. We truncate
the potentials at rc = LB/2. For the largest Aφ = 70%, rc =
26.48σ .

To characterize our system, we calculate the radial dis-
tribution function g(r), the structure factor S(q) = 〈ρqρ−q〉,
where ρ�q = N

−1/2
p

∑N
i=1 exp(−i �q · �ri), and the potential en-

ergy of the system U (T ,Aφ), which includes the standard
tail correction assuming g(r > rc) ≈ 1. We also calculate the
distribution of clusters N (n), i.e., the number of clusters of
size n. We do not consider the degree of local crystallinity in
defining a cluster, but rather simply define two disks to be in
the same cluster if they are within a distance of rn = 1.233σ

of each other [Ug(rn) = 0]. We do so in the spirit of Toledano
and co-workers [25], who studied clustering in a system with
competing short-range attraction and long-range repulsion in
three dimensions, and used the appearance of a local maximum
in N (n) for n > 0 to define a cluster phase. This maximum
is equivalently a minimum in the free energy of forming
an n-sized cluster, 	F (n) = − ln [N (n)/N(1)]. We also keep
track of whether or not there is a system-spanning cluster and
define the percolation line by identifying state points that have
a 50% chance of containing a spanning cluster.

We report the pressure in terms of g(r) via

P = ρkBT + 1

2
kBT πρ2σ 2gc(σ )

+ 1

2
kBT πρ2(0.866σ )2gg(0.866σ )

− 1

2
πρ2

∫ rc

σ

r2 dUc(r)

dr
gc(r)dr

− 1

2
πρ2

∫ rc

0.866σ

r2 dUg(r)

dr
gg(r)dr

− 1

2
πρ2

∫ ∞

rcut

r2 dUc(r)

dr
dr

− 1

2
πρ2

∫ ∞

rcut

r2 dUg(r)

dr
dr, (5)
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where ρ is the number density per unit area, and gc(r) and gg(r)
are the partial radial distribution functions for stacked and
staggered interactions, respectively. We have accounted for
hard-core repulsion, omitted the (density-dependent) impul-
sive correction at rc, and added the long-range tail correction.
In this way we approximate the behavior of the untruncated
system.

As mentioned in the Introduction, Ref. [18] indicates that
at low T and over a range in density, the crystal phase coexists
with a rare fluid. As another check for coexistence within our
system in addition to tracking P , we wish to track the reduced
number density ρf of the fluid (non-crystal-like) portion of the
system as Aφ varies.

To determine the number Nc of bct-like particles, i.e., disks
in a locally crystalline environment, we employ the method
developed by Frenkel and co-workers [26], based on the local
bond-order analysis that was introduced in Ref. [27]. For each
particle we define the quantity

qlm(i) = 1

Nb(i)

Nb(i)∑
j=1

Ylm(r̂ij ), (6)

where the sum is carried out over all neighboring parti-
cles Nb(i) that are within a distance 1.05σ , and Ylm(r̂ij )
are the spherical harmonics calculated for the normalized
direction vector r̂ij between the neighbors. The unit vec-
tor r̂ij is determined by the polar and azimuthal angles
θij and φij , although here in two dimensions θij ≡ π/2.
Since our crystallites possess square symmetry, we use
l = 4. For each pair of neighboring particles i and j , we
calculate the correlation

∑4
m=−4 q̂4m(i)q̂∗

4m(j ), where q̂4m =
q4m(i)/[

∑4
m=−4 |q4m(i)|2]1/2 and q∗ is the complex conjugate

of q. If the correlation between two neighboring particles is
greater than 0.05 or less than −0.05, then particles i and
j are considered to be connected. If a particle has at least
three connected neighbors, then it is considered a crystal-like
particle.

Additionally, since we observe crystallites connected
through a single bridging particle, we also define a particle
to be crystal-like if it has only two neighbors that are both
connected to it and the angle between the separation vectors
connecting the particle with the two neighbors is less than
α. The choice of α is somewhat arbitrary, and so we report
results for α = 103◦ and α = 115◦. This procedure labels as
crystal-like corner particles of crystallites as well as compact
squares of four particles.

To determine ρf , we first define an area occupied by
crystallites, Ac, by associating a square of length σ with
each crystal-like disk and accounting for overlaps. The area
occupied by the fluid is Af = L2

B − Ac and ρf = (Np −
Nc)σ 2/Af . ρf should be constant with respect to Aφ along
an isotherm in a region of crystal-fluid coexistence.

Finally, to test for the existence of a hexatic phase, we report
on the orientational correlation function

G4(r) = 〈q4(r)q∗
4 (0)〉, (7)

q4(�rj ) = 1

Nb(j )

Nb(j )∑
k=1

exp(4iθjk), (8)

where θjk is the angle formed by the bond between particle j

and neighbor k and an arbitrary fixed axis. In a crystal, G4(r)
tends to a constant as r increases. In a hexatic phase, it decays
as a power law while in a liquid it decays exponentially.

III. RESULTS

In Figs. 5 and 6, we show sample configurations for different
T taken from isochores at Aφ = 1%–70%. At Aφ = 10%, we
see that single disks initially cluster into short chains (clusters
one particle wide) as T decreases, but then form more compact
clusters at the lowest T . We see similar behavior at Aφ =
40%, although the higher density encourages longer, more
intertwined chains that thicken as T decreases. At the lowest
T , the system comprises rectangular clusters connected with
chains.

The right columns of Figs. 5 and 6 show the progression
of the system at low T as Aφ increases from individual
crystallites, to crystallites connected by chains, to crystallites
with very few chainlike structures. By Aφ = 0.70, there are
very few non-crystal-like particles.

What is clear from these pictures is that cluster-cluster
repulsion, arising from the cumulative long-range disk-disk
repulsions, prevents the formation of a bulklike crystalline
region. The local crystal-like ordering within clusters induced

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 5. Sample configurations for Aφ equal to (a)–(c) 1%,
(d)–(f) 10%, (g)–(i) 20%, and (j)–(l) 30%. For Aφ = 1%, config-
urations are shown for T ∗ equal to (a) 4.0, (b) 1.8, and (c) 0.4. For
Aφ = 10%, 20%, and 30%, configurations are shown for T ∗ equal to
(d), (g), (j) 4.0, (e), (h), (k) 2.3, and (f), (i), (l) 1.5.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 6. Sample configurations for Aφ equal to (a)–(c) 40%,
(d)–(f) 50%, (g)–(i) 60%, and (j)–(l) 70%. Configurations are shown
for T ∗ equal to (a), (d), (g), (j) 4.0, (b), (e), (h), (k) 2.3, and (c), (f),
(i), (l) 1.8.

by lowering T does not result in the appearance of a crystal
phase. It would be difficult to classify the system as being
one of phase-separated crystal and fluid, despite expecting the
system to be fully crystalline at higher densities.

To categorize the structures seen, we plot the phase diagram
for the system in Fig. 7(a), where we have indicated the
percolation line (where we define the percolating cluster by
considering bonded particles regardless of local order) and
a line where 	F (n) first exhibits a minimum at n > 0, the
“cluster line.”

The 	F (n) are shown in Figs. 8(a)–8(c) for area fractions
well within and near the percolation threshold. For Aφ = 10%,
a minimum in 	F (n) for small but finite n begins to develop
at T ∗ ≈ 1.8, moving to larger n as T decreases. The transition
from the high-T fluid, characterized by stringy clusters, to the
low-T cluster phase, characterized by more compact, squarish
clusters, appears to be continuous with no free energy barrier
between monomers and larger cluster at low T . For Aφ =
30%, the picture is similar, except that the slope of 	F (n) is
smaller in the cluster regime, and that there appears to be a
small barrier on the order of kBT separating monomers from
larger clusters. While this would lend a first-order flavor to the
transition, the minimum in 	F (n) is local and 	F (n) increases
monotonically beyond it. For Aφ = 40%, which crosses the
percolation threshold as T decreases, no local minimum in
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FIG. 7. (Color online) Phase diagrams for comparable systems.
(a) Our system of chains of dipolar spheres. (b) The three-dimensional
system of polarizable spheres in an external field studied by
Hynninen and Dijkstra [18]. We have redrawn their figure after
converting packing fraction to area fraction and dipolar strength to
reduced temperature. (c) Phase diagram as adapted from [25] for a
colloidal system with short-range depletion attraction and long-range
electrostatic repulsion.

	F (n) forms for small n. Rather, accompanying percolation,
a local minimum develops at n on the order of the system size.

The potential energy as a function of T for the isochores
is plotted in Fig. 9. For Aφ = 1%, where we approach the
clustered ground state, the potential energy is well described
by a two-state model, with the exception at low T where the
vibrational contribution of (3/2)kBT is not accounted for in
the model. For Aφ = 10% and 20% our lowest-T data appear
to be just at or below the inflection point in U (T ), while
for Aφ � 30%, we have not yet located the peak in the heat
capacity. Thus, we do appear to have a heat capacity peak
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FIG. 8. (Color online) The work of forming an n-sized cluster
regardless of local geometry for Aφ equal to (a) 10%, (b) 30%, and
(c) 40% (inset shows data for all n for T ∗ = 2.0). β = (kBT )−1.

accompanying the change demarcated by the appearance of an
n > 0 minimum in 	F (n), at least at low Aφ .

Pressure isotherms as obtained through Eq. (5) are plotted
in Fig. 10. At packing fractions near the percolation transition,
the pressure shows an inflection, indicating a compressibility
maximum, that grows with decreasing T . It is not surprising
that extrema in response functions appear together with
percolation [28].

Figure 11 shows the packing fraction of the non-locally-
crystal-like, i.e., liquidlike, portion of the system. As discussed
in the previous section, there is some ambiguity in discerning
liquidlike particles from crystal-like particles, particularly for
particles connecting crystallites. As such, we plot curves for
two values of α (an angle that determines whether particles
bridging crystal-like domains are crystal-like themselves),
and find only a quantitative difference in the curves. The ρf
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FIG. 9. (Color online) Potential energy per particle as a function
of T ∗ for Aφ equal to (a) 1% (red curve indicates two-state model fit),
(b) 10%, (c) 20%, (d) 30%, (e) 40%, (f) 50%, (g) 60%, and (h) 70%.

isotherms become flatter as T decreases, which is consistent
with an interpretation of our cluster line as (a remnant of)
the phase boundary between the fluid and the solid-fluid
coexistence phase. At T well below this line, ρf (Aφ) is quite
flat.

In Fig. 12, we plot S(q) for Aφ = 10%, 40%, and 70%. In
all cases, ordering on the scale of nearest neighbors is closely
followed by clustering as evidenced by the peak near qσ = 1.
The location of the cluster peak appears not to change much
with Aφ , indicating that the distance between cluster centers
does vary a great deal with density. The high value of the
cluster peak at Aφ = 10% may at first seem to indicate a cluster
crystal since in two dimensions a peak height greater than 4
is characteristic of a crystal [29]. However, to draw any such
conclusion, it would be necessary to divide S(q) by the number
of particles in a cluster, which is approximately 4, yielding an
effective peak height of 2. Visually, we do not see ordering
of the crystallites. On the other hand, for Aφ = 70%, S(q)
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FIG. 10. (Color online) Pressure isotherms. The inflection coin-
cides with percolation.
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FIG. 11. (Color online) Reduced number density of the liquidlike
portion of the system (ρf ) as a function of Aφ for different isotherms
at α = 103◦ (solid lines) and α = 115◦ (dashed lines).

reaches a height of 4 at q corresponding to nearest neighbors,
nominally signifying crystallization.

In Fig. 13 we plot g(r) for Aφ = 10%, 40%, and 70%,
illustrating the T evolution below, near, and above percolation.
At 10%, as T decreases, we see the emergence of neighbor
peaks at short range, while a long-range peak emerges near 8σ

only once the cluster line is crossed. For Aφ = 70%, near
T ∗ = 2.0 and below, the neighbor peaks extend to longer
distances. The peak heights appear to decrease as a power
law, as highlighted by a power law curve with exponent −1.8
drawn as a guide to the eye in Fig. 13(c). Similar but less
pronounced behavior is evident at Aφ = 60% and 50% (not
shown). Figure 13(b) shows Aφ = 40% exhibiting crossover
behavior with a cluster peak emerging near r = 6σ at low
T . In Fig. 14 we show G4(r) for Aφ = 70% and T = 1.8,
the state point showing the longest -range translational order
through g(r). However, the orientational order quantified by
G4(r) appears to decay exponentially, as shown by the curve
A exp[−r/ξ ], with A = 0.928 and ξ = 11.67σ , overlaid on
the data.

IV. DISCUSSION

This study was motivated by the desire to better understand
the phase behavior of a system of polarizable colloids under
the influence of an alternating, external field. The system has
been hitherto studied as a bulk system of dipolar hard-sphere
particles with all dipole moments aligned along one axis.
With our reduction of the system to one of chains of finite
length, we make explicit the emergent short-range attraction
and long-range repulsion between the constituents of what can
be effectively thought of as a two-dimensional system. This
type of interaction generically promotes finite clustering and
suppresses the formation of a bulk phase that would otherwise
arise in a fluid-solid coexistence.

The repulsive part of our potential becomes weaker with
respect to the short-range attraction as chain length increases,
disappearing in the infinite-chain-length limit. One can readily
confirm that the interaction between two parallel lines of
uniform and aligned polarization decays to zero as the length of
the chains increases. In this limit of long chains, the only source
of interaction (attraction) is the discrete nature of the spherical
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FIG. 12. (Color online) The structure factor S(q) for Aφ equal to
(a) 10%, (b) 40%, and (c) 70%.

dipolar spheres constituting the chains. Thus, one can see why
for a large, three-dimensional system, bulk fluid–crystal phase
coexistence emerges.

For our system at densities below percolation, the high-T
phase is characterized by a distribution of cluster sizes, where
monomers are the most common state and clusters tend to
be stringlike. As T decreases, the distribution shifts so that
the most common cluster size is finite, and clusters tend to
be more compact. The clusters themselves do not order into
a lattice at the T studied. At very low density, we expect
the transition to the cluster phase to continue to occur at
progressively lower T as the energetics of clustering competes
with an entropically favored monomeric state. At densities
above percolation, the homogeneous state coalesces into a
system of connected crystallites, which increase in size with
increasing density.

Snapshots of configurations are qualitatively quite similar
to experimental ones [15], and our results confirm that even
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FIG. 13. (Color online) The pair correlation function g(r) for Aφ

equal to (a) 10%, (b) 40%, and (c) 70%, where the dashed curve is
8.6(σ/r)1.8 + 1. Inset shows g(r) − 1 for T ∗ = 1.8 and 8.6(σ/r)1.8.

for uncharged colloids, dipolar repulsions between chains
stabilize clusters and coarsening (to the bulk) should not be
expected beyond some finite equilibrium size.

Having suppressed bulk phase separation, we obtain a qual-
itatively different phase behavior from that obtained for the
three-dimensional study by Hynninen and Dijkstra [18] . For
comparison, we present an adaptation of their phase diagram in
Fig. 7(b), after converting their packing fraction to area fraction
(AD = 3/2η), where η is the packing fraction. Our T scale is
rather different, owing to our precondition that our system
comprises fully formed and unchanging chains. Despite the
lack of full phase separation, remnants of first-order character
appear in our cluster phase, namely, a possibly nonzero free
energy barrier separating the monomeric state and stable
clusters of a larger size, as well as the flatness of the ρf (Aφ)

1 10
r/σ

10
-1

10
0

G
4(r

/σ
)

FIG. 14. (Color online) G4(r) as a function of r at Aφ = 70%
and T = 1.8. Red curve shows an exponential fit A exp[−r/ξ ], with
A = 0.928 and ξ = 11.67σ .

curve. As mentioned in the Introduction, it would be interesting
to study the approach of our two-dimensional model to the
three-dimensional case by progressively increasing L.

Our phase behavior appears to be closer in spirit to that of
a three-dimensional system of particles interacting through
isotropic competing short-range attraction and long-range
repulsion studied by Toledano et al. [25]. In Fig. 7(c) we
show their phase diagram, again rescaling the packing fraction.
One point to emphasize for our system is the importance of
percolation, for which we see an accompanying inflection in
the pressure.

At densities above percolation, we see what appears to
be the remnant of bulk crystallization in the formation of
connected crystallites below a T similar to the T at which the
(unpercolated) cluster phase appears at lower density. While
a large nearest-neighbor peak in S(q) indicates crystallinity,
the orientational and translational order do not extend in
space appreciably beyond the characteristic size of crystallites.
Interestingly, the peaks in g(r) decay with a power law
dependence, though with a larger exponent (∼1.8) than is
typical for orientational correlation function decay in a hexatic
phase [29].

Even though the crystallites in the percolated regime do not
seem to align to form a structure with long-range order, and this
may be understood in terms of the degeneracy of the long-range
energy between two clusters with respect to precise orientation,
at sufficiently high density the system must become fully
crystalline. Presumably, the size of the crystallites continues
to increase with density, perhaps forming an ordered phase
dotted with voids, but the nature of the transition is for us an
open question.

The transition to the crystal would perhaps be better
rigorously studied through another model. One drawback of
the present model is that it is difficult to handle the long-range
nature of the interaction in a precise way, and the dynamics
becomes quite slow at high density. Our potential, which we
determine numerically, converges too slowly to ∼r−3 for us
to be able to take advantage of Ewald techniques. Perhaps the
formation of the crystal phase could be studied with simpler
potentials, or even potentials with finite repulsive tails, such
as were studied recently in Ref. [30]. Such a potential would
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also simplify a more thorough study of the thermodynamic
behavior near percolation.

Finally, we find no evidence at very low density of
the emergence of the cellular structure of the void phase
of Ref. [17]. Clearly, the physics of dipolar hard spheres
assembled into chains monodispersed in length is not solely
responsible for the appearance of this phase. Perhaps the
formation of chains helps stabilize structures that begin to
form as a result of hydrodynamic forces, but this is mere
speculation.

V. CONCLUSIONS

In this work, we reduce a model of aligned dipolar
hard spheres to one of interacting finite chains of particles,
treating the chains as a collection of disks in two dimensions.
The long-range repulsion between disks (chains) promotes

the appearance of a cluster phase at the expense of bulk
crystal formation. Percolation at higher density is accompanied
by a pressure anomaly. The percolated phase at low T is
characterized by connected crystallites exhibiting orientational
disorder that increase in size with increasing density and power
law decay of g(r). The description of the transition to the
crystal phase at densities higher than those presented here is of
great interest to us, but such a study would be better done with a
more computationally tractable potential. We find no evidence
for the appearance of the void phase found experimentally at
very low density.
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