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Abstract. The ST2 interaction potential has been used in a large number of simulation studies to explore
the possibility of a liquid-liquid phase transition (LLPT) in supercooled water. Using umbrella sampling
Monte Carlo simulations of ST2 water, we evaluate the free energy of formation of small ice nuclei in
the supercooled liquid in the vicinity of the Widom line, the region above the critical temperature of the
LLPT where a number of thermodynamic anomalies occur. Our results show that in this region there is a
substantial free-energy cost for the formation of small ice nuclei, demonstrating that the thermodynamic
anomalies associated with the Widom line in ST2 water occur in a well-defined metastable liquid phase.
On passing through the Widom line, we identify changes in the free energy to form small ice nuclei that
illustrate how the thermodynamic anomalies associated with the LLPT may influence the ice nucleation
process.

1 Introduction

The proposal that a liquid-liquid phase transition (LLPT)
occurs in supercooled water has stimulated a significant
quantity of research and debate [1–31]. The principal
virtue of this proposal is that it provides a common ori-
gin for two of water’s most unusual properties. First, the
atypical and increasingly divergent behaviour of thermo-
dynamic and dynamical properties of liquid water as tem-
perature decreases through the freezing temperature can
be understood in terms of an approach to the critical point
of the LLPT, and its associated anomalies. Second, the
line of first-order phase transitions that terminates at the
critical point of the LLPT can account for the occurrence
of two distinct glass forms of water, the so-called low-
density amorphous and high-density amorphous ices.

The LLPT proposal predicts the occurrence of an in-
terrelated set of thermodynamic features in supercooled
water. These features are illustrated in the plane of tem-
perature T and pressure P in fig. 1, which summarizes
the behaviour reported in previous molecular dynamics
(MD) simulations of the ST2 model of water [8, 13]. The
coexistence line separating the distinct low-density liquid
(LDL) and high-density liquid (HDL) phases has nega-
tive Clapeyron slope and terminates at a critical point at
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T = Tc. Emanating from the critical point for T < Tc,
and bracketing the coexistence line, are two metastabil-
ity limits (spinodals), one for each of the LDL and HDL
phases. For T > Tc, a number of thermodynamic response
functions (e.g. the isothermal compressibility KT ) exhibit
maxima which diverge as T → Tc. The loci of these max-
ima in the (T, P ) plane all lie near the so-called Widom
line [7], the locus of maxima of the correlation length, and
converge at the critical point. The region near the Widom
line therefore contains the high-temperature harbingers of
the critical point and the line of first-order phase tran-
sitions that occur for T ≤ Tc. Whereas the HDL-LDL
transition is discontinuous at the line of first-order transi-
tions, the liquid continuously crosses over from an HDL-
like liquid to an LDL-like liquid as T decreases through
the region of the Widom line.

The main source of challenge and concern related to
the LLPT hypothesis is ice formation. Experimentally,
rapid ice formation has so far thwarted the direct mea-
surement of the properties of bulk supercooled liquid wa-
ter in the region of T and P where the LLPT is predicted
to occur [5]. That is, neither the first-order LLPT, the
critical point, nor the response function maxima associ-
ated with the Widom line have been directly observed
in experiments on bulk samples of supercooled liquid wa-
ter. However, a number of indirect experimental results
are consistent with the LLPT proposal. Examples include
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Fig. 1. Phase behaviour of the ST2 model predicted from pre-
vious MD simulations [8, 13]. Shown are the estimated loca-
tions of the liquid-liquid critical point (circle with error bars);
the HDL spinodal (down-triangles) and the LDL spinodal (up-
triangles); the line of KT maxima (thick solid line) and minima
(thick dashed line); the line of density maxima (thin solid line)
and minima (thin dashed line); and the metastability limit of
the liquid at negative pressure (diamonds). The dot-dashed
line is a line having the estimated slope of the liquid-liquid
coexistence curve at the critical point. The circles labelled A
and B locate the state points at which we carry out the um-
brella sampling simulations described in the text. The enclosed
polygon delimits the region of states within which we estimate
the free energy of formation of small ice nuclei. The contours
within this polygon are lines along which G15 is constant. The
contours are 1kT apart, and range from 22kT in the lower left
corner to 46kT in the upper right.

experimental studies of metastable ice melting lines [4],
the behaviour of the amorphous ices [15, 23], and the
thermodynamic and transport properties of confined liq-
uid water [6, 16]. Recent experiments continue to push
deeper into the supercooled liquid regime, offering new
insights [32].

To date, it is only in computer simulations of water-
like models that a LLPT has been unambiguously ob-
served [24,25]. The most extensively studied model in this
regard is the ST2 interaction potential [33]. In ST2 sim-
ulations, most previous work shows that it is possible to
evaluate the equilibrium properties of the deeply super-
cooled liquid on a time scale that is short compared to the
crystal nucleation time, thus exposing the physics of the
LLPT to direct observation [25,29]. However, Limmer and
Chandler have disputed this interpretation of the results
for ST2 water, and have specifically proposed that the
behaviour previously interpreted as evidence of a LLPT
is in fact a manifestation of crystal formation [11, 21, 27].
Subsequent studies by others using very similar methods
do not reproduce the simulation results of Limmer and
Chandler, and confirm the occurrence of a LLPT in ST2
water [19,20,22,25]. The origin of this discrepancy remains
a subject of debate [27,28].

In light of the above results, the nature of crystal for-
mation in a liquid exhibiting a LLPT, and in ST2 water
in particular, merits further investigation. The relation-
ship between ice formation and the potential for a LLPT
varies widely in water-like computer models. For example,
in the mW model of water, recent work shows that the su-
percooled liquid becomes unstable to ice formation before
the conditions for a LLPT can be realized [34,35]. At the
other extreme, simulations of a water-like patchy colloidal
liquid, and a model of DNA tetramers, demonstrate that
a LLPT can occur in the stable liquid region, where crys-
tal formation is impossible [9, 24, 30, 31]. The ST2 model
provides a case where the physics of a LLPT and of ice
nucleation occur simultaneously, allowing the influence of
the LLPT on ice formation to be explored directly. The
coincident appearance of both phenomena can be under-
stood in terms of the effective rigidity of hydrogen bonds
when viewed against a broader spectrum of bond flexibil-
ity in tetrahedral network-forming liquids [24,30,36].

In the most recent work on ST2 water, the free energy
surface of the system near the critical point of the LLPT
was examined as a function of the density ρ and the bulk
bond-order parameter Q6, using the method of umbrella
sampling [11,19–22,25]. Q6 is a bulk measure of the overall
crystallinity of a system developed by Steinhardt et al.;
see e.g. the definition of Q6 given in ref. [11]. As such Q6

is a valid order parameter for distinguishing between the
disordered liquid and ordered crystal phases, and provides
a reaction coordinate to quantify the variation of the free
energy associated with the crystal-liquid phase transition.

We focus here on the related question of how single ice
nuclei form and grow from the supercooled liquid. The free
energy G(n) to form an ice-like cluster of n molecules from
the liquid can be evaluated from computer simulations
using,

βG(n) = − ln
N (n)

N
, (1)

where β = 1/kT , k is Boltzmann’s constant, N is the
number of molecules in the system, and N (n) is the equi-
librium average of the number of ice-like clusters of size
n [37]. So defined, G(n) can be used to determine the
nucleation free energy barrier appropriate for estimat-
ing the nucleation rate, e.g. via classical nucleation the-
ory [38]. When using umbrella sampling methods to com-
pute N (n), recent work has shown that an appropriate
order parameter to define a path from the liquid to the
crystal phase is nmax, the size of the largest crystalline
cluster in the system [39–41]. In particular, ref. [40] dis-
cusses why the order parameter nmax is preferable to or-
der parameters such as Q6 for evaluating the free energy
of formation of crystal nuclei when the aim is to estimate
the nucleation barrier and rate.

In order to fully elucidate the influence of a LLPT
on crystal nucleation, it would be valuable to determine
G(n) for ST2 water near the critical point of the LLPT,
and for a sufficient range of n to find the nucleation
free energy barrier and the size of the critical nucleus.
However, in order to achieve this goal, a number of con-
cerns present themselves. For example, G(n) has not been
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previously reported for the ST2 model, and has been
found for only a few other water-like models when using
nmax as the order parameter [39,41]. An initial assessment
of the methods for finding G(n) for ST2 water is therefore
warranted. In addition, relaxation times near the critical
point of the LLPT are large, relative to easily accessed
computational time scales, and it is therefore appropriate
to work first in a regime where equilibration time scales
are readily attained.

Consequently, in the present work, we evaluate G(n) in
ST2 water for small ice nuclei in the range 0 < n < 20, and
focus on T and P in the vicinity of the Widom line. These
choices allow us to test the methods for estimating G(n)
for ST2 water using a relatively small system (N = 216
molecules) and in a range of T and P where equilibrium
is easily established. Further, for finding G(n), we explore
the use of umbrella sampling with respect to the two or-
der parameters ρ and nmax. As described below, umbrella
sampling with respect to ρ allows us to reweight our re-
sults with respect to P over a range near the chosen P of
our simulations. We also conduct separate series of runs
at two values of T , and are able to interpolate results in
between by reweighting with respect to T . The result is an
estimate of G(n) inside a continuous region of states in the
(T, P ) plane straddling the Widom line. Thus, although
the present study does not explore the immediate vicin-
ity of the critical point of the LLPT, our results allow us
to draw conclusions about the stability of the metastable
liquid state near the Widom line, and to discern how the
thermodynamic anomalies that extend outward from the
LLPT may influence ice nucleation.

2 Model and order parameters

We study the ST2 model of water proposed by Stillinger
and Rahman [33]. The details of our implementation of
the ST2 interaction potential are summarized in ref. [20],
and are the same as those used in a number of previous
studies [1, 2, 8, 12–14]. In particular, we note that in our
implementation of the ST2 model, we use the reaction
field method to approximate the long-range contribution
of the electrostatic interactions [42].

To characterize the crystallinity of the system, we fol-
low the approach of refs. [39,43]. We use Steinhardt bond
order parameters [44] based on spherical harmonics Ylm

of order l = 3. For each particle i, and for integers m such
that −l ≤ m ≤ l, we define the components of a complex
vector as,

qlm(i) =
1

4

4
∑

k=1

Ylm(r̂ik), (2)

where r̂ik is a unit vector pointing from the O atom of
molecule i to that of molecule k. As in refs. [39,43], the sum
in eq. (2) is over the four nearest neighbours of molecule
i, regardless of whether the distance of these neighbours
places them in the first neighbour shell of molecule i. Thus
every molecule is analyzed with respect to exactly four
neighbours, and the need to choose a cut-off distance for

Fig. 2. Representative configurations of ice Ic, ice Ih, and liq-
uid water obtained from MC simulations at T = 280 K and
P = 40MPa. The simulations of ice Ic and the liquid are con-
ducted in a cubic simulation cell with N = 216 molecules.
The ice Ih simulation is carried out in a rectangular cell with
N = 432 molecules.
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Fig. 3. Normalized probability distributions P (cij) represent-
ing the frequency of occurrence of cij values for the equilibrium
liquid, ice Ic, and ice Ih phases at T = 280K and P = 40MPa.

the outer boundary of the first neighbour shell is avoided.
The dot product,

cij =

l
∑

m=−l

q̂lm(i) q̂∗lm(j), (3)

where,

q̂lm(i) =
qlm(i)

√

∑l
m=−l |qlm(i)|2

, (4)

and q̂∗lm(i) is its complex conjugate, quantifies the orien-
tational correlation between the nearest-neighbour shells
of molecules i and j.

We carry out initial simulations of ST2 water in the
liquid phase, and in the ice Ic and Ih crystalline phases, all
at the same state point at T = 280K and P = 40MPa; see
fig. 2. Figure 3 shows the normalized probability distribu-
tions of cij for each phase. The distribution for the liquid
phase is broad and spread out over much of the range
of cij . The ice Ic distribution is peaked sharply around
cij = −1, reflecting the fact that each molecule partic-
ipates in four “eclipsed” hydrogen bonds in the ice Ic
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Fig. 4. Normalized probability distributions P (nbonds) for the
number of crystalline bonds nbonds found for molecules in the
equilibrium liquid, ice Ic, and ice Ih phases at T = 280 K and
P = 40 MPa.

structure. The ice Ih distribution exhibits two peaks at
approximately cij = −1 and cij = −0.1, indicating the
presence of three eclipsed, and one “staggered” hydrogen
bond for each molecule in this crystal.

Following refs. [39, 43], we define that a crystalline
bond exists between molecule i and one of its four nearest
neighbours j when cij < −0.87. A crystalline molecule is
defined as one that has three or more crystalline bonds.
Figure 4 demonstrates that this definition for a crystalline
molecule is unlikely to be met by molecules in the liquid
phase. Conversely, this definition is unlikely to misidentify
molecules in either crystal phase as liquid-like.

As discussed in refs. [39,43], this definition permits the
formation of both the ice Ic and Ih structures, since both
have at least three eclipsed bonds. As a consequence, the
umbrella sampling procedure that we will apply to the liq-
uid state will not specifically select for one of these crystal
phases to the exclusion of the other. At the same time, the
possibility exists that this approach favors the ice Ic struc-
ture over that of ice Ih, since only three of the four eclipsed
bonds of an ice Ic molecule need to be detected, while all
three of the eclipsed bonds of an ice Ih molecule must
be detected. In the study of a patchy colloid model [39],
the influence of this bias to form ice Ic was indeed ob-
served, although the height of the nucleation barrier was
not affected.

Having identified all the crystalline molecules in the
system, we can define crystalline clusters. If a crystalline
molecule j is one of the four nearest neighbours of a crys-
talline molecule i, then i and j are assigned to the same
crystalline cluster. The size n of a crystalline cluster is the
total number of crystalline molecules contiguously con-
nected in this way. We then find nmax, the size of the
largest crystalline cluster in the system. We use nmax as
the order parameter to describe the progression of the sys-
tem from the liquid to the crystalline phase.

3 Umbrella sampling

We carry out umbrella sampling MC simulations in the
constant-(N,P, T ) ensemble. Our approach is similar to
that used in refs. [11, 19, 20], except that we use nmax

rather than Q6 as a structural order parameter. To imple-
ment umbrella sampling, we add a biasing potential,

UB = k1(ρ − ρ∗)2 + k2(nmax − n∗

max
)2, (5)

to the system potential energy U . The effect of UB is to
constrain a given simulation to sample configurations in
the vicinity of chosen values of the order parameters ρ =
ρ∗ and nmax = n∗

max
. In all our simulations, we fix N =

216, k1 = 1000kT (cm3/g)2, and k2 = 0.5kT .
Trial configurations for each Monte Carlo step (MCS)

are generated as follows: First, we carry out an unbiased
(i.e. UB = 0) constant-(N,P, T ) MC “sweep”, in which
each we attempt (on average) N − 1 rototranslational
moves, and one change of the system volume. The maxi-
mum size of the attempted rototranslational and volume
changes are chosen to give MC acceptance ratios in the
range 25-40%. Next, the change in the biasing potential
UB is evaluated for the trial configuration resulting from
the unbiased MC sweep, relative to the system configura-
tion at the beginning of the sweep, to determine the accep-
tance or rejection of the trial configuration. This completes
one MCS, and the procedure is then repeated.

We next identify the (T, P ) state points near the
Widom line at which to conduct our runs. As a proxy for
the Widom line, we use the line of compressibility max-
ima (LCM) shown in fig. 1, as determined from previ-
ous MD simulations of the ST2 model [8]. We select two
state points lying on the LCM at relatively high T , in or-
der to study conditions at which the relaxation time of
the liquid will be relatively short. In the following, “series
A” denotes the set of runs conducted at T = 300K and
P = −25MPa, and “series B” denotes the set of runs con-
ducted at T = 280K and P = 40MPa. The state points
in the (T, P ) plane corresponding to series A and B are
identified in fig. 1. For both series, we carry out 210 in-
dependently initialized umbrella sampling runs at equally
spaced values of ρ∗ from 0.80 to 1.20 g/cm3 separated by
0.02 g/cm3; and equally spaced values of n∗

max
from 1 to

19 separated by 2.
To initialize our umbrella sampling runs, we first con-

duct 210 unbiased MC runs at state point A starting
from independent configurations harvested from a high-
temperature run conducted at T = 600K and P =
25MPa. We separately equilibrate all of these unbiased
runs at state point A. Then the umbrella sampling poten-
tial UB is imposed, and the time evolution continued in
order to bring the biased runs into equilibrium. In all cases
we find that a crystalline cluster of size nmax close to n∗

max

develops during each run when initiated from the liquid
state. After all of the runs in series A attain equilibrium,
we use a configuration from each to initiate the corre-
sponding umbrella sampling run for series B by changing
the imposed T and P . These series B runs are then sep-
arately evolved to equilibrium. From each run, we record
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a time series of instantaneous values for ρ, nmax, U , and
for N (n) for n = 0 to 20.

Our runs are carried out for between 4.5×108 and 6.3×
108 MCS. Using the second half of each run, we compute
the autocorrelation function Cx(t) from the time series
for each choice of x = ρ, nmax, or U . As illustrated in
fig. 5, we find in almost all cases that U is the most slowly
relaxing of these three quantities. As shown in fig. 6, in
all cases CU (t) decays to zero on a time scale that is short
compared to the lengths of our runs, confirming that our
runs are well equilibrated. To characterize the relaxation
time of our umbrella sampling runs, we choose the time
τ such that CU (τ) = 0.2. As shown in fig. 7, we find
values of τ ranging between 9× 103 and 3× 106 MCS. To
account for equilibration, we then discard the results for
t < τe of each run, where τe is chosen to be at least 20τ .
The resulting length τrun of each production run that is
used in our analysis is shown in fig. 7, compared to the
corresponding value of τ . In terms of τ , the lengths of our
production runs range between 173τ and 57000τ .

To estimate observables and their associated error,
we use the multistage Bennet acceptance ratio (MBAR)
method [45]1. The MBAR method takes as input the time
series of the order parameters (ρ and nmax) and the sys-
tem potential energy U , reweights the statistics obtained
from each run to remove the effect of the biasing potential,
and produces an optimal estimate of the desired observ-
able at a specified value of T and P . Similar to histogram
reweighting methods [46,47], the MBAR method also facil-
itates reweighting the configurations sampled during our
runs with respect to T and/or P , allowing the statistics
from different state points to be combined to produce an
estimate of a desired observable at (T, P ) state points

1 We use the “pymbar-2.0beta” implementation of the MBAR
method available from https://simtk.org/home/pymbar.

that lie near the conditions at which we carry out our
simulations.

For the purpose of estimating average values and their
error using the MBAR method, we wish to consider only
those configurations from our runs that are statistically in-
dependent. We assume that statistically independent con-
figurations are separated by τ or τrun/1000, whichever is
larger. All other configurations are ignored in our analysis.
For the G(n) data presented in the figures that follow, we
find that one standard deviation of error is always com-
parable to or smaller than the symbol size.

In order to determine the range of T and P within
which we can reliably use reweighting to estimate the av-
erage values of observables from our data set, we must
examine the range of ρ and U sampled by our umbrella
sampling procedure. That is, we can only evaluate observ-
ables at values of P where our runs have adequately sam-
pled microstates having values of ρ that are typical of equi-
librium at that value of P . Similarly, we can only evaluate
observables at values of T where our runs have adequately
sampled microstates having values of U that are typical of
equilibrium at that value of T . To proceed, we first iden-
tify in fig. 8 the mean values of U and ρ for liquid states
in the vicinity of state points A and B. Figure 8 shows
equilibrium isotherms of U versus ρ obtained from previ-
ous MD simulations carried out at constant (N,V, T ), for
T = 275 to 305K [8]. We then compare these equilibrium
isotherms with the values of U and ρ of the microstates
sampled in our n∗ = 1 runs, since these are the runs most
representative of the equilibrium liquid, in which crystal
nuclei are either absent or very small. Figure 8 shows the
mean values of U and ρ sampled in our n∗ = 1 runs for all
values of ρ∗, as well as the distribution of sampled values
as characterized by the standard deviation of the set of U
and ρ values sampled during each run.

The dashed lines in fig. 8 connect the two highest and
the two lowest density points from series A and B. We
use these lines to define the limits of adequate sampling
with respect to ρ along each of the equilibrium isotherms.
This in turn defines the range of P within which we eval-
uate observables. That is, for a given T we only consider
the range of P that corresponds to the range of ρ found
between these two dashed lines. This criterion determines
the upper and lower boundaries of the polygon shown in
fig. 1.

To delimit the range of T examined, our criterion is
that the equilibrium isotherms in fig. 8 should fall within
one standard deviation of the mean values of U sampled
in our umbrella sampling runs. This criterion is satisfied
between 275 and 305K, except for T in the vicinity of
290K. However, the 290K equilibrium isotherm lies be-
tween the series A and B data sets, and is also within two
standard deviations of both. Consequently, the statistics
of both series contribute to the evaluation of observables
near 290K. As we will see below, we confirm that the
statistics accumulated in our umbrella sampling runs are
indeed sufficient to compute observables throughout the
range of T from 275 to 305K, thus justifying the high and
low T boundaries of the polygon shown in fig. 1.
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To test our ability to evaluate average values from our
data set over the range of T and P indicated by the poly-
gon in fig. 1, we show in fig. 9 isotherms of P versus ρ,
for T and P spanning the width and height of the poly-
gon. Figure 9 demonstrates good agreement between the
isotherms calculated by using the MBAR method to find
the average value of ρ at a given T and P from our com-
bined series A and B data sets, and the isotherms obtained
from previous MD simulations [8].

4 Results

To find G(n) throughout the (T, P ) range within the poly-
gon of fig. 1, we combine the statistics from all runs in se-
ries A and B. We use the MBAR method to compute the
average value of N (n) for n = 0 to 20, on a grid of (T, P )
points within the polygon, where each point is separated
by 5K in T and 20MPa in P . G(n) at each state point is
then found from N (n) using eq. (1).

A representative result is given in fig. 10, which shows
G(n) found at T = 290K and P = 0MPa, a point very
close to the LCM. Figure 10 shows that there is a large
free energy cost (up to 30kT ) for the formation of small
ice nuclei in the vicinity the KT maximum, demonstrat-
ing that the thermodynamic anomalies associated with
the Widom line for ST2 water occur in a well defined
metastable liquid, for which crystal formation can only
occur by surmounting a substantial free energy barrier.

In order to confirm the result presented in fig. 10, and
to test for systematic errors in our implementation of the
MBAR method (including reweighting), we conduct an
additional test. As shown in fig. 11, we compare the G(n)
curve from fig. 10 (obtained using data from both series A
and B) with the result obtained from series A alone, and
from series B alone. All three curves are within error of one
another. This agreement confirms that the statistics gath-
ered from series A and B have independently converged

to equilibrium, and that the reweighting of data gathered
at either state point A or B gives consistent results at T
and P intermediate between A and B.

Visual inspection of the structure of the larger ice nu-
clei (in the range of n = 15 to 20) suggests that most of
the nuclei formed in our simulations have the structure
of ice Ic, as illustrated in fig. 10. We have not found any
examples of ice Ih nuclei. As discussed in sect. 2, this re-
sult may be a consequence of the order parameter used
in our umbrella sampling procedure, or it may indicate
that for the ST2 model the free energy required to form
small ice Ih nuclei is higher than for ice Ic, under the con-
ditions studied here. Following the approach of ref. [39],
this question could be resolved in future work by using
modified order parameters that enforce the formation of
only ice Ic or ice Ih.

To test if our results may be used to estimate the
height of the nucleation barrier G∗ and the size of the
critical nucleus n∗, we use our data for G(n) to obtain a
fit of an equation for G(n) the form of which is predicted
by classical nucleation theory:

G(n) = −an + bn2/3, (6)

where a and b are fit parameters [48]. We also fit a modified
equation that includes an additional term and fit param-
eter c:

G(n) = −an + bn2/3 + cn1/3. (7)

A term of the form of that added in eq. (7) has been used
to account for the curvature of the nucleus-liquid interface
for simple liquids [49], as well as to model a core-shell
morphology of the nucleus in ice nucleation [41].

The fits of eq. (6) and (7) obtained for G(n) at T =
290K and P = 0MPa are shown in figs. 10 and fig. 12.
While both fitting functions do a reasonable job of repre-
senting the data in the range of small n, they give widely
different estimates for G∗ and n∗. Similar results to those
shown in fig. 12 are obtained for state points throughout
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Fig. 7. Comparion of τ (circles) and τrun (squares) as a func-
tion of n∗

max for all the runs in (a) series A, and (b) series B.

the (T, P ) region in which we compute G(n). Given the
large degree of extrapolation required to estimate G∗ and
n∗ from our data, we do not attempt to analyze these
quantities further here.

The variation of G(n) with P at T = 290K is shown
in fig. 13. For a given n, the value of G(n) increases with
P . This is in line with expectation. At T = 280K and
P = 40MPa, the density of ice Ic and Ih is 0.862 g/cm3,
whereas the density of the liquid is 0.917 g/cm3. At higher
P , the difference in density between the liquid and crys-
tal increases. Hence the local structure of the liquid is
more tetrahedral and ice-like at lower P , where the den-
sities of the liquid and crystal are closer. As P increases,
the local tetrahedral network of the liquid is progressively
disrupted, and a more significant local restructuring is re-
quired to create an ice-like cluster. From this point of view,
we should expect the free energy cost to create ice nuclei
to increase with P in the range of pressure examined here.

To characterize the behaviour of G(n) over the en-
tire (T, P ) range studied here, we focus on the value
of G15 = G(n = 15). Isotherms of G15 are shown in
fig. 14, and isobars in fig. 15. The two dimensional function
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Fig. 8. Small data points connected by lines are equilibrium
isotherms of ρ versus U as obtained from previous MD simu-
lations [8]. From left to right, the isotherms are for T = 275 to
305 K, in steps of 5 K. Also shown are mean values of U and ρ
at n∗ = 1 for each value of ρ∗ in series A (circles) and series B
(squares). The points at the lowest ρ are for ρ∗ = 0.80 g/cm3,
and those at the highest ρ are for ρ∗ = 1.20 g/cm3. The spread
in the values of U and ρ sampled at each value of ρ∗ are indi-
cated, respectively, by the horizontal and vertical bars through
each point. These bars extend one standard deviation above
and below the mean, for both U and ρ. The lower (higher)
dashed line connects the ρ∗ = 0.80 g/cm3 (ρ∗ = 1.20 g/cm3)
points for series A and B. The polygon in fig. 1 encloses all the
(T, P ) values corresponding to the data points on the equilib-
rium isotherms that lie between the two dashed lines.
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Fig. 9. Comparison of isotherms of P as a function of ρ evalu-
ated from the present data set using the MBAR method (filled
symbols), and isotherms obtained from previous MD simula-
tions (open symbols) [8]. To facilitate comparison of the curves,
the data for T = 290 K have been shifted upward by 40MPa,
and for T = 275K by 80MPa.

G15(T, P ) is represented in fig. 1 as a contour plot. We find
that over the entire region examined, G15 remains large
relative to kT , ranging from 22kT to 46kT . G15 mono-
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Fig. 10. G(n) at T = 290K and P = 0 MPa (open circles), compared to fits to the data of eq. (6) (dashed line) and eq. (7)
(solid line). Also shown are sample configurations in which the molecules belonging to the largest crystalline cluster are rendered
as solid spheres (red for oxygen and white for hydrogen), and where all other molecules are rendered using a stick model. All
molecules have been shifted so that the centre of mass of the largest crystalline cluster coincides with the centre of the simulation
cell. For the configurations at n = 9, 15, and 19, the system has been rotated to highlight the similarity to the ice Ic structure
shown in fig. 2.
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Fig. 11. Test of the results for G(n) obtained using the MBAR
method with reweighting to T = 290K and P = 0 MPa, using
three different approaches: i) using reweighted data from series
A only (open circles); ii) using reweighted data from series B
only (open squares); and using reweighted and combined data
from both series A and B (plus signs). For comparison, we also
show G(n) curves (filled symbols) obtained from series A and
B without reweighting with respect to T or P .

tonically increases with P along isotherms (fig. 14), and
monotonically increases with T along isobars (fig. 15).

As shown in fig. 14, we note that the isotherms of
G15 are approximately linear in P at high P , but then
start to curve as P passes through the vicinity of the KT

maximum. Indeed, there is reason to predict that these
isotherms will pass through a minimum at negative P be-
yond the range of our current data. The density of the
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Fig. 12. G(n) at T = 290 K and P = 0 MPa (open circles),
compared to fits to the data of eq. (6) (dashed line) and eq. (7)
(solid line).

liquid and crystal are approaching one another as P de-
creases, and can be expected to intersect in the negative
pressure region. Near this intersection, the free energy cost
to create ice nuclei of a given size should be lower than at
higher or lower P , since under these conditions an ice em-
bryo can form without a density fluctuation. This picture
is also consistent with the requirement (imposed by the
Clapeyron equation) that the ice-liquid coexistence line
must pass through a maximum T as P decreases if the
liquid and crystal densities intersect. Such a melting-line
maximum has been observed for other water models; see
e.g. ref. [50]. For a supercooled liquid near a melting-line
maximum, the ice nucleation barrier must have a mini-
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fits of eq. (7).
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Fig. 14. Isotherms of G15 as a function of P . Isotherms are 5K
apart. The open circles locate the pressure of the KT maximum
along each isotherm.

mum as a function of P along an isotherm because the
coexistence line (where the nucleation barrier diverges) is
crossed by both increasing or decreasing P .

Consistent with the above considerations, the onset of
curvature in the isotherms of G15 as P decreases through
that of the KT maximum reflects the change in liquid
structure that occurs as the Widom line is crossed. As
P decreases below that of the KT maximum, the liquid
enters the region where it becomes increasingly similar to
the LDL phase, characterized by a high degree of local
tetrahedral structure and a density approaching that of
ice. Our data show that the onset of this crossover in the
liquid phase is also reflected in the behaviour of the free
energy of formation of small ice nuclei.

The isobars of G15 presented in fig. 15 show that G15

decreases with T at all P studied here. Figure 15 also
identifies the isobar corresponding to the estimated crit-
ical pressure Pc = 180MPa of the LLPT for the ST2
model, as well as the value of the critical temperature
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Fig. 15. Isobars of G15 as a function of T . Tc and Pc are
respectively the estimated T and P of the critical point of the
LLPT.

Tc = 247K [13]. In the case that the supercooled liquid
becomes unstable to ice formation, G∗ and n∗ should ap-
proach zero, in which case G15 should also approach zero.
Our isobars of G15 are too far away from Tc to justify a
quantified extrapolation. Nonetheless, our data suggests
that future work to extend these curves to lower T would
provide useful information. On the one hand, the slope of
our isobar for P = Pc suggests that a non-zero ice nucle-
ation barrier exists in the vicinity of the critical point of
the LLPT, a result that is consistent with several recent
free energy simulation studies of ST2 water [19,20,22,25].
On the other, our isobars for P < Pc raise the possibility
that the ice nucleation barrier may become low or even
approach zero in the region of the phase diagram below
the coexistence line of the LLPT, in the stability field of
the LDL phase. If such a stability limit for the LDL phase
of ST2 water exists, clarifying its location would be valu-
able for understanding this phase of supercooled water,
and for elucidating the influence of the LLPT on the ice
nucleation process.

Also of relevance are earlier studies of the variation
of the crystal nucleation barrier in systems having a
metastable liquid-gas critical point [51, 52]. These works
showed that the crystal nucleation barrier might be dra-
matically lowered near a metastable critical point, de-
creasing by 25kT or more within a range of 10% of Tc.
Indeed, the lowest T data at P = Pc in fig. 15 are about
10% above Tc, and a 25kT decrease in the nucleation bar-
rier might bring the barrier close to zero in the vicinity of
Tc. A similar dramatic lowering of the nucleation barrier
near the critical point was found in a recent study that
applied density functional theory to the case of a LLPT
in supercooled water [53]. Reference [53] also predicts a
crossover in the temperature dependence of the crystal
nucleation barrier near the critical point that may be re-
lated to the behavior reported here near the Widom line.
These considerations demonstrate the need to push the
current dataset closer to the critical point of the LLPT in
ST2, in order to assess the stability of the liquid phase.
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5 Discussion

In summary, we have quantified the free energy of forma-
tion of small ice nuclei in the ST2 model of water. For the
range of T and P studied here, we find that these small
nuclei have the local structure of ice Ic, and that there is
a significant free energy cost to form these ice nuclei in
the vicinity of the Widom line. This result excludes the
possibility that the liquid state of the ST2 model is unsta-
ble to ice formation in this region of the phase diagram,
and thus confirms that the thermodynamic anomalies pre-
viously identified in this region (e.g. the KT maximum)
occur in a well-defined metastable liquid state that is sep-
arated from the crystal by a substantial free energy bar-
rier. A similar conclusion was recently drawn for the case
of the TIP4P/2005 model of water, though by different
means [54,55].

We note that while the present work was under re-
view, the first comprehensive study of the ST2 phase di-
agram was completed, providing the location of the coex-
istence lines between the liquid phase and various crys-
talline phases, including ice Ic/Ih [56]. Comparison with
this work shows that state point A in fig. 1 lies approx-
imately on the liquid-ice I coexistence line, while state
point B is approximately 17K below the location of the
liquid-ice I coexistence line at the same P . This confirms
that most of the region of the polygon in fig. 1 encloses
supercooled liquid states.

From a methodological standpoint, our work illustrates
that two-dimensional umbrella sampling can be exploited
to quantify nucleation phenomena over a continuous range
of T and P , and is a valuable approach when seeking to
correlate thermodynamic behaviour and nucleation pro-
cesses in simulations of supercooled liquids.

For the specific case of supercooled water, our results
show that we can detect the crossover from the HDL-like
liquid to the LDL-like liquid by examining the nucleation
behaviour of ice from the liquid phase. Since this crossover
influences the free energy of formation of ice nuclei, we can
also expect it to influence the nucleation rate of ice. This
observation is significant because the principal challenge
for the direct experimental characterization of deeply su-
percooled water is the increasingly rapid conversion of the
metastable liquid to ice as T decreases. However, the ice
nucleation process is strongly influenced by the nature of
the metastable liquid in which the process begins, and
our results demonstrate that ice nucleation can be used
as a “probe” to reveal the properties of the underlying su-
percooled liquid. Our work raises the possibility that an
examination of ice nucleation rates in deeply supercooled
water might be useful as a means to locate and study
the thermodynamic anomalies of the supercooled liquid,
including perhaps the LLPT itself.
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